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Abstract

Data-to-text generation systems tend to
be knowledge-based and manually built,
which limits their reusability and makes

them time and cost-intensive to create
and maintain. Methods for automating
(part of) the system building process ex-
ist, but do such methods risk a loss in
output quality? In this paper, we inves-

tigate the cost/quality trade-off in gen-

eration system building. We compare
four new data-to-text systems which were
created by predominantly automatic tech-
niques against six existing systems for the
same domain which were created by pre-
dominantly manual techniques. We eval-
uate the ten systems using intrinsic au-
tomatic metrics and human quality rat-

ings. We find that increasing the degree to
which system building is automated does
not necessarily result in a reduction in out-
put quality. We find furthermore that stan-

dard automatic evaluation metrics under-
estimate the quality of handcrafted sys-
tems and over-estimate the quality of au-
tomatically created systems.

I ntroduction

Traditional Natural Language GeneratioRL()

and applications, and increased automation is of-
ten taken as self-evidently a good thing. The ques-
tion is, however, whether reduced system building
cost and increased adaptability are achieved at the
price of a reduction in output quality, and if so,
how great the price is. This in turn raises the ques-
tion of how to evaluate output quality so that a po-
tential decrease can be detected and quantified.

In this paper we set about trying to find answers
to these questions. We start, in the following sec-
tion, we briefly describing the 81 TIME corpus
of weather forecasts which we used in our experi-
ments. In the next section (Section 2), we outline
four different approaches to building data-to-text
generation systems which involve different combi-
nations of manual and automatic techniques. Next
(Section 4) we describe ten systems in the four cat-
egories that generate weather forecast texts in the
SUMTIME domain. In Section 5 we describe the
human-assessed and automatically computed eval-
uation methods we used to comparatively evalu-
ate the quality of the outputs of the ten systems.
We then present the evaluation results and discuss
implications of discrepancies we found between
the results of the human and automatic evaluations
(Section 6).

2 Data

The SUMTIME-METEO corpus was created by the
SUMTIME project team in collaboration withvNI

systems tend to be handcrafted knowledge-basedceanroutes (Sripada et al., 2002). The corpus
systems. Such systems tend to be brittle, experwas collected byvNI Oceanroutes from the com-
sive to create and hard to adapt to new domainmercial output of five different (human) forecast-
or applications. Over the last decade or so, irers, and each instance in the corpus consists of nu-
particular following Knight and Langkilde’s work merical data files paired with a weather forecast.
on n-gram-based generate-and-select surface redlhe experiments in this paper focussed on the part
isation (Knight and Langkilde, 1998; Langkilde, of the forecasts that predicts wind characteristics
2000),NLG researchers have become increasinglyor the next 15 hours.

interested in systems that are automatically train- Figure 1 shows an example data file and Fig-
able from data. Systems that have a trainable comure 2 shows the corresponding wind forecast writ-
ponent tend to be easier to adapt to new domain®n by one of the meteorologists. In Figure 1, the
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65 1pSu? O 1 3-FIELDS tic context-free grammarrCFG generators (Sec-

0p/06 SSw 18 22 27 3.0 4.8 SSwW 2.59 tlon 3.2); partly_z_;\uf[omatlcally constructed and
RI1e 8 1401 31 33 49 R/W %453 trainable probabilistic synchronous context-free
0237 =% 15 3 18 %4 38 R[W 238 grammar SCFQ generators; and generators au-
06/00 VAR 6 7 8 2.4 3.8 SSw 248

tomatically built with phrase-based statistical ma-
chine translationK{BsMT) methods (Section 3.4).
Figure 1: Meteorological data file for 05-10-2000, In Section 4 we explain how we used these tech-
a.m. (names of oil fields anonymised). niques to build the ten systems in our evaluation.
Bq?%/cgsl 2133 FiELDs 3.1 Rule-based NLG

