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ABSTRACT
The development of efficient keyboards is an important element of effective human-computer
interaction. This paper explores the use of multi-objective optimization and machine learning to
create more effective keyboards. While previous research has focused on simply improving the
expected typing speed of keyboards, this research utilizes multiple optimization criteria to create
a more robust keyboard configuration. As these criteria are incorporated, they will often conflict
with each other making this a complex optimization problem. Machine learning techniques
were utilized and were proven to be an effective tool in keyboard optimization. The results
reported here demonstrate that multi-objective genetic algorithms can be used to efficiently
generate optimized keyboards. An English keyboard designed after 20000 generations was able
to double the efficiency of the unoptimized QWERTY keyboard for multiple constraints. Despite
having twice the number of characters, an Assamese keyboard was generated that performed
better than the QWERTY layout.

KEYWORDS: Soft keyboards, user interfaces, Brahmic scripts, optimization, genetic algorithms,
Android development..
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1 Introduction
As technology progresses, it is important that user interfaces improve the efficiency of infor-
mation transfer between users and computers. Because keyboards are a continuing, integral
part of human-computer interactions, research into improving their efficiency is particularly
valuable to improving data entry. The speed at which a user can input data can be greatly
affected by the arrangement of keys on a keyboard. Based on the large number of possible key
combinations, hand optimizing a keyboard is a tedious process. The use of artificial intelligence
can make the process of generating optimal user interfaces much more efficient.

There are multiple considerations in determining the effectiveness of a keyboard. For example,
the size, position and spacing of the keys on the device being used can dramatically change
the speed that a user can input data. Additional factors such as accommodating user disability
and adjusting to user preference can also affect the usability of a keyboard. An effective
keyboard needs to be adaptable to the specific needs of each user. Touch-screen devices, with
their soft-keyboards, have the potential to provide the flexibility required to adapt to these
constraints. Since all of these factors are interconnected, it is difficult to accurately model them
separately.

Previous research projects have used single objective optimization to increase the typing speed
of a keyboard. While this method has produced good results, it ignores other factors that
affect efficient typing. These machine generated keyboards could be more useful if a broader
selection of constraints is used. This more generalized approach would allow optimization
based on a wide variety of constraints such as ease of learning or user disability. The result of
the optimization process is a set of optimal solutions that consider all of the constraints with a
variety of weights.

This paper discusses the use of multi-objective optimization in creating efficient keyboards. In
order to demonstrate value of this research on a global scale, we chose to develop keyboards
for two very different languages, English and Assamese. Assamese is an Indic language from
Northeast India, spoken by about thirty million people. The number of characters in this
language makes the problem more complex and allows us to develop a more generic approach
to the solution. We use Assamese as an exemplar of languages of the Indic class of languages,
which are spoken by a more than a billion people, particularly in South Asia. At this time, these
languages suffer from a lack of efficient and easily learned soft keyboards

The first constraint to consider is the typing speed, based on the expected typing style of the
user. For example, some users will use a single finger, while others might use both of their
thumbs for input. Another constraint for consideration is the ease with which a user can learn
the layout of the keyboard. This can be represented as a constraint where the keyboard is
biased toward a familiar, existing layout.

As constraints are added, some of them may conflict with each other, requiring a compromise
to be made. The use of multi-objective genetic algorithms has been an effective and efficient
approach to solving complex optimization problems(Konak et al., 2006). Multi-objective genetic
algorithms allow the solutions to be optimized based on all of the objectives simultaneously. A
solution is considered optimal if it performs better than or equal to the other solutions for every
constraint. These optimal solutions will form a set known as a pareto front (Figure 1). This
front contains the most efficient solutions, each involving a different compromise between the
objectives. The set of solutions can be saved and accessed by the user based on their individual
needs.
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Figure 1: A simplified example of a pareto frontier. The darker points are the set of pareto
optimal solutions. Source: WIKIPEDIA

2 Related Research

Some of the earliest research in modeling human-computer interaction was done by Fitts in the
1950’s(Fitts, 1954). The model developed was able to compute the average time required for a
human to move between two targets. Fitts’ model is commonly expressed as the equation:

M T =
1

I P
log2

�
D

W
+ 1
�

(1)

where I P is the index of performance for the device, D is the distance between the targets, and
W is the size of the target.

