
Spotting the ‘Odd-one-out’: Data-Driven Error Detection and Correction
in Textual Databases

Caroline Sporleder, Marieke van Erp, Tijn Porcelijn and Antal van den Bosch

ILK / Language and Information Science
Tilburg University, P.O. Box 90153,
5000 LE Tilburg, The Netherlands

{C.Sporleder,M.G.J.vanErp,M.Porcelijn,Antal.vdnBosch}@uvt.nl

Abstract

We present two methods for semi-

automatic detection and correction of er-

rors in textual databases. The first method

(horizontal correction) aims at correct-

ing inconsistent values within a database

record, while the second (vertical correc-

tion) focuses on values which were en-

tered in the wrong column. Both methods

are data-driven and language-independent.

We utilise supervised machine learning,

but the training data is obtained automat-

ically from the database; no manual anno-

tation is required. Our experiments show

that a significant proportion of errors can

be detected by the two methods. Further-

more, both methods were found to lead to

a precision that is high enough to make

semi-automatic error correction feasible.

1 Introduction

Over the last decades, more and more information

has become available in digital form; a major part

of this information is textual. While some tex-

tual information is stored in raw or typeset form

(i.e., as more or less flat text), a lot is semi-

structured in databases. A popular example of

a textual database is Amazon’s book database,1

which contains fields for “author”, “title”, “pub-

lisher”, “summary” etc. Information about collec-

tions in the cultural heritage domain is also fre-

quently stored in (semi-)textual databases. Exam-

ples of publicly accessible databases of this type

are the University of St. Andrews’s photographic

1http://www.amazon.com

collection2 or the Nederlands Soortenregister.3

Such databases are an important resource for

researchers in the field, especially if the contents

can be systematically searched and queried. How-

ever, information retrieval from databases can be

adversely affected by errors and inconsistencies in

the data. For example, a zoologist interested in

finding out about the different biotopes (i.e., habi-

tats) in which a given species was found, might

query a zoological specimens database for the con-

tent of the BIOTOPE column for all specimens

of that species. Whenever information about the

biotope was entered in the wrong column, that par-

ticular record will not be retrieved by such a query.

Similarly, if an entry erroneously lists the wrong

species, it will also not be retrieved.

Usually it is impossible to avoid errors com-

pletely, even in well maintained databases. Errors

can arise for a variety of reasons, ranging from

technical limitations (e.g., copy-and-paste errors)

to different interpretations of what type of infor-

mation should be entered into different database

fields. The latter situation is especially preva-

lent if the database is maintained by several peo-

ple. Manual identification and correction of er-

rors is frequently infeasible due to the size of the

database. A more realistic approach would be to

use automatic means to identify potential errors;

these could then be flagged and presented to a hu-

man expert, and subsequently corrected manually

or semi-automatically. Error detection and correc-

tion can be performed as a pre-processing step for

information extraction from databases, or it can be

interleaved with it.

In this paper, we explore whether it is possi-

2http://special.st-andrews.ac.uk/

saspecial/
3http://www.nederlandsesoorten.nl

40

ble to detect and correct potential errors in tex-

tual databases by applying data-driven clean-up

methods which are able to work in the absence

of background knowledge (e.g., knowledge about

the domain or the structure of the database) and

instead rely on the data itself to discover inconsis-

tencies and errors. Ideally, error detection should

also be language independent, i.e., require no or

few language specific tools, such as part-of-speech

taggers or chunkers. Aiming for language in-

dependence is motivated by the observation that

many databases, especially in the cultural heritage

domain, are multi-lingual and contain strings of

text in various languages. If textual data-cleaning

methods are to be useful for such databases, they

should ideally be able to process all text strings,

not only those in the majority language.

While there has been a significant amount of

previous research on identifying and correcting er-

rors in data sets, most methods are not particularly

suitable for textual databases (see Section 2). We

present two methods which are. Both methods are

data-driven and knowledge-lean; errors are iden-

tified through comparisons with other database

fields. We utilise supervised machine learning,

but the training data is derived directly from the

database, i.e., no manual annotation of data is nec-

essary. In the first method, the database fields of

individual entries are compared, and improbable

combinations are flagged as potential errors. Be-

cause the focus is on individual entries, i.e., rows

in the database, we call this horizontal error cor-

rection. The second method aims at a different

type of error, namely values which were entered

in the wrong column of the database. Potential

errors of this type are determined by comparing

the content of a database cell to (the cells of) all

database columns and determining which column

it fits best. Because the focus is on columns, we

refer to this method as vertical error correction.

