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Abstract

News describe real-world events of vary-
ing granularity, and recognition of inter-
nal structure of events is important for au-
tomated reasoning over events. We pro-
pose an approach for constructing coherent
event hierarchies from news by enforcing
document-level coherence over pairwise
decisions of spatiotemporal containment.
Evaluation on a news corpus annotated
with event hierarchies shows that enforc-
ing global spatiotemporal coreference of
events leads to significant improvements
(7.6% F1-score) in the accuracy of pair-
wise decisions.

1 Introduction

Although real-world events have exact spatiotempo-
ral extent, event mentions in text are often spatially
and temporally vague. Moreover, event mentions
typically denote real-world events of varying gran-
ularity (e.g., summit vs. conversation). If not ad-
dressed, these issues hinder event-based inference.

Research efforts in event extraction have focused
on either extracting temporal relations (Pustejovsky
et al., 2003a; UzZaman et al., 2013) or recognizing
spatial relations (Mani et al., 2010; Roberts et al.,
2013) between events. Apart from being difficult
to recognize, temporal and spatial containment –
when considered in isolation – do not suffice to
infer that one event is a part of another. Temporally,
an event may happen during another event and not
be a part of it, as in (1).

(1) In the midst of the World War II, the Ar-
gentinian government reduced rents.

In this case, “the reduction of rents in Argentina”
happened during “the World War II,” but was not
part of it. Conversely, an event may occur within
the spatial extent of another event and not be a part
of it, as shown by (2).

(2) The fire destroyed 60% of London after
almost 30,000 people died from plague.

The spatial extent of “destruction by fire” is con-
tained within the extent of “people dying from
plague,” but the former is not a part of the latter.
An event e1 is a part of event e2 if and only if e1 is
spatially and temporally contained within e2.

In previous research (Chambers and Jurafsky,
2008; Jans et al., 2012), news narratives were mod-
eled as chains of events involving the same par-
ticipants. Such script-like representations, how-
ever, do not account for the non-linear (hierarchi-
cal) nature of events. In contrast, in this work we
model the structure of events in a narrative via
relations of spatiotemporal containment (STC) be-
tween event mentions, effectively inducing a hierar-
chy of events. We construct directed acyclic graphs
of event mentions, in which edges denote STC re-
lations between events. We call this structure an
event hierarchy directed acyclic graph (EHDAG).

We propose a two-step approach for constructing
EHDAGs from news. We first detect the STC rela-
tions between pairs of event mentions in a super-
vised fashion, building on our previous approach
(Glavaš et al., 2014). We then enforce structural
coherence over local predictions, framing the task
as a constrained optimization problem, which we
solve using Integer Linear Programming (ILP).

2 Related Research

Introduction of the TimeML standard (Pustejovsky
et al., 2003a) and the TimeBank corpus (Puste-
jovsky et al., 2003b) triggered a surge of research
on extraction of temporal relations, much of which
within TempEval campaigns (Verhagen et al., 2010;
UzZaman et al., 2013). More recently, following
the emergence of the SpatialML standard (Mani et
al., 2010), Roberts et al. (2013) have proposed an
annotation scheme and the supervised model for
extracting spatial relations between events.

The abovementioned approaches, however, do
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Figure 1: An example of an EHDAG for a narrative

not account for global narrative coherence. Cham-
bers and Jurafsky (2008) consider narratives to be
chains of temporally ordered events linked by a
common protagonist. Limiting a narrative to a se-
quence of protagonist-sharing events can often be
overly restrictive. E.g., an “encounter between
Merkel and Holland” may belong to the same
“summit” narrative as a “meeting between Obama
and Putin,” although they share no protagonists.

Several approaches enforce coherence of tempo-
ral relations at a document level. Bramsen et al.
(2006) represent the temporal structure of a doc-
ument as a DAG in which vertices denote textual
segments and edges temporal precedence. Simi-
larly, Do et al. (2012) enforce coherence using ILP
for joint inference on decisions from local event–
event and event–time interval decisions.

Complementary to Chambers and Jurafsky
(2008), who use a linear temporal structure, with
EHDAGs we model the hierarchical structure of
events with diverse participants. Similarly to Bram-
sen et al. (2006), we use an ILP formulation of
global coherence over local decisions, but consider
STC relations between events rather than temporal
relations between textual segments.

