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Abstract

Park and Cardie (2014) proposed a novel task
of automatically identifying appropriate types
of support for propositions comprising online
user comments, as an essential step toward au-
tomated analysis of the adequacy of support-
ing information. While multiclass Support
Vector Machines (SVMs) proved to work rea-
sonably well, they do not exploit the sequen-
tial nature of the problem: For instance, veri-
fiable experiential propositions tend to appear
together, because a personal narrative typi-
cally spans multiple propositions. Accord-
ing to our experiments, however, Conditional
Random Fields (CRFs) degrade the overall
performance, and we discuss potential fixes
to this problem. Nonetheless, we observe
that the F1 score with respect to the unver-
ifiable proposition class is increased. Also,
semi-supervised CRFs with posterior regular-
ization trained on 75% labeled training data
can closely match the performance of a super-
vised CRF trained on the same training data
with the remaining 25% labeled as well.

1 Introduction

The primary domain for argumentation mining has
been professionally written text, such as parliamen-
tary records, legal documents and news articles,
which contain well-formed arguments consisting of
explicitly stated premises and conclusions (Palau
and Moens, 2009; Wyner et al., 2010; Feng and
Hirst, 2011; Ashley and Walker, 2013). In con-
trast, online user comments are often comprised of
implicit arguments, which are conclusions with no

explicitly stated premises1. For instance, in the fol-
lowing user comment, neither of the two proposi-
tions are supported with a reason or evidence. In
other words, each of the two propositions is the con-
clusion of its own argument, with no explicit support
provided (thus called implicit arguments):

All airfare costs should include the pas-
senger’s right to check at least one stan-
dard piece of baggage.A All fees should be
fully disclosed at the time of airfare pur-
chase, regardless of nature.B

When the goal is to extract well-formed argu-
ments from a given text, one may simply disregard
such implicit arguments. (Villalba and Saint-Dizier,
2012; Cabrio and Villata, 2012). However, with the
accumulation of a large amount of text consisting of
implicit arguments, a means of assessing the ade-
quacy of support in arguments has become increas-
ingly desirable. It is not only beneficial for analyz-
ing the strength of arguments, but also for helping
commenters to construct better arguments by sug-
gesting the appropriate types of support to be pro-
vided.

As an initial step toward automatically assess-
ing the adequacy of support in arguments, Park and
Cardie (2014) proposed a novel task of classifying
each proposition based on the appropriate type of
support: unverifiable (UNVERIF), verifiable non-
experiential (VERIFNON ), or verifiable experiential

1Note that implicit arguments are different from so called
enthymemes, which may contain explicit premises, along with
one or more missing premises.
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(VERIFEXP )2. They show that multiclass Support
Vector Machines (SVMs) can perform reasonably
well on this task.

SVMs, however, do not leverage on the sequen-
tial nature of the propositions: For instance, when a
commenter writes about his past experience, it typ-
ically spans multiple propositions. (In our dataset,
VERIFEXP is followed by VERIFEXP with 57%
probability, when VERIFEXP constitutes less than
15% of the entire dataset.) Thus, we expect that the
probability of a proposition being a verifiable ex-
periential proposition significantly increases when
the previous proposition is a verifiable experiential
proposition.

In this paper, we test our intuition by employ-
ing Conditional Random Field (CRF), a popular ap-
proach for building probabilistic models to classify
sequence data, for this task (Lafferty et al., 2001). In
addition, we experiment with various ways to train
CRFs in a semi-supervised fashion.

Unlike our intuition, we find that a CRF performs
worse than a multiclass SVM overall. Still, the
F1 score with respect to the UNVERIF class is im-
proved. Also, we show that semi-supervised CRFs
with posterior regularization trained on 75% labeled
training data can closely match the performance of
a supervised CRF trained on the same training data
with the remaining 25% labeled as well.

2 Appropriate Support Type Identification

2.1 Task
The task is to classify a given proposition based on
the type of appropriate support. In this subsection,
we give a brief overview of the target classes3.

Verifiable Non-experiential (VERIFNON ). Propo-
sitions are verifiable if its validity can be
proved/disproved with objective evidence. Thus,
it cannot contain subjective expressions, and there
should be no room for multiple subjective interpre-
tations. Also, assertions about the future is consid-
ered unverifiable, as its truthfulness cannot be con-
firmed at the present time. As the propositions of
this type are verifiable, the appropriate type of sup-
port is objective evidence. (“Non-experiential” here

2See Section 2 for a more information.
3For more details with examples, please refer to the original

paper.

means that the given proposition is not about a per-
sonal state or experience. The reason for making this
distinction is discussed in the next paragraph.)

