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Abstract

Automatic evaluation of written responses to
content-focused assessment items (automated
short answer scoring) is a challenging educa-
tional application of natural language process-
ing. It is often addressed using supervised ma-
chine learning by estimating models to predict
human scores from detailed linguistic features
such as word n-grams. However, training data
(i.e., human-scored responses) can be difficult
to acquire. In this paper, we conduct exper-
iments using scored responses to 44 prompts
from 5 diverse datasets in order to better un-
derstand how training set size and other fac-
tors relate to system performance. We believe
this will help future researchers and practition-
ers working on short answer scoring to answer
practically important questions such as, “How
much training data do I need?”

1 Introduction

Automated short answer scoring is a challenging ed-
ucational application of natural language process-
ing that has received considerable attention in recent
years, including a SemEval shared task (Dzikovska
et al., 2013), a public competition on the Kaggle data
science website (https://www.kaggle.com/
c/asap-sas), and various other research papers
(Leacock and Chodorow, 2003; Nielsen et al., 2008;
Mohler et al., 2011).

The goal of short answer scoring is to create a pre-
dictive model that can take as input a text response to
a given prompt (e.g., a question about a reading pas-
sage) and produce a score representing the accuracy
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or correctness of that response. One well-known ap-
proach is to learn a prompt-specific model using de-
tailed linguistic features such as word n-grams from
a large training set of responses that have been pre-
viously scored by humans.1

This approach works very well when large sets of
training data are available, such as in the ASAP 2
competition, where there were thousands of labeled
responses per prompt. However, little work has been
done to investigate the extent to which short answer
scoring performance depends on the availability of
large amounts of training data. This is important be-
cause short answer scoring is different from tasks
where one dataset can be used to train models for
a wide variety of inputs, such as syntactic parsing.2

Current short answer scoring approaches depend on
having training data for each new prompt.

Here, we investigate the effects on performance
of training sample size and a few other factors,
in order to help answer extremely practical ques-
tions like, “How much data should I gather and la-
bel before deploying automated scoring for a new
prompt?” Specifically, we explore the following re-
search questions:

• How strong is the association between train-
ing sample size and automated scoring perfor-
mance?

1Information from the scoring guidelines, such as exemplars
for different score levels, can also be used in the scoring model,
though in practice we have observed that this does not add much
predictive power to a model that uses student responses (Sak-
aguchi et al., 2015).

2Syntactic parsing performance varies considerably depend-
ing on the domain, but most applications use parsing models
that depend almost exclusively on the Penn Treebank.
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• If the training set size is doubled, how much
improvement in performance should we ex-
pect?

• Are there other factors such as the number of
score levels that are strongly associated with
performance?

• Can we create a model to predict scoring model
performance from training sample size and
other factors (and how confident would we be
of its estimates)?

2 Short Answer Scoring System

In this section, we describe the basic short answer
scoring system that we will use for our experiment.
We believe that this system is broadly representative
of the current state of the art in short answer scor-
ing. Its performance is probably slightly lower than
what one would find for a system highly tailored to a
specific dataset. Although features derived from au-
tomatic syntactic or semantic parses might also re-
sult in small improvements, we did not include such
features for simplicity.

The system uses support vector regression (Smola
and Schölkopf, 2004) to estimate a model that pre-
dicts human scores from vectors of binary indica-
tors for linguistic features. We use the implemen-
tation from the scikit-learn package (Pedregosa et
al., 2011), with default parameters except for the
complexity parameter, which is tuned using cross-
validation on the data provided for training. For fea-
tures, we include indicator features for the follow-
ing:

• lowercased word unigrams
• lowercased word bigrams
• length bins (specifically, whether the log of 1

plus the number of characters in the response,
rounded down to the nearest integer, equals x,
for all possible x from the training set)

Note that word unigrams and bigrams include punc-
tuation.