3 Constructing Coherent Hierarchies

As an example, consider the following news snip-
pet, with the corresponding EHDAG shown in
Fig. 1:

(3) Obama sparred with Vladimir Putin over
how to end the war in Syria on Monday dur-
ing an icy encounter at a G8 summit. Speak-
ing after talks with Obama, Putin said they
agreed the bloodshed must end. . .

We first use a supervised classifier to determine the
STC relations between all pairs of events in a doc-
ument. In the second step, we induce a spatiotem-
porally coherent EHDAG by enforcing coherence

constraints on the local classification decisions.

3.1 Spatiotemporal Containment Classifier

We first describe the classifier used for predicting
local STC relations. The classifier is given a pair of
event mentions, (e1, e2), where mention e1 occurs
in text before mention e2. The classifier predicts
one of the following relations: (1) e1 SUBSUPER

e2, denoting that the e1 (subevent) is spatiotem-
porally contained by event e2 (superevent); (2)
e1 SUPERSUB e2, denoting that e1 (superevent)
spatiotemporally contains e2 (subevent); and (3)
NOREL, denoting that neither of the two events
spatiotemporally contains the other. We use the
following rich set of features for the STC relation
classifier.
Event-based features: Word, lemma, stem,
POS-tag, and TimeML type of both event mentions.
Additionally, we compare the event arguments
of three semantic types: AGENT, TARGET, and
LOCATION, which we extract automatically from
raw text using the rule-based model by Glavaš and
Šnajder (2013).
Bag-of-words features: All lemmas in between
the two event mentions, with the special status
being assigned to temporal signals (e.g., before)
and spatial signals (e.g., inside).
Positional features: The distance between event
mentions in the document, both in the number of
sentences and the number of tokens. Additionally,
we use a feature indicating if the two mentions are
adjacent (no mentions occur in between).
Syntactic features: All dependency relations
on the path between events in the dependency
tree and features that indicate whether one of
the features syntactically governs the other. We
compute the syntactic features only for pairs of
event mentions from the same sentence, using the
Stanford dependency parser (De Marneffe et al.,
2006).
Knowledge-based features: Computed using
WordNet (Fellbaum, 1998), VerbOcean (Chklovski
and Pantel, 2004), and CatVar (Habash and Dorr,
2003). We use a feature indicating whether one
event mention or any of its derivatives (obtained
from CatVar) is a WordNet hypernym of (for nomi-
nalized mentions) or entailed from (for verb men-
tions) the other mention (or any of its deriva-
tives). We use an additional feature to indicate the
VerbOcean relation between the event mentions, if
such exists. Unlike features from previous groups,
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knowledge-based features have not been used often
for temporal relation classification.

We employ a L2-regularized logistic regres-
sion as our pairwise classification model, which
is motivated by the high-dimensional feature space
spanned by the lexical features Moreover, the
global coherence component of the model requires
probability distributions for local decisions over
relation types. We use the LibLinear (Fan et al.,
2008) implementation of logistic regression.

3.2 Global Coherence
The hierarchy of events induced from the indepen-
dent pairwise STC decisions may be globally in-
coherent. We therefore need to optimize the set of
pairwise STC classifications with respect to the set
of constraints that enforce global coherence. We
perform exact inference using Integer Linear Pro-
gramming (ILP), an approach that has been proven
useful in many NLP applications (Punyakanok et
al., 2004; Roth and Yih, 2007; Clarke and Lapata,
2008). We use the lp solve1 solver to optimize the
objective function with respect to the constraints.

Objective function. Let M = {e1, e2, . . . , en}
be the set of all event mentions in the news story
and P be the set of all considered pairs of event
mentions, P = {(ei, ej) | ei, ej ∈ M, i < j}.
Let R = {SUPERSUB, SUBSUPER, NOREL} be
the set of spatiotemporal relation types and let
C(ei, ej , r) be the probability, produced by the
pairwise classifier, of relation r holding between
event mentions ei and ej . We maximize the sum
of local probabilities assigned to all pairs of events
(summed over all relation types):∑

(ei,ej)∈P

∑
r∈R

C(ei, ej , r) · xei,ej ,r (1)

where xei,ej ,r is a binary indicator variable that
takes the value 1 iff the relation of type r is pre-
dicted to hold between events ei and ej .