Verifiable Experiential (VERIFEXP ). The only
difference between this class and VERIFNON is that
this type of propositions is about a personal state or
experience. Verifiable propositions about a personal
state or experience are unique in that it can be inap-
propriate to evidence for them: People often do not
have objective evidence to prove their past experi-
ences, and even if they do, providing it may violate
privacy. Thus, the appropriate type of support for
this class is still evidence, but optional.

Unverifiable (UNVERIF). Propositions are unver-
ifiable if they contain subjective opinions or judg-
ments, as the subjective nature prevents the propo-
sitions from having a single truth value that can be
proved or disproved with objecive evidence. Also,
assertions about a future event is also unverifiable,
because the future has not come yet. As there is no
objective evidence for this type of propositions, the
appropriate type of support is a reason.

Other Statement (OTHER). The remainder of user
comments, i.e. text spans that are not part of an ar-
gument, falls under this category. Typical examples
include questions, greetings, citations and URLs.
Among these, only citations and URLs are consid-
ered argumentative, as they can be used to provide
objective evidence. Luckily they can be accurately
identified with regular expressions and thus are ex-
cluded from his classification task.

2.2 Conditional Random Fields

We formulate the classification task as a sequence
labeling problem. Each user comment consists of a
sequence of propositions (in the form of sentences or
clauses), and each proposition is classified based on
its appropriate support type. Instead of predicting
the labels individually, we jointly optimize for the
sequence of labels for each comment.

We apply CRFs (Lafferty et al., 2001) to the task
as they can capture the sequence patterns of proposi-
tions. Denote x as a sequence of propositions within
a user comment and y as a vector of labels. The CRF
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models the following conditional probabilities:

pθ(y|x) =
exp(θ · f(x,y))

Zθ(x)

where f(x,y) are the model features, θ are the
model parameters, and Zθ(x) =

∑
y exp(θ ·

f(x,y)) is a normalization constant. The objective
function for a standard CRF is to maximize the log-
likelihood over a collection of labeled documents
plus a regularization term:

max
θ
L(θ) = max

θ

∑
(x,y)

log pθ(y|x)− ||θ||
2
2

2δ2

Typically CRFs are trained in a supervised fash-
ion. However, as labeled data is very difficult to
obtain for the task of support identification, it is
important to exploit distant supervision in the data
to assist learning. Therefore, we investigate semi-
supervised CRFs which train on both labeled and
unlabeled data by using the posterior regularization
(PR) framework (Ganchev et al., 2010). PR has been
successfully applied to many structured NLP tasks
such as dependency parsing, information extraction
and sentiment analysis tasks (Ganchev et al., 2009;
Bellare et al., 2009; Yang and Cardie, 2014).

The training objective for semi-supervised CRFs
augments the standard CRF objective with a poste-
rior regularizer:

max
θ
L(θ)−min

q∈Q
{KL(q(Y)||pθ(Y|X))

+ β||Eq[φ(X,Y)]− b||22}
(1)

The idea is to find an optimal auxiliary distribution
q that is closed to the model distribution pθ(Y|X)
(measured by KL divergence) which satisfies a set
of posterior constraints. We consider equality con-
straints which are in the form of Eq[φ(X,Y)] = b,
where b is set based on domain knowledge. We can
also consider these constraints as features, which en-
code indicative patterns for a given support type la-
bel and prior beliefs on the correlations between the
patterns and the true labels.

In this work, we consider two ways of generat-
ing constraints. One approach is to manually define
constraints, leveraging on our domain knowledge.
For instance, the unigram “should” is usually used

as part of imperative, meaning it is tightly associ-
ated with the UNVERIF class. similarly, having 2 or
more occurrences of a strong subjective token is also
a distinguishing feature for UNVERIF. We manually
define 10 constraints in this way. The other approach
is to automatically extract constraints from the given
labeled training data using information gain with re-
spect to the classes as a guide.

2.3 Features

As the goal of this work is to test the efficacy of
CRFs with respect to this task, most of the features
are taken from the best feature combination reported
in Park and Cardie (2014) for a fair comparison.

Unigrams and Bigrams. This is a set of binary fea-
tures capturing whether a given unigram or bigram
appears in the given proposition. N-grams are use-
ful, because certain words are highly associated with
a class. For instance, sentiment words like happy is
associated with the UNVERIF class, as propositions
bearing emotion are typically unverifiable. Also,
verbs in past tense, such as went, is likely to appear
in VERIFEXP propositions, because action verbs in
the past tense form are often used in describing a
past event in a non-subjective fashion.