3 Datasets

We conducted experiments using responses to 44
prompts from five different datasets. The data for
each of the 44 prompts was split into a training set

and a testing set. Table 1 provides an overview of
the datasets.

The ASAP 2 dataset is from the 2012 pub-
lic competition hosted on Kaggle (https://
www.kaggle.com/c/asap-sas) and is pub-
licly available.3 The Math and Reading 1 datasets
were developed as part of the Educational Test-
ing Service’s “Cognitively Based Assessment of,
for, and as Learning” research initiative (Bennett,
2010).4 The Reading 2 dataset was developed as
part of the “Reading for Understanding” framework
(Sabatini and O’Reilly, 2013). The Science dataset
was developed and scored as part of the Knowledge
Integration framework (Linn, 2006). Note that only
the ASAP 2 dataset is publicly available.

For all prompts, there are at least 359 training ex-
amples (at most 2,633).

4 Experiments

For each prompt, we trained a model on the full
training set for that prompt and evaluated on the test-
ing set. In addition, we trained models from ran-
domly selected subsamples of the training set and
evaluated on the full testing set. Specifically, we
created 20 replications of samples (without replace-
ment) of sizes 2n ∗ 100 (i.e., 100, 200, 400, . . . ) up
to the full training sample size. We trained models
on these subsamples and evaluated each on the full
testing set.

Following the ASAP 2 competition
(https://www.kaggle.com/c/asap-sas/
details/evaluation), we evaluated models
using quadratically weighted κ (Cohen, 1968).

For subsamples of the training data, we averaged
the results across the 20 replications before further
analyses. We used the Fisher Transformation z(κ)
when averaging because of its variance-stabilization
properties. The same transformation was also used

3For the ASAP 2 dataset, we used the “public leaderboard”
for the testing sets.

4The math data came from the 2012 multi-state administra-
tion of two multi-prompt tasks: Moving Sidewalks with 1 Rider
(prompts 2a, 4a, 4b, 4d, 10b) and Moving Sidewalks with 2
Riders (prompts 3a, 3b, 6a, 6b, 10, 12). The reading data from
the 2013 multi-state administration of the following prompts:
Ban Ads 1-B, 1-C, 2-C; Cash for Grades 1-B, 1-C, 2; Social
Networking 1-B, 1-C, 2; Culture Fair 3-1; Generous Gift 3-1;
and Service Learning 3-1. Zhang and Deane (under review) de-
scribe the reading data in more detail.
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Dataset No. of
Prompts

Score
Range

Domain(s) Task Type Response
Length

ASAP 2 10 0–2 or
0–3

Various (science,
language arts,
etc.)

Various (description of scientific
principles, literary analysis, etc.)

27-66
words

Math 11 0–2 Middle school
math

Explanation of how mathematical
principles apply to given situations
involving linear equations

9-16
words

Reading 1 12 0–3 or
0–4

Middle school
reading

Summarization or development of
arguments

51-79
words

Reading 2 4 0–3 or
0–4

Middle school
reading

Summarization and analysis of
reading passages

29-111
words

Science 7 1–5 Middle school
science

Explanations and arguments em-
bedded in inquiry science units that
call for students to use evidence to
link ideas

16-46
words

Table 1: Descriptions of the datasets. The Response Length column shows the range of average response lengths (in
number of words) across all prompts in a dataset.

N mean s.d. med. min. max.
100 .600 .095 .596 .343 .782
200 .649 .085 .638 .418 .810
400 .688 .085 .692 .473 .828
800 .730 .079 .742 .540 .851

1600 .747 .074 .761 .590 .863

Table 2: Descriptive statistics about performance in terms
of averaged quadratically weighted κ for different train-
ing sample sizes (N ), aggregated across all prompts.
“med.” = median, “s.d.” = standard deviation

by the ASAP 2 competition as part of its official
evaluation.

z(κ) =
1
2

ln
1 + κ

1− κ
(1)

κaverage = z−1(
∑

prompt

z(κprompt)) (2)

This gives us a dataset of averaged κ values for
different combinations of prompts and sample sizes.
Table 2 shows descriptive statistics.

