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Abstract
In this paper, we present a system for
recognizing temporal expressions related
to cell cycle phase (CCP) concepts in
biomedical literature. We identified 11
classes of cell cycle related temporal ex-
pressions, for which we made extensions
to TIMEX3, arranging them in an on-
tology derived from the Gene Ontology.
We annotated 310 abstracts from PubMed.
Annotation guidelines were developed,
consistent with existing time-related anno-
tation guidelines for TimeML. Two anno-
tators participated in the annotation. We
achieved an inter-annotator agreement of
0.79 for an exact span match and 0.82
for relaxed constraints. Our approach is
a hybrid of machine learning to recognize
temporal expressions and a rule-based ap-
proach to map them to the ontology. We
trained a named entity recognizer using
Conditional Random Fields (CRF) mod-
els. An off-the-shelf implementation of
the linear chain CRF model was used. We
obtained an F-score of 0.77 for temporal
expression recognition. We achieved 0.79
macro-averagee F-score and 0.78 micro-
averaged F-score for mapping to the on-
tology.

1 Introduction

Storing and processing temporal data in biomed-
ical informatics is important, but challeng-
ing (Zhou and Hripcsak, 2007; Augusto, 2005).
Biomedical data is often intrinsically associated
with time. For example, data from electronic med-
ical records are on a clinical timeline (Zhou and
Hripcsak, 2007) which links all information on the
progress of a patient’s status. Temporal reasoning
remains a challenge for medical information sys-
tems (Combi and Shahar, 1997). Conventionally,

dictionaries define time as “The continuous pas-
sage of existence in which events pass from a state
of potentiality in the future, through the present, to
a state of finality in the past” (Editorial Staff, un-
dated). This traditional linear concept of tempo-
rality does not adequately capture the cyclical na-
ture of some important biological processes, such
as the cell cycle and circadian rhythms. In this pa-
per, we describe a system for the recognition of
temporal expressions related to cell cycle phases
in biomedical literature. The cell cycle is a phe-
nomenon that a cell goes through during its growth
and replication. Its stages are depicted in Figure 1.
We treat each phase as a distinct time component
and we aim at recognizing expressions that de-
scribe them in biomedical literature, then mapping
them to an ontology of cell cycle phases and tran-
sitions. Specifically, we are interested in recog-
nizing expressions that contain one or more of the
concepts shown in Table 1, where the Gene Ontol-
ogy is taken as definitional of concepts related to
phases of the cell cycle.

Recognition of cell cycle phase concepts from
text is a non-trivial problem. Some of the ways
that they can be mentioned in text, such as inter-
phase, anaphase, and prophase are relatively un-
ambiguous and can be recognized and mapped to
an ontology using regular expressions. However,
as is often the case both in general language and in
biomedical language, many of the ways in which
they can be mentioned are highly ambiguous. For
example, M, which stands for mitosis, is often a
unit of measurement, as in . . . removal of histone
HI with 0,6 M NaCl. (PMID: 6183061) M could
also be an abbreviation of an author’s first name,
as in . . . Suzuki S, Nakata M. (PMID: 23844291) S,
which refers to S-phase or synthesis phase, could
also stand for an author’s first name, as well as
a protein name, as in . . . Protein S acts as a co-
factor for tissue factor pathway inhibitor. (PMID:
23841464). In addition, the word synthesis is in it-
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self ambiguous, even in the context of other men-
tions of cell cycle phases. In the following exam-
ples, it refers to something other than a cell cycle
phase:

• . . . histone synthesis by lymphocytes in G0
and G1. (PMID: 6849885)

• . . . metaphase-anaphase transition, as a re-
sult of fertilization, activation or protein syn-
thesis inhibition. (PMID: 9552372)

We treated recognition of temporal expressions
from literature as a named entity recognition
(NER) problem. Many approaches to named en-
tity recognition are based on machine learning
techniques. Nadeau and Sekine report that al-
though semi-supervised learning algorithms have
been employed in NER challenges, most systems
that perform well are built based on supervised
learning techniques (Nadeau and Sekine, 2007).
Based on this survey report, we used Conditional
Random Fields (CRFs) for the recognition phase
of our approach. The details of our methods are
described in section 4.2.