This model has been used by many other researchers to estimate the time required for a human
to move between controls in a graphical user interface(MacKenzie, 1992).

MacKenzie extended Fitts’ law to model the human input speed on with a QWERTY keyboard
on a mobile device(MacKenzie and Soukoreff, 2002). This model was later compared with
human testing data and was shown to be a reasonably accurate estimate of actual human
performance(Clarkson et al.).

In addition to analyzing the physical action of pressing the keys on the keyboard, researchers
have also investigated the ability of users to learn a new keyboard layout. As researchers have
worked on optimizing keyboards, it has been acknowledged that one of the limiting factors in
users typing speed is the time spent searching for the keys(MacKenzie and Zhang, 1999). Smith
and Zhai suggested adding an alphabetic bias to an optimized keyboard(Smith and Zhai, 2001).
Lee and Zhai investigated techniques to help users quickly learn a new keyboard(P. U. Lee,
2004).

Much of the early development in keyboard design focused on creating variations of alphabetic
and QWERTY layouts for the English language. The primary objective was to improve the ability
of the keyboard to conform to mechanical limitations.

As technology improved, designers were able to focus on improving the typing speed of the
keyboards. MacKenzie created one of the first character-frequency optimized layouts, the OPTI
keyboard(MacKenzie and Zhang, 1999). The use of the Metropolis random walk algorithm was
able to further increase the efficiency of soft keyboards(Zhai et al., 2000). These techniques
have been able to improve expected typing speed up to 42 WPM.
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Genetic algorithms have been used to achieve even higher levels of efficiency in keyboard
design(Raynal and Vigouroux, 2005). (Hinkle et al., 2010) and (Hinkle et al., 2012) had
worked extensively with optimization of Assamese and other Indic language keyboards. Their
optimization was carried out with the single objective of maximization of input speed. They
had created four different soft keyboards for Assamese: flat alphabetic, layered alphabetic, flat
GA-designed and layered GA-designed.1

Gajos and Weld developed a technique for evaluating the effectiveness of user interfaces with
respect to the individual needs of each user. With this analysis, they were able to generate
personalized user interfaces with their SUPPLE project(Gajos et al., 2010).

3 Genetic Algorithm Optimization

The multi-objective optimization for this project was done using the NSGA-II multi-objective
genetic algorithm(Deb et al., 2002). This algorithm was chosen based on its efficiency and
effectiveness in multi-objective optimization. The algorithm was implemented using the JCLEC
Java library2. This is an open-source library that provides implementations for several genetic
algorithms.

For the purpose of keyboard design, two evaluators were written for designing keyboards on two
devices. One evaluates the keyboard for its effectiveness for use as an on-screen keyboard for a
desktop computer accessed with a mouse. The other evaluator tests the keyboard’s effectiveness
for both single finger and two-thumb input on a touch-screen mobile phone. The genetic
algorithm was implemented using ordered crossover for recombination. As in (Hinkle et al.,
2012), a mutation probability of 0.08% was used.

3.1 Preparation and General Keyboard Layout

Before starting the optimization process, it was necessary to determine a basic shape and
pattern for the keyboards. In his research on user interface design, Ahlström found that expert
users can make selections 35% faster from a square menu(Ahlström et al., 2010). Hinkle used
a square layout for designing keyboards for Brahmic scripts (Hinkle et al., 2012). Based on this
research, we decided that the on-screen keyboards should be designed assuming an essentially
square shape with the keys being filled starting at the top.