5. FORECAST 06-24 GM, THURSDAY, 05-Oct 2000 TraditionalNLG systems are handcrafted as rule-

—————WARNI NGS: RI SK THUNDERSTORM  —====== b_a_sed deterministic deC|S|on_—makers that make de-
W ND(KTS) CONFl DENCE: HI GH cisions locally, at each step in the generation pro-
O RGP VAR ABLE O4- 08 By CATE EVENNG  cess. Decisions are encoded as generation rules
50M  SSW 20-26 GRADUALLY BACKI NG SSE_THEN . .. . . .
FALLI'NG VAR ABLE 08-12 BY LATE EVENING  with conditions for rule application (often in the

form of if-then rules or rules with parameters to be
matched), usually on the basis of corpus analysis
and expert consultation. Reiter and Dale’s influen-
tial paper (1997) recommended thatG systems
be built largely “by careful analysis of the target
text corpus, and by talking to domain experts” (p.
74, and reiterated on pp. 58, 61, 72 and 73).
first column is the day/hour time stamp, the second Handcrafted generation tools have always
the wind direction predicted for the correspondingformed the mainstay afiLG research, a situation
time period; the third the wind speed at 10m abovevirtually unchanged by the statistical revolution
the ground; the fourth the gust speed at 10m; anthat swept through othe¥Lp fields in the 1990s.
the fifth the gust speed at 50m. The remaining/Vell-known examples include the surface realis-
columns contain wave data. ers PenmanFUF/SURGE and RealPro, the re-
We used a version of the corpus reported preferring expression generation components created
viously (Belz, 2008) which contains pairs of wind by Dale, Reiter, Horacek and van Deemter, and
statements and the wind data that is actually incontent-to-text generators built in trre.ANDOC

Figure 2: Wind forecast for 05-10-2000, a.m.
(names of oil fields anonymised).

cluded in the statement, e.g. andM-PIRO projects, to name but a very few.
Data: 1 sswig 20 - - 0600 2 SSE - - - - 3.2 PCFG generation

Text:  Sow 16 20 GRADUALLY BACKING SSE THEN  Context-free grammars are non-directional, and

can be used for generation as well as for analy-
The input vector represents a sequence of 7 Sis (parsing). One approach that u for
tuples (i, c’l, Smins Smazx> Jmin, Jmaz s t) WhGFEz is generation is Probabilistic Context-free Represen-
the tuple’s Ib, d 'S t_he wind dlrect_lon,smm_ tationally UnderspecifiedoCRU) language gener-
and smq, are the minimum and maximum wind ation (Belz, 2008). As mentioned above, tradi-

_speengmin and%’"“:‘ Z(rje thejt_mlnmtqum ar_1d dr_naf;- tional NLG systems tend to be composed of gen-
imum gust speeds, ands a time stamp (indicat- eration rules that apply transformations to rep-

ing for what t_|me of the da_y the datais valid). The resentations. The basic idea f)cRuU is that as
corpus consists of 2,123 instances, correspondln%ng as the generation rules are all of the form

to a total of 22,985 words.
relation(argy,...argn,) — relationi(argi,...argp) ...
3 Four Waysto Build an NLG Systems relationm(argh...ar.qu m > 1,n,p,q > 0, then thg .
set of all generation rules can be seen as defining
In this section, we describe four approachesa context-free language and a single probabilistic
to building language generators involving differ- model can be estimated from raw or annotated text
ent combinations of automatic and manual techto guide generation processes.
niques: traditional handcrafted systems (Sec- In this approach, &FG is created by hand that
tion 3.1); handcrafted but trainable probabilis-encodes the space of all possible generation pro-
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nput [[1, SSW 16, 20, -, -, 0600] , [ 2, SSE, -, -, -, -, NOTI ME] , [ 3, VAR, 04, 08, -, -, 2400] |

Corpus SSW 16- 20 GRADUALLY BACKI NG SSE THEN FALLI NG VARI ABLE 4-8 BY LATE EVENI NG
SumTIME-Hybrid SSW 16- 20 GRADUALLY BACKI NG SSE THEN BECOM NG VARI ABLE 10 OR LESS BY M DNI GHT
PCFGgreedy SSW 16- 20 BACKI NG SSE FOR A TI ME THEN FALLI NG VARI ABLE 4-8 BY LATE EVENI NG
PCFGroulette SSW 16- 20 GRADUALLY BACKI NG SSE AND VARI ABLE 4-8

PCFGvViterbi SSW 16- 20 BACKI NG SSE VARI ABLE 4-8 LATER

PCFG2gram SSW 16- 20 BACKI NG SSE VARI ABLE 4-8 LATER

PCFGrandom SSW 16- 20 AT FI RST FROM M DDAY BECOM NG SSE DURI NG THE AFTERNOON THEN VARI ABLE 4-8
PSCFGsemantic SSW 16- 20 BACKI NG SSE THEN FALLI NG VARI ABLE 04- 08 BY LATE EVEN NG