Figure 1: Schematic of the cell cycle. Outer ring:
I = Interphase, M = Mitosis; inner ring: M = Mi-
tosis, G1 = Gap 1, G2 = Gap 2, S = Synthesis; not
in ring: G0 = Gap 0/Resting [Wikipedia].

2 Motivation

A vast collection of biomedical literature in
PubMed/MEDLINE and other biomedical jour-
nal repositories is estimated to grow exponen-
tially (Hunter and Cohen, 2006), as shown in

Figure 2. Searching for papers specific to
a researcher’s interest in any domain is diffi-
cult. PubMed/MEDLINE allows search using
keywords, but until recently did not rank results by
document relevance. General-purpose search en-
gines such as Google and Bing rank their results,
but are not well-suited for search of specialized in-
formation related to genes and small molecules.
Building a specialized search engine exclusively
to search biomedical literature using genes and
small molecules as keywords could be very use-
ful, for instance, for cancer researchers.

Figure 2: Publication growth rate at Med-
line (Hunter and Cohen, 2006)

Our long term goal is to build a spe-
cialized search engine specific to cancer re-
search. The system will retrieve articles from
PubMed/MEDLINE and rank them according to
their relevance. The system will utilize gene, pro-
tein, and small molecule names as keywords in
document search. We are also interested in identi-
fying the phase(s) of the cell cycle during which
the gene is expressed. After detecting the ac-
tive phase(s) of a gene or gene product, the sys-
tem will link relevant documents to this gene from
PubMed/MEDLINE. In this paper we present our
first step towards that goal, which is extraction of
temporal expressions from biomedical literature.
Temporal expressions will be used to identify ac-
tive phases of genes or gene products.

3 Related Work

Automatic recognition of events and temporal ex-
pressions from text has attracted researchers from
areas such as computer science and linguistics.
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Concept ID Activities in each phase Synonyms
Interphase GO:0051325 The cell readies itself for meiosis or mitosis and the

replication of its DNA occurs.
karyostasis

G0 phase GO:0044838 Cells enter in response to cues from the cell’s envi-
ronment.

quiescence

G1 phase GO:0051318 Gap phase -
S phase GO:0051320 DNA synthesis takes place. S-phase, synthesis
G2 phase GO:0051319 Gap phase -
Mitosis GO:0007067 The nucleus of a eukaryotic cell divides -
Prophase GO:0051324 Chromosomes condense and the two daughter cen-

trioles and their asters migrate toward the poles of
the cell.

-

Metaphase GO:0051323 Chromosomes become aligned on the equatorial
plate of the cell.

-

Anaphase GO:0051322 The chromosomes separate and migrate towards the
poles of the spindle.

-

Telophase GO:0051326 The chromosomes arrive at the poles of the cell and
the division of the cytoplasm starts.

-

Table 1: Cell cycle phase concepts. Definitions from the Gene Ontology.

The results have contributed to the development
of diverse natural language processing applica-
tions, such as information extraction, information
retrieval, question-answering systems, text sum-
marization, etc. TimeML: Robust Specification of
Event and Temporal Expressions in Text (Puste-
jovsky et al., 2003) is a specification language for
annotation of events and temporal expressions in
human language. TimeML addresses specification
issues like time stamping, order of events, reason-
ing about events, and time expressions.

TempEval is one of the shared challenges in-
cluded in SemEval (Agirre et al., 2009) as of 2007.
It aims at advancing research on processing tem-
poral information. Primarily it focuses on three
tasks: event extraction and classification, temporal
expression extraction and normalization, and tem-
poral relation extraction (UzZaman et al., 2013).
However, this ongoing work on temporal evalu-
ation is based on language data collected from
the news. In the clinical domain, (Styler IV et
al., Undated; Palmer and Pustejovsky, 2012; Al-
bright et al., 2013) describe the THYME annota-
tion project. The scope and language of temporal-
ity related to the cell cycle is different from that of
both TempEval and the clinical domain, and sup-
ports (and demands) different types of reasoning,
specifically related to cyclical time.