This approach was impractical for a mobile device because the necessary size of the keyboard
would have filled the entire screen. A practical solution to this problem was to base the
keyboards on a variation of the QWERTY keyboard commonly used on mobile devices. Un-
derstandably, this shape would not work for languages with more characters. We designed
the keyboards for the Assamese language assuming the use of two smaller QWERTY-shaped
keyboards. The user can quickly switch between these keyboards as they type.

The first experiment was to establish a basis for comparison by evaluating the unoptimized
QWERTY layout with the fitness function. The result was an estimated typing speed of 47 WPM
for the first objective. The second objective reported on average distance of 2.88 keys between
two characters in the same group. This analysis is shown in Figure 2.

1The first two were created by hand and the last two were created by single-objective GA optimization. The first
was simply an alphabetic layout of the keys on a single keyboard and the second had a layer of alphabetic diacritics
that popped up when one typed a consonant. The third was similar to the first, and the fourth to the second. The
assumption in all four of these keyboards was that one types with a single finger. In addition, there was only one board
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Figure 2: The analysis of the QWERTY keyboard using our evaluator. This layout has an
estimated typing speed of 47 WPM and an average distance of 2.88 keys between two characters
in the same group. The lower diagram shows the group number of each character.

3.2 Values for Fitts’ Law Constants

Our evaluation of the keyboards relies on Fitts’ Law to estimate the top typing speed for each
keyboard layout. In order to accurately calculate the input speed for each device, it was first
necessary to measure the Fitts’ law Index of Performance(I P) for each device. This requires
human testing to find the average movement time on each device. The approach to this
calculation is similar to that used by Zhai(Zhai, 2004). For this experiment, we gave the
human testers a series of randomly placed targets of varying sizes. The average time between
targets was measured and used to calculate the Index of Performance based on the Index of
Difficulty(I D).

3.2.1 Setting up the Experiment

The equation to calculate the I P for Fitts’ Law is:

I P =
I D

M T
(2)

where

I D = log2

�
D

W
+ 1
�

(3)

The basic approach to this calculation is to have a user move between two targets with a varying
I D with the test program calculating the average time(M T) between the targets. After several
tests, it is possible to use the average I D and M T to calculate the I P for the current device. A
program was used to generate random targets and calculate the time required to move between
them(See Figure 3).

in each case. We present a comparison of these keyboards with our results in Table 3 .
2Available at http://jclec.sourceforge.net/
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Figure 3: A screenshot of the IP testing program.

Average Time Average I D I P

Mouse 0.53 2.58 4.9

Touch-screen: 0.54 2.58 4.8
Right thumb

Touch-screen: 0.63 2.58 4.1
Left thumb

Table 1: Results of I P test.

3.2.2 Results

The test program was used to calculate the I P for two applications. The results were obtained
from 1000 data points after 100 consistent calculations. The first device was a desktop computer
accessed using a mouse. This returned an I P value of 4.9. The second test was with a touch-
screen device. The goal of this test was to calculate the constants for two-thumb typing. This
required a separate calculation for each thumb. The result for a right-handed user was an I P of
4.8 for the right thumb and an I P of 4.1 for the left thumb.

3.3 Objective Constraints: Typing Speed

A primary objective in the keyboard optimization problem is to increase the typing speed. Our
approach is to reduce the average time needed to move between two characters. This should
result in the highest frequency characters being placed close together, minimizing the movement
distance.

The average time between characters is calculated using an adaptation of Fitts’ Law.

t̄ =
n∑

i=1

n∑
j=1

Pi j

I P

�
log2

�Di j

Wi
+ 1
��

(4)

where Pi j is the frequency of each digraph, I P is the calculated Index of Performance for the
current device, Di j is the distance between the two keys, and Wi is the width of each key. When
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a digraph consists of a repeated letter, it is assumed to take constant time. The experimental
value for this constant is 0.127.