Parts-of-Speech (POS) Count Based on the pre-
vious work distinguishing imaginative and informa-
tive writing, the conjecture is that the distribution of
POS tags can be useful for telling apart UNVERIF

from the rest (Rayson et al., 2001).

Dictionary-based Features. Three feature sets
leverage on predefined lexicons to capture informa-
tive characteristics of propositions. Firstly, the sub-
jectivity clue lexicon is used to recognize occur-
rences of sentiment bearing words (Wilson, 2005).
Secondly, a lexicon made of speech event text an-
chors from the MPQA 2.0 corpus are used to iden-
tify speech events, which are typically associated
with VERIFNON or VERIFEXP (Wilson and Wiebe,
2005). Lastly, imperatives, which forms a subclass
of UNVERIF, are recognized with a short lexicon of
imperative expressions, such as must, should, need
to, etc.

Emotion Expression Count The intuition is having
much emotion often means the given proposition is
subjective and thus unverifiable. Thus, the level of
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emotion in text is approximated by counting tokens
such as “!” and fully capitalized words.

Tense Count The verb tense can provide a cru-
cial information about the type of the proposition.
For instance, the future tense is highly correlated
with UNVERIF, because propositions about a future
event is generally unverifiable at the time the propo-
sition is stated. Also, the past tense is a good in-
dicator of UNVERIF or VERIFEXP , since proposi-
tions of type VERIFNON are usually factual propo-
sitions irrelevant of time, such as “peanut reactions
can cause death.”

Person Count One example of the grammatical per-
son being useful for classification is that VERIFNON
propositions rarely consist of first person narratives.
Also, imperatives, instances of UNVERIF, often
comes with the second person pronoun.

3 Experiments and Analysis

3.1 Experiment Setup

The experiments were conducted on the dataset from
Park and Cardie (2014), which consists of user com-
ments collected from RegulationRoom.org, an ex-
perimental eRulemaking site. The dataset consists
of user comments about rules proposed by govern-
ment agencies, such as the Department of Trans-
portation. For comparison purposes, we used the
same train/test split (See Table 1). On average,
roughly 8 propositions constitute a comment in both
sets.

The goal of the experiments is two-fold: 1) com-
paring the overall performance of CRF-based ap-
proaches to the prior results from using multiclass
SVMs and 2) analyzing how the semi-supervised
CRFs perform with different percentages of the
training data labeled, under different conditions. To
achieve this, a set of repeated experiments were con-
ducted, where gradually increasing portions of the
training set were used as labeled data with the re-
maining portion used as unlabeled data.4

For evaluation, we use the macro-averaged F1
score computed over the three classes. Macro-F1 is
used in the prior work, as well, to prevent the perfor-
mance on the majority class5 from dominating the

4Mallet (2002) was used for training the CRFs.
5UNVERIF comprises about 70% of the data

overall evaluation.

VERIFNON VERIFEXP UNVERIF Total
Train 987 900 4459 6346
Test 370 367 1687 2424
Total 1357 1267 6146 8770

Table 1: # of Propositions in Training and Test Set

3.2 Results and Discussion

CRF vs Multiclass SVM As shown in Table 2, the
multiclass SVM classifier performs better overall.
But at the same time, a clear trend can be observed:
With CRF, the precision makes a significant gain
at the cost of the recall for both VERIFNON and
VERIFEXP . And the opposite is the case for VERIF.

One cause for this is the heavy skew in the dataset
that can be better handled in SVMs; As mentioned
before, the majority class (UNVERIF) comprises
about 70% of the dataset. When training the mul-
ticlass SVM, it is relatively straight forward to bal-
ance the class distribution in the training set, as each
proposition is assumed to be independent of others.
Thus, Park and Cardie randomly oversample the in-
stances of non-majority classes to construct a bal-
anced trained set. The situation is different for CRF,
since the entire sequence of propositions comprising
a comment is classified together. Further investiga-
tion in resolving this issue is desirable.

Semi-supervised CRF Table 3 reports the average
performance of CRFs trained on 25%, 50%, 75%
and 100% labeled training data (the same dataset),
using various supervised and semi-supervised ap-
proaches over 5 rounds. Though, the amount
is small, incorporating semi-supervised approaches
consistently boosts the performance for the most
part. The limited gain in performance is due to the
small set of accurate constraints.