Cyclical phenomena are ubiquitous in can-
cer development and progression. The connec-

tion between the cell cycle and cancer is well
known (Vermeulen et al., 2003; Kastan and
Bartek, 2004; Malumbres and Barbacid, 2009),
and the fact that the cell cycle is the main target
for cancer regulation, deregulation, and therapy
is well established (Vermeulen et al., 2003; Kas-
tan and Bartek, 2004; Malumbres and Barbacid,
2009). Circadian rhythms, rounds of chemother-
apy, remissions, and re-occurrences all have a
cyclic nature.Circadian rhythms have been inves-
tigated in the study of cancer treatment (Sahar and
Sassone-Corsi, 2009; Ortiz-Tudela et al., 2013;
Lengyel et al., 2009; Kelleher et al., 2014).

From the perspective of cancer research, identi-
fying cell cycle concepts in the literature is crucial
to being able to retrieve and explore information
related to cyclical biological processes like the cell
life cycle. From the natural language processing
perspective, the novelty of this work consists in
modeling cyclical time. To our knowledge, tempo-
ral event recognition grounded in a cyclical model
of time has not been previously proposed.

4 Methodology

4.1 Materials

We built a corpus of 360 abstracts, consisting of
70,570 words. The concepts are presented in Ta-
ble 1. We balanced our corpus by collecting arti-
cles from the PubMed/MEDLINE database using
the concepts individually as keywords. We used
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the PubMed/MEDLINE1 and BioMedLib search
engines2, two keyword-based search engines built
on top of MEDLINE, for this purpose. The fol-
lowing keywords were used to collect the abstracts
from PubMed and BioMedLib:

• interphase, G0, G0 phase, G1, G1 phase, syn-
thesis, S phase, G2, G2 phase

• Mitosis, M phase, prophase, metaphase,
anaphase, telophase

• checkpoint

The annotation guidelines addressed the follow-
ing issues:

• The goal of the project: the goal of the anno-
tation project was to develop a highly anno-
tated corpus specific to CCP concepts, which
will be used for automatic recognition and
classification.

• Specification of each tag: this is shown in
Figure 3.

• Tool used to annotate the project: We used
Knowtator (Ogren, 2006), a text annotation
tool built on top of the Protégé knowledge
representation system.

Modeling the phenomenon was the first step in
understanding the annotation process (Pustejovsky
and Stubbs, 2012). We modeled our corpus as a
triple, Model = <T, R, I>, as shown below:

• Model = <T, R, I> where T = terms, R = re-
lation between the terms, and I = interaction

• T = {Named Entity, time expression, not time
expression}
• R = {Named Entity ::= TIMEXCCP | not

TIMEXCCP}
• I = {TIMEXCCP = list of concepts from Ta-

ble 1 or checkpoints. Examples of check-
points are G1/G2 phase, S/G2 phase, etc.

TimeML is a specification for annotating hu-
man language in text (Pustejovsky et al., 2003).
TIMEX3 is defined in TimeML as a tag for cap-
turing dates, times, durations, and sets of dates and

1http://www.ncbi.nlm.nih.gov/pubmed/
2http://bmlsearch.com/

times. In our work we extended TIMEX3. We em-
ploy a single tag set called TIMEXCCP, where the
naming is intended to be consistent with existing
time-related tag sets. Figure 3 shows the attributes
and functions of the tag TIMEXCCP, as well as
examples of usage.

Figure 3: Attributes and functions of the TIMEX-
CCP tag.

Two annotators with training in the domain per-
formed the annotation. Inter-annotator agreement
was calculated as F-measure, following (Hripcsak
and Rothschild, 2005). Inter-annotator agreement
was 0.79 for an exact-span match and 0.82 for re-
laxed matching. The constraints, which are values
of the attributes, were not considered while com-
puting IAA for the latter case.

The annotation effort developed through sev-
eral iterations, applying the annotation devel-
opment cycle introduced by Pustejovsky and
Stubbs (Pustejovsky and Stubbs, 2012). This
methodology is depicted in Figure 4. It is called
the MATTER cycle, which stands for Model, An-
notation, Train, Test, Evaluation, Revise. The ad-
vantage of this methodology is that it allows us
to discover hidden specifications and refine them
during the MATTER cycle.