For two-thumb typing on the touch screen device, we calculate the average time between
characters using a method similar to MacKenzie’s model(MacKenzie and Soukoreff, 2002).
The Fitt’s law equation is used when the digraph is formed from two characters pressed with
the same thumb. When the digraph consists of characters pressed with opposite thumbs, the
mean time is chosen to be the greatest value between, either 1/2 of the constant TREPEAT ,
or the Fitts’ law calculation to move from the character last pressed by that thumb. For the
Assamese two-keyboard arrangement, we add an experimental constant value for the average
time required to change between keyboards.

3.4 Objective Constraints: Ease of Learning

The simplest approach to creating an easy to learn interface is follow a pattern that is already
familiar to the users. Smith and Zhai did research comparing the performance of novice users
on optimized keyboards with and without an alphabetic bias(Smith and Zhai, 2001). Given two
keyboards with similar predicted typing speeds, they found that the users were able to learn
the alphabetic biased keyboard more quickly and performed up to 10% better.

The approach taken in this paper is to group alphabetically close characters together. For each
language, we organized the characters into groups based on their position in the alphabet.

We implemented this constraint as a minimization problem for the average distance between
any two characters in the same group. It should be noted that this does not consider the time
between characters, it is simply the visual distance between the characters. The objective is to
allow the user to more quickly find each character in these smaller alphabetic clusters.

3.5 Groups Split Across Two Keyboards

This constraint is an extension to the ease of learning that is unique to the Assamese mobile
keyboard. The layout of the Assamese mobile keyboard is split between two smaller, QWERTY-
sized keyboards. This constraint prevents the character groups from being split between the
two keyboards. This is implemented as a penalty for keyboards that have many split groups.
The goal is to minimize the number of split groups.

4 English Keyboard Optimization

We used the English language as our basis for comparison with the other languages. The smaller
character set made it easier to evaluate the results of the optimization.

The specific keyboard shape for the single-input on-screen keyboard, was a 6× 5 square grid.
The two-input mobile keyboard was modeled after the QWERTY layout. For the ease of learning
constraint, we created 5 character groups, {{a, b, c, d, e, f},{g, h, i...}...}.

4.1 Optimization: Single-Input

Using the specifications above, we used the genetic algorithm to optimize the key positions.
The optimized keyboard was generated from a population of 5000 solutions allowed to evolve
over 20000 generations. The result was a pareto front containing 900 optimal solutions. For a
representative solution, we selected the solution with the highest ratio (Objective 1/Objective
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Figure 4: Optimized English keyboard generated with a population of 5000 over 20000
generations. This layout has an estimated typing speed of 46 WPM and an average distance of
1.1 keys between two characters in the same group.

2). The evaluator reported this solution as having an estimated typing speed of 46.43 WPM
and an average distance of 1.1 keys between two characters in the same group(See Figure 4).

4.2 Optimization: Two-Input Mobile Keyboard

We ran a test with a population of 5000 solutions evaluated over 20000 generations. This
experiment generated a large set of optimal keyboard layouts. A representative solution had
an estimated typing speed of 84.2 WPM and an average distance of 1.43 keys between two
characters in the same group(See Figure 5). Based on the evaluator, this keyboard performs
nearly 2 times well as the QWERTY keyboard for both of the constraints.

4.3 Optimization: Three-Constraint Mobile Keyboard

In order to observe how a compromise is made between a set of constraints, we wanted to run
the genetic algorithm with more constraints. For a final test we set up the algorithm to optimize
a mobile keyboard for both single finger and two-thumb input. The goal of this experiment
was to create a more universal keyboard that would allow a user to typing with either of these
techniques. We maintained the ease of learning constraint so this test implemented three
constraints.

This keyboard was designed based on the QWERTY shape like the two-input mobile keyboard.
In Figure 6, we show a representative keyboard from the pareto set. This keyboard has an
estimated typing speed of 81.99 WPM for two-thumb input and 26.96 WPM for single-finger
input. There is an average distance of 1.46 keys between two characters from the same group.