For each data point, in addition to the κ value and
prompt, we compute the following:

• log2SampleSize: log2 of the training sam-
ple size,

Variable r

log2SampleSize .550
log2MinSampleSizePerScore .392

meanLog2NumChar -.365
numLevels .033

Table 3: Pearson’s r correlations between training set
characteristics and human-machine κ.

• log2MinSampleSizePerScore:log2 of
the minimum number of examples for a score
level (e.g., log2(16) if the least frequent score
level in the training sample had 16 examples),

• meanLog2NumChar: The mean, across train-
ing sample responses, of log2 of the number of
characters (a measure of response length),

• numLevels: The number of score levels.

For each of these variables, we first compute Pear-
son’s r to measure the association between κ and
each variable. The results are shown in Table 3.

Not surprisingly, the variable most strongly asso-
ciated with performance (i.e., κ) is the log2 of the
number of responses used for training. However,
having a large sample does not ensure high human-
machine agreement: the correlation between κ and
log2SampleSize was only r = .550. Perfor-
mance varies considerably across prompts, as illus-
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Figure 1: Plots of human-machine agreement versus sample size, for various prompts from different datasets.

trated in Figure 1.
Next, we tested whether we could predict human-

machine agreement for different size training sets
for new prompts. We used the dataset of κ val-
ues for different prompts and training set sizes de-
scribed above (N = 224). We iteratively held out
each dataset and used it as a test set to evaluate
performance of a model trained on the remaining
datasets. For the model, we used a simple ordinary
least squares linear regression model, with the vari-
ables from Table 3 as features.5 For labels, we used
z(κ) instead of κ, and then converted the models
predictions back to κ values using the inverse of the
z function (Eq. 1). We report two measures of corre-
lation (Pearson’s and Spearman’s) and two measures
of error (root mean squared error and mean absolute
error). The results are shown in Table 4.

5 Discussion and Conclusion

In response to the research questions we posed ear-
lier, we found that:

• The correlation between training sample size
and human-machine agreement is strong,
though performance varies considerably by
prompt (Table 2 and Figure 1).

5We prefer to use a simpler linear model instead of a more
complex hierarchical model for the sake of interpretability.

Dataset pearson spearman RMSE MAE
ASAP2 .650 .654 .080 .064
Math .558 .523 .095 .076
Reading 1 .708 .617 .039 .031
Reading 2 .497 .467 .070 .063
Science .438 .464 .173 .139

Table 4: Results for the predictive model of human-
machine κ.

• If the training sample is doubled in size, then
performance increases .02 to .05 in κ (Ta-
ble 2). This rate of increase was fairly consis-
tent across prompts. However, as with other
supervised learning tasks, there will likely be a
point where increasing the sample size does not
yield large improvements.

• Variables such as the minimum number of ex-
amples per score level and the length of typical
responses are also associated with performance
(Table 3), though not as much as the overall
sample size.

• A model for predicting human-machine agree-
ment from training sample size and other fac-
tors could provide useful information to devel-
opers of automated scoring, though predictions
from our simple model show considerable error
(Table 4). More detailed features of prompts,
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scoring rubrics, and student populations might
lead to better predictions.

In this paper, we investigated the impact of train-
ing sample size on short answer scoring perfor-
mance. Our results should help researchers and
practitioners of automated scoring answer the highly
practical question, “How much data do I need to get
good performance?”, for new short answer prompts.
We conducted our experiments using a basic sys-
tem with only n-gram and length features, though
it is likely that the observed trends (e.g., the rate of
increase in κ with more data) would be similar for
many other systems. Future work could explore is-
sues such as how much performance varies by task
type or by the amount of linguistic variation in re-
sponses at particular score levels.
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