Spatiotemporal constraints. The objective
function is a subject to two basic constraints: (i)
the constraint that declares xei,ej ,r to be binary
indicator variables (eq. 2) and (ii) the exclusivity
constraint, which allows only one relation to hold
between two events (eq. 3).

xei,ej ,r ∈ {0, 1}, ∀(ei, ej) ∈ P, r ∈ R (2)∑
r∈R

xei,ej ,r = 1, ∀(ei, ej) ∈ P (3)

1http://lpsolve.sourceforge.net/5.5/

Following the work of Bramsen et al. (2006) and
Do et al. (2012), we also incorporate the transitiv-
ity constraints into the model (transitivity is not
enforced for NOREL):

xei,ej ,r + xej ,ek,r − 1 ≤ xei,ek,r, (4)

∀r ∈ R, {(ei, ej), (ej , ek), (ei, ek)} ⊆ P

The transitivity constraint states that, if the same
relation r holds for pairs of events (ei, ej) and
(ej , ek), then r must also hold for the pair (ei, ek).

Coreference constraints. The constraints pre-
sented so far did not consider the coreference of
event mentions. However, a truly coherent event
structure must account for the different mentions
of the same event. More precisely, two different
constraints have to be enforced: (i) a pair of coref-
erent event mentions can only be assigned relation
of the NOREL type because coreferent event men-
tions cannot be part of each other (eq. 5) and (ii)
all coreferent mentions of one event must be in
the same relation with all coreferent mentions of
the other event (eqs. 6–9). Let coref (ei, ej) be a
predicate that holds iff mentions e1 and e2 corefer.
The coreference constraints are as follows:

xei,ej ,r = 1, (5)

∀(ei, ej) ∈ P, r = NOREL, coref (ei, ej)

xei,ek,r − xej ,ek,r = 0, (6)

∀(ei, ek), (ej , ek) ∈ P, r ∈ R, coref (ei, ej)

xei,ek,r − xek,ej ,r−1 = 0, (7)

∀(ei, ek), (ek, ej) ∈ P, r ∈ R, coref (ei, ej)

xek,ei,r − xej ,ek,r−1 = 0, (8)

∀(ek, ei), (ej , ek) ∈ P, r ∈ R, coref (ei, ej)

xek,ei,r − xek,ej ,r = 0, (9)

∀(ek, ei), (ek, ej) ∈ P, r ∈ R, coref (ei, ej)

In equations (7) and (8), the relation type r−1 de-
notes the inverse of the relation type r. The in-
verse of SUPERSUB is SUBSUPER (and vice versa),
whereas NOREL is an inverse to itself.

4 Evaluation

We evaluate several models on the publicly avail-
able HIEVE corpus (Glavaš et al., 2014), consisting
of 100 news stories manually annotated with event
hierarchies.
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SUPERSUB SUBSUPER Micro-averaged

Model P R F1 P R F1 P R F1

MEMORIZE baseline 60.3 30.2 40.2 66.8 36.7 47.4 63.8 33.5 43.9

PAIRWISE-NOKB 58.4 47.2 52.2 72.8 56.2 63.4 65.5 51.8 57.8
PAIRWISE-FULL 69.8 51.2 59.1 70.6 54.1 61.3 70.2 52.6 60.1
COHERENT 79.6 60.6 68.6 73.0 52.0 60.8 76.6 56.5 65.0
COREF-AUTO 79.5 57.6 66.8 73.0 52.0 60.8 76.3 55.0 63.9
COREF-GOLD 87.2 58.8 70.3 84.2 52.7 64.8 85.8 55.9 67.7

Table 1: Model performance for recognizing spatiotemporal containment between events

4.1 Experimental Setup

We leave out 20 news stories from the HIEVE cor-
pus for testing and use the remaining 80 documents
for training the pairwise STC classifiers. Alto-
gether, we evaluate the following five models.
PAIRWISE model employs only the pairwise clas-
sification and does not enforce coherence across
local decisions. We evaluate two classifiers: one
with knowledge-based features (PAIRWISE-FULL)
and one without (PAIRWISE-NOKB).
COHERENT model enforces document-level spa-
tiotemporal coherence by solving the constrained
optimization problem on top of pairwise classifica-
tion decisions. The model uses the constraints from
(2)–(4), but not the coreference-based constraints.
COREF-GOLD model uses coreference con-
straints (6)–(9) in addition to constraints (2)–(4).
The model uses hand-annotated coreference rela-
tions from the HIEVE corpus.
COREF-AUTO model uses the same set of con-
straints as the previous model, but relies on the
event coreference resolution model by Glavaš and
Šnajder (2013) instead on gold annotations.

As the baseline, we use the MEMORIZE model,
which simply assigns to each pair of event men-
tions in the test set their most frequent label in the
training set. The NOREL label is predicted for the
pairs of lemmas not observed in the training set.
A similar baseline has been proposed by Bethard
(2008) for automated extraction of event mentions.