PSCFGuUNstructured| SSW 16-20 GRADUALLY BACKI NG SSE THEN FALLI NG VARI ABLE 04-08 BY LATE EVENI NG
PBSMT-unstructured| LESS SSW 16-20 SOON BACKI NG SSE BY END OF THEN FALLI NG VARI ABLE 04- 08 BY LATE EVENI NG
PBSMT-structured GUSTS SSW 16-20 BY EVENI NG STEADI LY LESS GUSTS GRADUALLY BACKI NG SSE BY LATE EVENI NG
M NONE BY M DDAY THEN AND FALLI NG UNKNOWN VARI ABLE 04-08 LATER GUSTS

Table 1: Example input with corresponding outputs by altexsys and from the corpus (for 5 Oct 2000).

cesses from inputs to outputs, and has no decisioreach rule in7; there is a rule i, with the same
making ability. A probability distribution over this left-hand side, and the same non-terminals in the
basecFa is estimated from a corpus, and this isright-hand side. The order of non-terminals on the
what enables decisions between alternative generHss may differ, and eacRHS may additionally
ation rules to be made. TipeRuU package permits contain any terminals in any ordersCFGs can
this distribution to be used in one of the follow- be trained from aligned corpora to produce proba-
ing three modes to drive generation processes: (Dilistic (or ‘weighted’) SCFGs.

greedy — apply only the most likely rule at each An scre can equivalently be seen as a single
choice point; (ii) Viterbi — apply all expansion grammarG encoding a set of pairs of strings. A
rules to each nonterminal to create the generatioprobabilisticscrGis defined by the 6-tupl& =
forest for the input, then do a Viterbi search of the</\/7 7., T;, L, S, \), where\ is a finite set of non-
generation forest; (iii) greedy roulette-wheel — seterminals, 7;, 7; are finite sets of terminal sym-
lect a rule to expand a nonterminal according tthols, L is a set of paired production rulesS,is a
a non-uniform random distribution proportional to start symbok A, and)\ is a set of parameters that
the likelihoods of expansion rules. define a probability distribution of derivations un-
In addition there are two baseline modes: (i)der G. Each rule inL has the form4d — («;3),
random — where generation rules are randomlyhereA € N, o € NUTZ.", 3 € NUT;T, and
selected at each choice point; and (ii) n-gram v C \/.
where all alternatives are generated and the most |n T the twocFas that make up ascFGare

likely is selected according to angram language sed to encode (the structure of) the two languages
model (as iHALOGEN). which themT system translates between. Trans-
For the simple 8MTIME domain, pCRU gen-  |ation with anScrG then consists of (i) parsing
erators trained on raw corpora have been showghe input string with the source languagec to
to perform well (Belz, 2008), but for more com- produce a derivation tree, and then (ii) generating
plex domains it is likely that manually annotated along the same derivation tree, but using the target
corpora will be needed for training therG base  |anguagecFa to produce the output string.
generator. As this is in addition to the manually When usingscFcs for content-to-text genera-
constructedcFG base generator, the manual coM-tjon one of the pairedtFGs encodes the meaning
ponent inPCFG generator building is potentially representation language, and the other the (natu-
substantial. ral) language in which text is supposed to be gen-
, erated. A generation process then consists in (i)
3.3 PSCFG generation ‘parsing’ the meaning representatianr) into its
Synchronous context-free grammascEcs) are  constituent structure, and, in the opposite direc-
used in machine translation (Chiang, 2006), bution, (ii) assembling strings of words correspond-
have also been used for simple concept-to-textnd to constituent parts of the inpMR into a sen-
generation (Wong and Mooney, 2007). The simience or text that realises the entire.
plest form ofscFGcan be viewed as a pair oFGs We used thewaAsp~! method (Wong and
G1, G2 with paired production rules such that for Mooney, 2006; Wong and Mooney, 2007) which
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provides a way in which a probabilist&cFGcan the most likely linearisation of the translated sub-
be constructed for the most part automatically.strings. The currently most popular phrase-based
The training process requires two resources as irsMT (PBSMT) approach translates phrases (an ar-
put: acrG of MRs and a set of sentences pairedbitrary sequence of words, rather than the lin-
with their MRs. As output, it produces a proba- guistic sense), whereas the origineldM models’
bilistic SCFG The training process works in two translated words. DiffereriBsMT methods differ
phases, producing a (non-probabilisteIFG in  in how they construct the phrase translation table.
the ‘lexical acquisition phase’, and associating the We used the phrase-based translation model
rules with probabilities in the ‘parameter estima-proposed by Koehn et al. (2003) and implemented
tion phase’. in themosEstoolkit (Koehn et al., 2007) which is
The lexical acquisition phase uses tagA++  based on the noisy channel model, where Bayes’s
word-alignment tool, an implementation (Och andrule is used to reformulate the task of translat-
Ney, 2003) ofiBM Model 5 (Brown et al., 1993) ing a source language stringinto a target lan-
to construct an alignment ofRs with NL strings.  guage string: as finding the senteneg such that
An sCFGis then constructed by using tMR CFG  e* = argmax, Pr(e) Pr(f|e).
as a skeleton and inferring the. grammar from The translation model (which givé:(f|e)) is
the alignment. obtained from a parallel corpus of source and tar-
For the parameter estimation phaseasp—! get language texts, where the first step is automatic
uses a log-linear model from Koehn et al. (2003)alignment using thesiza++ word-level aligner.
which defines a conditional probability distribu- Word-level alignments are used to obtain phrase