4.4 Human Testing

The human testing had two objectives: to prove that this keyboard was an improvement over
an unoptimized alphabetic layout and to show that our ease of learning constraint was effective
in improving typing rates for novice users.

The human testers were given two different keyboards selected from the pareto front: the
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Figure 5: Optimized English mobile keyboard generated with a population of 5000 over 20000
generations. This layout has an estimated typing speed of 84 WPM and an average distance
of 1.43 keys between two characters in the same group. The lower diagram shows the group
number of each character.

Figure 6: English keyboard optimized for both single finger and two-thumb input. This keyboard
was generated with a population of 5000 over 20000 generations. This layout has an estimated
typing speed of 82 WPM for two-thumb input and 27 WPM for single-finger input. There is an
average distance of 1.46 keys between two characters in the same group. The lower diagram
shows the group number of each character.
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Figure 7: Optimized English keyboard generated with a population of 5000 over 20000
generations. This layout has an estimated typing speed of 50 WPM and an average distance of
1.9 keys between two characters in the same group.

keyboard with the highest predicted typing speed(See Figure 7), and the keyboard with the
best compromise between the two objectives(Shown above in Figure 4). In order to facilitate a
reasonable comparison, the testing process was similar to that used by Smith and Zhai(Smith
and Zhai, 2001). The first task given to the testers was to type the entire alphabet. This was
representative of the average speed that the users could find a character of the keyboard. The
testers were then given a set of phrases to type. For a direct comparison, this set of phrases was
the same as those used by Smith and Zhai.

The testers typed in 10 minute sessions once a day for a week. Figure 8 shows a graph of the
average typing speed over these 7 sessions. The keyboard with the alphabetic bias performed
around 10% better than the optimal keyboard for the first test. As the testing progressed, the
performance on the optimal keyboard improved until it matched the alphabetic keyboard.

Based on the character frequency analysis, the optimal keyboard has a top typing speed 10%
higher than the alphabetic keyboard. However, in an empirical test, novice users were able to
type 10% faster on the alphabetic keyboard. The learning curve for the alphabetic keyboard
was much quicker. The testers were able to find all of the characters on the alphabetic keyboard
twice as fast as the optimal keyboard. On average, the testers found the keys in 10 seconds for
the alphabetic keyboard and in 24 seconds for the optimal keyboard.

5 Assamese Keyboard Optimization

The Assamese language has more than twice the number of characters used in English. Hick’s
Law relates a users selection speed to the number of choices available(Hick, 1952). From this,
we can assume that the efficiency is improved when a keyboard has fewer characters. We
noticed that the Assamese language has two characters two represent each vowel. The vowel
is written explicitly at the beginning of a word, but it is represented as a diacritic mark when
used inside a word. We decided to create this distinction inside the user interface program
instead of creating separate keys. When the user presses the vowel key, the appropriate symbol
is displayed based on the context.

The specific keyboard shape for the single-input on-screen keyboard was a 8× 7 square grid.
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Figure 8: Results from human testing. The typing speed is an average computed from the
results of 5 testers. During the early tests, a novice user was able to type around 10% faster
using a the keyboard with alphabetic bias.

The two-input mobile keyboard was modeled as two QWERTY-shaped keyboards.

The large number of characters in the Assamese language made it difficult to determine the
best method for grouping the characters for the ease of learning objective. We decided to create
one group for the vowels and divide the consonants into 9 sub-groups based on the consonant
rows. In order to determine the best combination of groups, we ran a series of tests to find
the relation between the size of the groups and the predicted typing speed. Table 2 shows
the results of these tests. There appears to be little variation in the typing speed between the
different combinations of groups. The best results were achieved when the vowels were not
grouped together. The combination of 4 groups appears to be the best compromise between
group size and typing speed.