2 Related Work

There is a considerable body of previous work

on the generic issue of data cleaning. Much

of the research directed specifically at databases

focuses on identifying identical records when

two databases are merged (Hernández and Stolfo,

1998; Galhardas et al., 1999). This is a non-trivial

problem as records of the same objects coming

from different sources typically differ in their pri-

mary keys. There may also be subtle differences

in other database fields. For example, names may

be entered in different formats (e.g., John Smith

vs. Smith, J.) or there may be typos which make it

difficult to match fields (e.g., John Smith vs. Jon

Smith).4

In a wider context, a lot of research has

been dedicated to the identification of outliers in

datasets. Various strategies have been proposed.

The earliest work uses probability distributions to

model the data; all instances which deviate too

much from the distributions are flagged as out-

liers (Hawkins, 1980). This approach is called

distribution-based. In clustering-based methods,

a clustering algorithm is applied to the data and

instances which cannot be grouped under any clus-

ter, or clusters which only contain very few in-

stances are assumed to be outliers (e.g., Jiang et

al. (2001)). Depth-based methods (e.g., Ruts and

Rousseeuw (1996)) use some definition of depth

to organise instances in layers in the data space;

outliers are assumed to occupy shallow layers.

Distance-based methods (Knorr and Ng, 1998)

utilise a k-nearest neighbour approach where out-

liers are defined, for example, as those instances

whose distance to their nearest neighbour exceeds

a certain threshold. Finally, Marcus and Maletic

(2000) propose a method which learns association

rules for the data; records that do not conform to

any rules are then assumed to be potential outliers.

In principle, techniques developed to detect out-

liers can be applied to databases as well, for in-

stance to identify cell values that are exceptional in

the context of other values in a given column, or to

identify database entries that seem unlikely com-

pared to other entries. However, most methods

are not particularly suited for textual databases.

Some approaches only work with numeric data

(e.g., distribution-based methods), others can deal

with categorical data (e.g., distance-based meth-

ods) but treat all database fields as atoms. For

databases with free text fields it can be fruitful to

look at individual tokens within a text string. For

instance, units of measurement (m, ft, etc.) may be

very common in one column (such as ALTITUDE)

but may indicate an error when they occur in an-

other column (such as COLLECTOR).

4The problem of whether two proper noun phrases re-
fer to the same entity has also received attention outside the
database community (Bagga, 1998).

41

3 Data

We tested our error correction methods on a

database containing information about animal

specimens collected by researchers at Naturalis,

the Dutch Natural History Museum.5 The

database contains 16,870 entries and 35 columns.

Each entry provides information about one or sev-

eral specimens, for example, who collected it,

where and when it was found, its position in the

zoological taxonomy, the publication which first

described and classified the specimen, and so on.

Some columns contain fairly free text (e.g., SPE-

CIAL REMARKS), others contain textual content6

of a specific type and in a relatively fixed format,

such as proper names (e.g., COLLECTOR or LO-

CATION), bibliographical information (PUBLICA-

TION), dates (e.g., COLLECTION DATE) or num-

bers (e.g., REGISTRATION NUMBER).

Some database cells are left unfilled; just un-

der 40% of all cells are filled (i.e., 229,430 cells).

There is a relatively large variance in the number

of different values in each column, ranging from

three for CLASS (i.e., Reptilia, Amphibia, and a

remark pointing to a taxonomic inconsistency in

the entry) to over 2,000 for SPECIAL REMARKS,

which is only filled for a minority of the entries.

On the other hand there is also some repetition

of cell contents, even for the free text columns,

which often contain formulaic expressions. For

example, the strings no further data available or

(found) dead on road occur repeatedly in the spe-

cial remarks field. A certain amount of repetition

is characteristic for many textual databases, and

we exploit this in our error correction methods.