4.2 Methods

We are particularly interested in recognizing and
classifying temporal expressions in the literature.
For example, in the following sentence, taken from
Wikipedia, the recognition task is to recognize the
blue boxes as shown below and classify them. The
mapping task is to categorize the recognized tem-
poral expressions into the concepts shown in Ta-
ble 1.

"Microhomology-mediated end
joining (MMEJ) uses a Ku
protein and DNA-PK independent
repair mechanism, and
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Figure 4: The MATTER cycle (Pustejovsky and
Stubbs, 2012)

repair occurs during the
S phase of the cell cycle,
as oposed to the G0/G1 and
early S phases in NHEJ and
late S to G2 phases in HR."

... the S phase of the cell cycle, as opposed
to the G0/G1 and early S phases in NHEJ and

late S to G2 phase in HR.

In this example, there are four temporal expres-
sions: S, G0/G1, early S, and late S to G2. The
expression “S” is of the type S-phase or synthesis
phase according to the conceptual ontology in
Table 1. The expression “G0/G1” can be classified
as G0 and G1. Similarly, the expression “late S to
G2” can be of type S and G2.

Our approach is a hybrid of machine learning
and rule-based techniques. The machine learning
technique, which we refer to as the first layer, is
applied for temporal expression recognition. In
this layer, CRFs are trained to learn to recognize
the expressions from the list of features which is
shown below.

1. Word-level features:

• Is the word in uppercase?
• Is the first character of the word in up-

percase?
• Words themselves are also treated as

features.
• Length of the word.

2. Punctuation-related features:

• Does the word contain at least one of the
most common punctuation marks?

3. Digit-related features:

• Is the word a digit?
• Does the word contain a digit?

4. Does the word contain either of the follow-
ing: phase, arrest, entry? These words typi-
cally come before or after the cell cycle con-
cepts. For example, early mitosis, G0 phase.

5. Part-of-Speech tagging: Window size of 2
before and after the word.

6. Presence of concept modifiers before the
word. Modifiers include: early, mid, late,
early-mid.

Conditional Random Fields (CRFs) are one of
the probabilistic graphical model sequence tag-
ging techniques. They are understood as a sequen-
tial version of Maximum Entropy Models (Klinger
and Tomanek, 2007). One advantage of CRFs over
other probabilistic models like Hidden Markov
Models and Maximum Entropy Models for com-
plex systems is their support for features interact-
ing with one another. The linear chain CRF repre-
sentation is shown in Figure 5.

Figure 5: A linear chain Conditional Ran-
dom Field representation (Klinger and Tomanek,
2007).

In this representation, ~x is a vector of observa-
tions, also known as features in machine learn-
ing, and the yt’s are states or labels. In this lin-
ear chain model, a given state is dependent on its
previous, current, and next states. It is also in-
fluenced by the observations for that state. This
argument can be formulated as Equation 1. Ac-
cordingly, state prediction will be an optimization
of Equation 1. ψc(~x, ~y) are the factor matrices of
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the maximal cliques read from the factor graph in
Figure 5 (Klinger and Tomanek, 2007).

P (~y|~x) =
1

Z(~x)

∏
cεC

ψc(~x, ~y) (1)

We used the IOB format, which is the most com-
mon method of representation for sequence tag-
ging. In this format, I stands for the inside, O is
the outside, and B is the beginning of a temporal
expression. Table 2 shows an example of IOB la-
beling for the phrase . . . late S to G2 phase in HR.

token tag
. . . . . .
late B TIMEXCCP
S I TIMEXCCP
to I TIMEXCCP
G2 I TIMEXCCP

phase O
in O

HR O
. O

Table 2: IOB format representation of a segment
of a sentence.

The rule-based system is keyword-based. The
rules match simple cell cycle phase concepts. For
example, the phrase early S phase is classified as
synthesis, since there is S in it. The expression
G0/G1 phase is classified as a G0/G1 checkpoint.

5 Experimental setup

We split our dataset of more than 70K tokens into
80% training and 20% test sets. We used 5-fold
cross validation to balance the distribution of the
dataset. The number of positive instances for the
5 runs is shown in Figure 6. The expressions
S and synthesis are displayed separately, despite
their identical meaning, to allow for more granu-
lar evaluation of performance. The same rationale
applies to displaying M and mitosis separately.