tion over derivationsl given an inputmRr f as translation pairs using a set of heuristics.
A 3-gram language model (which giv&s(e))
Pr(d|f) o Pr(e(d))™ J] wA(r(d)) for the target language is trained either on the
ded same or a different corpus. For full details refer

to Koehn et al. (2003; 2007).
PBSMT offers a completely automatic method
for constructing generators, where all that is re-

wherew,(r(d)) is the weight an individual rule
used in a derivation, defined as

wr(A — (e, f)) = quired as input to the system building process is a
corpus of pairedirRs and realisations, on the basis
P(fle)*P(e| /)** Pu(fle)™ Pu(e| f)**exp(—|al)*® of which thePBSMT approach constructs a map-

where P(5|a) and P(«|f3) are the relative fre- ping fromMSRs to realisations.

quencies of3 and«, P, (8|a) and P, (a|f3) are
lexical weights, an@xp(—|«|) is a word penalty
to control output ;entencg Ieng'th'. The model pag 1 SUMTIME-Hybrid
rameters)\; are trained using minimum error rate _ o
training. We included the original SMTIME system (Re-
Compared to probabilisticcFas, wasp—!- iter et al., 2005) in our evaluations. This
trained probabilisticscFas have a much reduced 'ule-based system has two modules: a content-
manual component in system building. In the lat-détérmination module and a microplanning and
ter, theNL grammar for the output language, therealisation module_. It can be run without the
mapping fromMRs to word strings and the rule content-determination module, taking content rep-
probabilities are all created automatically, more-ésentations (tuple sequence as described in Sec-
over from raw corpora, whereas CFGs, only 10N 2) as inputs, and is then called/@TIME-

the rule probabilities are created automatically. HyPrid. SUMTIME-Hybrid is a traditional deter-
ministic rule-based generation system, and took

3.4 SMT methods about one year to builtl. Table 1 shows an ex-

A Statistical Machine Translatiors{T) system is ample foredgast fr;)mtthfe LB/';L'MEthSyStenl (andd
essentially composed of a translation model an¢0'Tesponding outputs from the other systems, de-

§cribed below).

4 Ten Weather Forecast Text Generators

a language model, where the former translate

Source_ language substrings into target Iangu.age Belz (2008), estimated on the basis of personal commu-
substrings, and the language model determinesication with E. Reiter and S. Sripada.
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4.2 PCFG generators System BLEU Homogeneous subsets
corpus 1.00
. . PCFGgreedy | .65 B
We also included fivepCcRU generators for | pscrgsem | .637 B
the SUIMTIME domain created previously (Belz, PSCFG!inSér -2%7 B g 5
PCFGViIterpi .
_2008). ThepcRu pase generator for_LS/lTllle PCFG2gram | 561 D
is a set of generation rules with atomic arguments pcrcroule | .516 D|E
that convert an input into a set of. forecasts. | PBSMT-unstr | .500 E
. . SUMTIME 437 F
To create inputs to thpcRuU generators, the in- | Socvurstruc | 338 G
put vectors as they appear in the corpus (see Sececrerand | .269 H

tion 2) are augmented and converted into sequence

of nonterminals: First, information is added to Table 2: Mean forecast-levelLEu scores and ho-
each of the 7-tuples in an automatic preprocessinghogeneous subsets (Tukagb, alpha = .05) for
phase encoding whether the change in wind direcSUMTIME test sets.