As discussed in Section 2.2, one crucial compo-
nent of training CRFs with Posterior Regularization
is designing constraints on features. For a given fea-
ture, a respective constraint defines a probability dis-
tribution over the possible classes. For the best per-
formance, the distribution needs to be accurate, and
the constrained features occur in the unlabeled train-
ing set frequently.
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Method UNVERIF vs All VERIFNON vs All VERIFEXP vs All F1

Pre. Rec. F1 Pre. Rec. F1 Pre. Rec. F1 (Macro-Ave.)
Multi-SVM (P&C) 86.86 83.05 84.91 49.88 55.14 52.37 66.67 73.02 69.70 68.99
Super-CRF 100% 80.35 93.30 86.34 60.34 28.38 38.60 74.57 59.13 65.96 63.63

Table 2: Multi-SVM vs Supervised CRF Classification Results

Method UNVERIF vs All VERIFNON vs All VERIFEXP vs All F1

Pre. Rec. F1 Pre. Rec. F1 Pre. Rec. F1 (Macro-Ave.)
Super-CRF 100% 80.35 93.30 86.34 60.34 28.38 38.60 74.57 59.13 65.96 63.63
Super-CRF 75% 79.57 92.59 85.59 54.33 30.54 39.10 77.08 53.13 62.90 62.53
CRF-PRH 75% 79.42 93.12 85.73 57.14 31.35 40.49 79.01 52.32 62.95 63.06
CRF-PRH+IG 75% 79.72 94.37 86.43 63.58 27.84 38.72 76.6 55.31 64.24 63.13
Super-CRF 50% 79.16 93.01 85.53 51.92 21.89 30.82 71.68 55.86 62.79 59.71
CRF-PRH 50% 79.28 92.12 85.17 55.68 26.49 35.92 69.23 53.95 60.64 60.57
CRF-PRH+IG 50% 79.23 92.23 85.24 55.37 26.49 35.83 70.32 54.22 61.23 60.77
Super-CRF 25% 75.93 96.86 85.13 57.89 5.95 10.78 79.06 50.41 61.56 52.49
CRF-PRH 25% 76.27 96.03 85.02 41.54 7.30 12.41 79.15 50.68 61.79 53.07
CRF-PRH+IG 25% 75.83 96.32 84.86 38.78 5.14 9.07 79.31 50.14 61.44 51.79

Table 3: Supervised vs Semi-Supervised CRF Classification Results

*The percentages refer to the percentages of the labeled data in the training set.
*The methods are as follows: Super-CRF = supervised approach only using the labeled data, CRF-PRH = CRF
with posterior regularization using constraints that are manually selected, CRF-PRH+IG = CRF with posterior
regularization using constraints that are manually written and automatically generated using information gain.
*Precision, recall, and F1 scores are computed with respect to each one-vs-all classification problem for evaluation
purposes, though a single model is built for the multi-class classification problem.

Our manual approach resulted in a small set of
about 10 constraints on features that are tightly
coupled with a class. Examples include the word
“should”, large number of strong subjective expres-
sions, and imperatives, which are all highly corre-
lated with the UNVERIF. While the constraints are
accurate, the coverage is too small to boost the per-
formance. However, it is quite difficult to generate
a large set of constraints, because there are not that
many features that are indicative of a single class.
Also, given that UNVERIF comprises a large per-
centage of the dataset, and the nature of verifiabil-
ity6, it is even more difficult to identify features
tightly coupled with VERIFNON and VERIFEXP
class. One issue with automatically generated con-
straints, based on information gain, is that they tend
to be inaccurate.

6Verifiability does not have many characterizing features,
but the lack of any of the characteristics of unverifiability, such
as sentiment bearing words, is indicative of verifiability.

4 Conclusions and Future Work

We present an empirical study on employing Con-
ditional Random Fields for identifying appropriate
types of support for propositions in user comments.
An intuitive extension to Park and Cardie (2014)’s
approach is to frame the task as a sequence label-
ing problem to leverage on the fact that certain types
of propositions tend to occur together. While the
overall performance is reduced, we find that Con-
ditional Random Fields (CRFs) improves the F1

score with respect to the UNVERIF class. Also,
semi-supervised CRFs with posterior regularization
trained on 75% labeled training data can closely
match the performance of a supervised CRF trained
on the same training data with the remaining 25%
labeled as well.

An efficient way to handle the skewed distribu-
tion of classes in the training set is needed to boost
the performance of CRFs. And a set of efficient
constraints is necessary for better performing semi-
supervised CRFs with posterior regularization.
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