The ratio of the individual concepts that we
have in the 5 runs is balanced, as shown in Fig-
ure 6. However, the training dataset is skewed,
since there are almost 98% negative labels, with
the remaining small portion as positive labels.
Among the approximately 10K test tokens, 180
of them are labeled as positive TIMEXCCP, but
the others are negative, i.e. they have the label
O. A positive TIMEXCCP in this case could be

B TIMEXCCP or I TIMEXCCP—beginning or
inside of a temporal expression.,

6 Results

Since the task consisted of two separate steps—
temporal expression recognition, and mapping or
normalization—in this section, we report our find-
ings independently. Our evaluation metrics are in
terms of precision P, recall R, and F-measure. The
system achieved precision P = 0.83, recall R =
0.72 and F = 0.77 for recognizing TIMEXCCP in
biomedical literature.

The temporal expression mapper, which is a
rule-based system, achieved a macro-averaged P=
0.90, R = 0.70, and F = 0.79 and a micro-averaged
P = 0.86, R = 0.71, and F = 0.78. The system per-
formance for the individual concepts is shown in
Figure 7.

7 Discussion

Some of the false positive predictions were due to
human annotation errors.

There were some conditions where the annota-
tors disagreed. For example, . . . early G1 to G2
phase. This examples addresses two questions that
should be explicitly mentioned in the annotation
guidelines:

• Does the modifier “early” modify only G1, or
both G1 and G2?

• Should there be an attribute for the range of
time from G1 to G2 in the annotation guide-
lines?

Our system achieved good performance on
both time expression recognition and mapping of
highly ambiguous concepts. In spite of the chal-
lenges presented by ambiguity, we obtained 0.85,
0.81, and 0.80 F-measures for recognizing and
mapping the concepts synthesis, M, and S, respec-
tively. The most informative features that con-
tribute to this score are the discriminating words
before and after a target token. These words are:
phase, arrest, and entry. They are often present
before or after CCP concepts. Also, presence of
modifiers is a good indication of CCP concepts.
For example, in the phase early S phase, the mod-
ifier early is one of the most informative features.
However, recognition of complex phrases as in
late S to G2 phase remained a challenge.

The challenges of complex temporal expres-
sions can be seen from a different perspective.
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Figure 6: Distribution of concepts in 5 runs.

Figure 7: Rule-based classification performance. Average score for 5 runs.

Mostly the system recognizes the individual con-
cepts within a complex phrase, but not the mod-
ifiers nor the words like prepositions within the
complex phrase. In the example given previously,
the system recognizes S and G2 but not the modi-
fier late, nor the preposition to. These challenges
could be tackled by having features that address
the modifiers as well as words within two con-
cepts.

We used a naive tokenizer that splits the text
into words based on white space. In the future,
we would like to test the system with other more
sophisticated tokenizers. We kept punctuation
marks in temporal expressions, for example, the
forward slash in G0/G1 phase. Presence of punc-
tuation marks, such as hyphen (-), forward slash
(/), comma (,) and single quote (’), within a token
is one of our features in training the machine learn-
ing algorithm to recognize temporal expressions.

8 Conclusions & Future work

Cell cycle phase concepts are time expressions,
and can be annotated in a fashion similar to
TimeML. In this work, we annotated a corpus with

cell cycle phase information. This corpus can be
used to train machine learning algorithms to pre-
dict cell cycle phase concepts. The concepts were
annotated using the TIMEXCCP tag, an extension
of TIMEX3, which has the following attributes:
value, modifier, set, and comments. The details
are in Figure 3.

We have developed a temporal expression rec-
ognizer and classifier based on a hybrid of ma-
chine learning and rule-based techniques. We pro-
pose a two-tiered architecture to solve temporal
expression recognition and mapping for CCP con-
cepts. The first tier recognizes temporal expres-
sions using CRFs. In the second tier, a rule-based
system classifies the concepts.

Some of the main future directions for this
works are testing the system with the addition of
more annotated data. We will focus on how we
can capture complex time expressions. This might
take us to redefining the annotation guidelines that
we have right now.
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