tion compared to the preceding 7-tuple was clock-

wise or anti-clockwise; whether change in wind

speed was an increase or a decrease; and whether

a 7-tuple was the last in the vector. Then, the aug-

mented tuples are converted into a representatioﬁ'4 PBSMT generators

of nonterminals with 7 arguments. We also created two @1 TIME generators with

A probability distribution over the base genera—the i 'I;]he ‘maln qulestlon he1re_ was
tor was obtained by the multi-treebanking methoohO;]'\_'I to represr?n(tj the s?turce ""I_”gd“ag‘f] |n||3_uts.
(Belz, 2008) from the un-annotatedu@TIME While swT methods are often applied with no lin-

corpus. This method first parses the corpus Wi,[ngistic knowle_dge_at all (and are therefore plind as
the basecFG and then obtains rule-application fre- o whetherr]_palre? |npu.ts and outputls atef]trlngs I
quency counts from the parsed corpus which aré’hr sometldlng ese)_,hlt hwas T(Ot fc car _owfwe
used to obtain a probability distribution by straigh—t ey would cope with the tas _Of mapping from
forward maximum likelihood estimation. If there humber/symbol vectors tuL strings. We tested

is more than one parse for a sentence then the fr&0 different input representations, one of which
quency count increment is equally split over rulesVaS SIMPly the augmented corpus input vectors
in alternative parses as described abovegsmT-unstructured), and an-

other in which the individual 7-tuples of which
the vectors are composed are explicitly marked by
predicate-argument structuregsmT-structured).
For comparability with Wong & Mooney (2007)
the structure markers were treated as tokens.

4.3 PSCFG generators

We created two probabilistic synchronousc

(PSCFQ generators for the @M TIME domainus-  We built two different generators by feeding
ing WASP_I-_ The main task here was to createthe two different versions of the paired corpus to
a CFG for wind data representations. We usedvoses We did not use a factored translation

two different grammars (resulting in two different model (the words used in weather forecasts did not
generators). The ‘unstructured’ grammar encodegary sufficiently), or tuning.

raw corpus input vectors augmented as described _
in Section 4.2, whereas the ‘semantic’ gramma® Evaluation Methods
encodes representations with recursive predlcate;j-.1 Automatic evaluation methods

argument structure that more resemble semantic ] ] ] )
forms. These were produced automatically fromThe two automatic metrics used in the evaluations,

2 3
the raw input vectors. NIST _and BLEU : have been shown to correlate
well with expert judgments (Pearson's= 0.82

Both _the PSCFGunstructureq a_md thescre and 0.79 respectively) in the SMTIME domain
semantic generators were built in the same WayCBeIz and Reiter, 2006)

by feeding thecFG for wind data representations — _ o

and the corpus of paired wind data representations, “‘Nttp://cio.nist. gov/esd/ enai | dir/
R I"i sts/mt _list/bin00000. bin

and forecasts tawvaspP~* which then created prob-

o ] %tp://jaguar.ncsl.nist.gov/nt/
abilistic scrcs from it. resour ces/ nt eval - vilb. pl
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BLEU-z is an n-gram based string comparison fgf;‘j;“ A“ggz o Homogeneous subsets
measure, originally proposed by Papineni et al} pcrgreedy | 3.361 B
(2001) for evaluation oMT systems. It computes | pscFesem | 3.303 B
the proportion of word n-grams of lengthand | PSCFeunstr | 3.191 B|C
. PCFGroule 3.033 C | D

less that a system output shares with several refef-pgsyt-unstr | 2.924 D
ence outputs. Setting= 4 (i.e. considering all n- | PcFrGviterbi | 2.854 D|E

; (I PCFG2gram | 2.854 D|E
grams of Iepgthg 4) is standardNIST (Dodding SUMTIME 5707 ElE
ton, 2002) is a version dLEU, but whereBLEU pcFarand | 2.540 F
gives equal weight to all n-grams|ST gives more | PBSMT-struc | 2.331 G

importance to less frequent (hence more informa-

tive) n-grams, and the range ofisT scores de- Table 3: Mean forecast-levelisT scores and ho-
pends on the size of the test set. Some research hawgeneous subsets (Tukegb, alpha = .05) for
shownNIST to correlate with human judgments SUMTIME test sets.

more highly thareLEU (Doddington, 2002; Rie-

Zler and Maxwell, 2005; Belz and Reiter, 2006).