5.1 Optimization: Single-Input

Using the specifications above, we used the genetic algorithm to optimize the key positions.
As with the English keyboard optimization, the optimized keyboard was generated from a
population of 5000 solutions allowed to evolved over 20000 generations. The result was a
pareto front containing 900 optimal solutions. For a representative solution, we selected the
solution with the highest ratio (Objective 1/Objective 2). The evaluator reported this solution
as having an estimated typing speed of 38.8 and an average distance of 1.6 keys between two
characters in the same group(See Figure 9).

5.2 Optimization: Two-Input Mobile Keyboard

The next experiment involved generating an optimized mobile keyboard for the Assamese
language. This test was run with a population of 5000 over 15000 generations. This test
implemented the third constraint to eliminate groups being split between the two keyboards.
For this test, we created 4 character groups to cluster for the second constraint. A representative
solution had an estimated typing speed of 52 WPM and an average distance of 2 keys between
two characters in the same group(See Figure 10).
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# of Avg. WPM Avg. Vowels Free
Groups Group Size Group Dist.

1 40.0 38.99 3.342 YES

1 26.0 38.29 2.632 NO

2 20.0 39.01 2.333 YES

2 17.3 38.43 2.333 NO

3 13.3 38.50 1.887 YES

3 13.0 38.07 1.917 NO

4 10.0 39.10 1.639 YES

4 10.4 38.46 1.759 NO

9 4.44 38.39 1.022 YES

9 5.20 38.01 1.190 NO

Table 2: Results of changing the number of groups.

Figure 9: Optimized Assamese keyboard generated with a population of 5000 over 20000
generations. This layout has an estimated typing speed of 39 WPM and an average distance of
1.6 keys between two characters in the same group.

Keyboard WPM

Flat alphabetic 25.1

Layered alphabetic 33.9

Flat GA-designed 34.2

Layered GA-designed 40.2

Flat multi-objective 38.8

Multi-objective mobile 52.0

Table 3: Comparison of our keyboards with those designed by (Hinkle et al., 2012).
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Figure 10: Optimized Assamese keyboard generated with a population of 5000 over 20000
generations. This layout has an estimated typing speed of 52 WPM and an average distance
of 2 keys between two characters in the same group. The evaluated alphabetic groups are
highlighted.

Figure 11: Preliminary results from human testing of the Assamese keyboards.

5.3 Human Testing

Under conditions identical to those in Section 4.4 , preliminary results were obtained from a
single tester. While not as conclusive as the results for the English language, the graph in Figure
11 shows a similar pattern for the learning curve.

6 Future Work

The results reported for the performance of the English keyboards showed a significant improve-
ment in early typing speeds for novice users. In order to make a conclusive comparison, the
results reported for the Assamese language will need to be verified through additional human
testing. Through the process of testing we hope to confirm the optimal number of character
groups and the ease of learning. In order to facilitate the human testing process, we plan to
make the keyboards available on-line for potential users to download. We also plan to make our
mobile keyboards available on the Android market in return for user feedback on the usability
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of the keyboards.

Valuable information could be gained by optimizing keyboards for other languages. An interest-
ing comparison could be made between the results for different languages. In the immediate
future, a comparison could be made between the Assamese language and the Bengali language
which shares the same character set.

Conclusion

The design of efficient user interfaces is critical for continued progress in human-computer
interaction. The large number of variables in user interface design make it difficult to optimize
interfaces. Multi-objective genetic algorithms provide a convenient method for optimization in
applications that have a large number of constraints.

The use of multi-objective genetic algorithms was shown to produce very good results for
creating optimized keyboards. An English keyboard designed after 20000 generations was able
to double the efficiency of the unoptimized QWERTY keyboard for multiple constraints. Despite
having twice the number of characters, an Assamese keyboard was generated that performed
better than the QWERTY layout. Future work will validate the results discovered so far.
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