To account for the transitivity of the STC re-
lation, we evaluate the predictions of our models
against the transitive closure of gold STC hierar-
chies from the HIEVE corpus.

4.2 Results

Table 1 summarizes the results. We show the
performance (precision, recall, and F1-score) for
the SUPERSUB and SUBSUPER relations along
with the micro-averaged performance. All mod-

els significantly outperform the MEMORIZE base-
line (with the exception of PAIRWISE-NOKB’s
precision), which has been shown competitive on
the event extraction task (Bethard, 2008). Over-
all, the PAIRWISE-FULL model outperforms the
PAIRWISE-NOKB model, confirming the intuition
that knowledge-based information is useful for de-
tecting relations between events. However, includ-
ing KB features decreases the performance on the
SUBSUPER class, which requires further analysis.

Comparison of the PAIRWISE models and the
COHERENT model reveals that enforcing global
coherence of local relations substantially improves
the quality of the constructed hierarchies (4.9% F1-
score; significant at p<0.01 using stratified shuf-
fling (Yeh, 2000)). With the introduction of addi-
tional reference constraints (model COREF-GOLD),
the quality improves by additional 2.7% F1-score
(significant at p<0.05). The fact that the model
COREF-AUTO is outperformed by the COHERENT

model, however, suggests that the automated coref-
erence resolution model is not accurate enough to
benefit the global coherence constraints.

5 Conclusion

We addressed the task of constructing coherent
event hierarchies based on recognition of spatiotem-
poral containment between events from their men-
tions in text. The proposed approach constructs
event hierarchies by enforcing document-level co-
herence over a set of local decisions on spatiotem-
poral containment between events. The quality
of the extracted event hierarchies is improved by
enforcing global coherence, and can be improved
even further using event coreference-based con-
straints, provided accurate coreference resolution is
available. Our next step will be to incorporate pre-
dictions from state-of-the-art temporal and spatial
relation extraction models, both as STC classifier
features and as additional optimization constraints.
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Skip n-grams and ranking functions for predicting
script events. In Proceedings of the 13th Conference
of the European Chapter of the Association for Com-
putational Linguistics, pages 336–344. ACL.

I. Mani, C. Doran, D. Harris, J. Hitzeman, R. Quimby,
J. Richer, B. Wellner, S. Mardis, and S. Clancy.
2010. SpatialML: Annotation scheme, resources,
and evaluation. Language Resources and Evalua-
tion, 44(3):263–280.

V. Punyakanok, D. Roth, W.-t. Yih, and D. Zimak.
2004. Semantic role labeling via integer linear pro-
gramming inference. In Proceedings of the 20th
international conference on Computational Linguis-
tics, page 1346. ACL.

J. Pustejovsky, J. Castano, R. Ingria, R. Sauri,
R. Gaizauskas, A. Setzer, G. Katz, and D. Radev.
2003a. TimeML: Robust specification of event and
temporal expressions in text. New Directions in
Question Answering, 3:28–34.

J. Pustejovsky, P. Hanks, R. Sauri, A. See,
R. Gaizauskas, A. Setzer, D. Radev, B. Sund-
heim, D. Day, L. Ferro, et al. 2003b. The TimeBank
corpus. In Corpus Linguistics, volume 2003, pages
647–656.

K. Roberts, M. A. Skinner, and S. M. Harabagiu. 2013.
Recognizing spatial containment relations between
event mentions. In 10th International Conference
on Computational Semantics.

D. Roth and W.-t. Yih. 2007. Global inference for en-
tity and relation identification via a linear program-
ming formulation. Introduction to statistical rela-
tional learning, pages 553–580.

N. UzZaman, H. Llorens, L. Derczynski, M. Verhagen,
J. Allen, and J. Pustejovsky. 2013. SemEval-2013
Task 1: TempEval-3: Evaluating time expressions,
events, and temporal relations. In Proceedings of the
7th International Workshop on Semantic Evaluation
(SemEval 2013). ACL.

M. Verhagen, R. Sauri, T. Caselli, and J. Pustejovsky.
2010. SemEval-2010 Task 13: TempEval-2. In
Proc. of the SemEval 2010, pages 57–62.

A. Yeh. 2000. More accurate tests for the statistical
significance of result differences. In Proceedings
of the 18th conference on Computational linguistics-
Volume 2, pages 947–953. ACL.

38