5.2 Human evaluation _
In each case we report the main effect of System

We designed an experiment in which participantsyn the measure and (if it is significant) we also

were asked to rate forecast texts for Clarity andeport significant differences between pairs of sys-
Readability on scales of 1-7. Clarity was €X-tems in the form of homogeneous subsets obtained
plained as indicating how understandable a foreyth 5 post-hoc Tukeyisp analysis.

cast was, and Readability as indicating how flu- Tables 2 and 3 display the results for thieeu
ent and readable it was. After an introduction and, |4\ o1 evaluations, where scores were cal-

detailed explanations, participants carried out th%ulated on test data sets, using a 5-fold cross-
evaluations over the web. They were able to inters i ovion set-up. System names (in abbrevi-

rupt and resume the evaluation at any time. ated form) are shown in the first column, mean
We randomly selected 22 forecast dates angy o ast-level scores in the second, and the re-
used outputs from all 10 systems for those date§,»ining columns indicate significant differences
(as well as the corresponding forecasts in the oty anyveen systems. The way to read the homoge-
pus) in the evaluation, i.e. a total of 242 forecastneous subsets is that two systems which do not

texts. We used a repeated Latin squares desigih e 4 jetter in common are significantly different
where each combination of forecast date and sys;;iih, p < .05.

tem is assigned two trials. As there were 2 eval-
uation criteria, there were 968 individual ratings
in this experiment. An evaluation session starte
with three training examples; the real trials were
then presented in random order.

We recruited 22 participants from among our

For theBLEU evaluation, the main effect of Sys-
em ONBLEU score wasF = 248.274, atp <
.001. PCFGgreedy,PSCFGSsemantic antPSCFG
unstructured come out top, although only the first
two are significantly better than all other systems.
?SUMTIME—Hybrid, PBSMT-structured andCFG
: _ andom bring up the rear, with the remaining sys-
English and who had no experiencerafp. We tems distributed over the middle ground. A strik-

did nqt Yy :O recru![t gw;steRr r_r;armer; ;slln zgr(l)'gring result is that the handcrafteduBTIME sys-
experiments reported by Reiter and Belz ( )tem comes out near the bottom, being signifi-

because these experiments also demonstrated ﬂggntly worse than all other systems excepEc

the correlation between the ratings by such XStructured an®BSMT-random.

gir,\tﬁ\llals e:jtg:iaa;gtz(lgaé);gec)%?;ezlsng g)lstrong inthe For theNnIsT evaluation, the main effect of Sys-
tem onBLEU score wasFk = 108.086, atp <

6 Results .001. The systems were ranked in the same way
as in theBLEU evaluation except for the systems

For each evaluation method, we carried out a onein the D subset. The correlation between theT

way ANOVA with ‘System’ as the fixed factor, and andBLEU scores is Pearsonis= .739,p < .001,

the evaluation measure as the dependent variabl8pearman’sy = .748, p < .001.

21



Scores on data from human evaluation some caution, because ratings are ordinal data

Clarity | Readability | NIST | BLEU . . L
SUMTIVE 6.06 6.18 571 052 | and it is not clear how r_nganlngful it is to com-
PSCFGsemantic| 5.79 5.70 6.76 | 0.65 | pute means. However, it is a simple way of ob-
corpus 5.79 5.93 8.45 1 ini ; ; ;
PorGgreedy = 79 =53 673 | 067 taining a sys_tem ranking for qomparlson_vx{lth the
pSCEGuUnstruc | 5.72 5.84 6.61 | 0.64 | two automatic scores (shown inthe remaining two
PCFGroulette 5.29 5.56 6.07 | 0.52 columns of Table 4, for the 22 dates in the human
PCFG-2gram 5.29 5.29 523 | 0.52 ;
beraviterbi 1.90 =34 t15 | o5 | €valuation only). In terms of_ meansuﬂTlME”
PCEGrandom 4.43 4.52 452 | 0.25 comes out top for both Clarity and Readability.
PBSMT-unstruc | 3.70 3.93 5.38 | 049 | |n Clarity, it is followed by the twoPSCFGsys-
PBSMT-struc 2.79 2.77 421 | 0.33

tems, the corpus files (the only forecasts actually
, - . written by humans), andcrFcgreedy which have
Table 4: Mean Clarity and Readability ratings iy a)ly the same means. For Readability, cor-

from human evaluation; NIST.and BLEU score.sIous andPscEGunstructured are ahead PECEG

on same 22 forecasts as used in human evaluatlogemantiC anccrGgreedy (in this order). Bring-
ing up the rear for both Clarity and Readability, as
in theNIST evaluations, i®BSMT-structured, with
PCFGrandom and andBsMT-unstructured faring

The main results from the automatic evalua-SOmewhat better.
tions are that the twescFGsystems and thecFG There are some striking differences between
system with the greedy generation algorithm aréhe automatic and human evaluations. For one,
best overall. However, the human evaluations prothe human evaluators rank the/@TIME system
duced rather different results. very high, whereas both automatic metrics rank

Figure 3 is a series of bar charts representindl Very Iow, just aboveeCrGrandom anc>BsMT-
the results of the human evaluation for Clarity. Forotuctured. Furthermore, the metrics rassmT-
each system (indicated by the labels on the x-axis)!nStructured more highly than the human evalua-
there are 7 bars, showing how many ratings of 110'S, placing it above the BATIME system and

2,3, 4,5,6and 7 (7 being the best) a system wa¥ the case oNIST, also above two of thecFc _
given. So the left-most bar for a system showsSystems (Table 3). The human and the automatic

how many ratings of 1 a system was given, thefvaluations agree only that tRecrFGsystems and

second bar how many ratings of 2, etc. System§CF&greedy are equally good.
are shown in descending order of mode (the value

of the most frequently assigned rating, e.g. 7 for7 Conclusions

PSCFGunstructurqu on the left, and 1 feBSMT- Reports of research on automating (part of) system
structured on the right). ThBSCFGunS_trUC_turEd building often take it as read that such automation
a”‘?' SJMT_'ME systems come out top in this eval- is a good thing. The resulting systems are not of-
uation, with PSCFGsem_ant'C’PCFGrOUIette and ten compared to handcrafted alternatives in terms
PCFGgreedy close behind. Conver;ehyBSMT-_ of output quality or other quality criteria, and little
structured clearly came out worst, with no ratings;q therefore known about the loss of system qual-
of 7.and a mode of 1completely unclear). ity that results from automation. The existence of
Figure 4 consists of the same kind of bar chartsgeveral independently developed systems for the
for the Readability ratings. Here theUBTIME  SymTIME domain of weather forecasts, to which
system is the clear winner, with no ratings of 1we have added four new systems in the research
and 2 and 22 ratings of 7=excellent, all parts reported in this paper, provides a unique opportu-
read well). It is closely followed byPSCFG ity to examine the system building cost vs. sys-
unstructured, the corpus forecasts aPSCFG  tem quality trade-off in data-to-text generation.
semantic.  Again,pBSMT-structured is clearly e investigated 10 systems which fall into four
worst with no ratings of 7, although this time the categories in terms of the manual work involved in
mode is 3 (fairly bad). creating them, ranging from completely manual to
We also looked at the means of the ratings, andompletely automatic system building. We found
these are shown in the second and third columnthat increasing the automatic component in system
of Table 4. The means have to be treated withbuilding from a handcrafted system to an automat-
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Figure 3: Clarity ratings: Number of times each system w#sdrd, 2, 3, 4, 5, 6, and 7 on Clarity.
Systems in descending order of mode (most frequent rating).

ically trained but manually crafted generator led tospects. However, careful evaluation is needed to
aloss of acceptability to human readers, but an imensure that these advantages are not achieved at
provement in terms of n-gram similarity to corpusthe price of a reduction in system quality that ren-
texts. Further increasing the automatic componenders systems unacceptable to human users.
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