While most of the entries are in Dutch or En-

glish, the database also contains text strings in sev-

eral other languages, such as Portuguese or French

(and Latin for the taxonomic names). In principle,

there is no limit to which languages can occur in

the database. For example, the PUBLICATION col-

umn often contains text strings (e.g., the title of

the publication) in languages other than Dutch or

English.

4 Horizontal Error Correction

The different fields in a database are often not

statistically independent; i.e., for a given entry,

5http://www.naturalis.nl
6We use the term textual content in the widest possible

sense, i.e., comprising all character strings, including dates
and numbers.

the likelihood of a particular value in one field

may be dependent on the values in (some of) the

other fields. In our database, for example, there

is an interdependency between the LOCATION and

the COUNTRY columns: the probability that the

COUNTRY column contains the value South Africa

increases if the LOCATION column contains the

string Tafel Mountain (and vice versa). Similar

interdependencies hold between other columns,

such as LOCATION and ALTITUDE, or COUNTRY

and BIOTOPE, or between the columns encoding

a specimen’s position in the zoological taxonomy

(e.g., SPECIES and FAMILY). Given enough data,

many of these interdependencies can be deter-

mined automatically and exploited to identify field

values that are likely to be erroneous.

This idea bears some similarity to the approach

by Marcus and Maletic (2000) who infer associ-

ation rules for a data set and then look for out-

liers relative to these rules. However, we do not

explicitly infer rules. Instead, we trained TiMBL

(Daelemans et al., 2004), a memory-based learner,

to predict the value of a field given the values of

other fields for the entry. If the predicted value

differs from the original value, it is signalled as a

potential error to a human annotator.

We applied the method to the taxonomic fields

(CLASS, ORDER, FAMILY, GENUS, SPECIES and

SUB-SPECIES), because it is possible, albeit some-

what time-consuming, for a non-expert to check

the values of these fields against a published zoo-

logical taxonomy. We split the data into 80% train-

ing set, 10% development set and 10% test set. As

not all taxonomic fields are filled for all entries,

the exact sizes for each data set differ, depending

on which field is to be predicted (see Table 1).

We used the development data to set TiMBL’s

parameters, such as the number of nearest neigh-

bours to be taken into account or the similarity

metric (van den Bosch, 2004). Ideally, one would

want to choose the setting which optimised the er-

ror detection accuracy. However, this would re-

quire manual annotation of the errors in the devel-

opment set. As this is fairly time consuming, we

abstained from it. Instead we chose the parameter

setting which maximised the value prediction ac-

curacy for each taxonomic field, i.e. the setting for

which the disagreement between the values pre-

dicted by TiMBL and the values in the database

was smallest. The motivation for this was that a

high prediction accuracy will minimise the num-

42

ber of potential errors that get flagged (i.e., dis-

agreements between TiMBL and the database) and

thus, hopefully, lead to a higher error detection

precision, i.e., less work for the human annotator

who has to check the potential errors.

training devel. test

CLASS 7,495 937 937

ORDER 7,493 937 937

FAMILY 7,425 928 928

GENUS 7,891 986 986

SPECIES 7,873 984 984

SUB-SPECIES 1,949 243 243

Table 1: Data set sizes for taxonomic fields

We also used the development data to perform

some feature selection. We compared (i) using

the values of all other fields (for a given entry) as

features and (ii) only using the other taxonomic

fields plus the author field, which encodes which

taxonomist first described the species to which a

given specimen belongs.7 The reduced feature set

was found to lead to better or equal performance

for all taxonomic fields and was thus used in the

experiments reported below.

For each taxonomic field, we then trained

TiMBL on the training set and applied it to the

test set, using the optimised parameter settings.

Table 2 shows the value prediction accuracies for

each taxonomic field and the accuracies achieved

by two baseline classifiers: (i) randomly select-

ing a value from the values found in the training

set (random) and (ii) always predicting the (train-

ing set) majority value (majority). The predic-

tion accuracies are relatively high, even for the

lowest fields in the taxonomy, SPECIES and SUB-

SPECIES, which should be the most difficult to pre-

dict. Hence it is in principle possible to predict the

value of a taxonomic field from the values of other

fields in the database. To determine whether the

taxonomic fields are exceptional in this respect,

we also tested how well non-taxonomic fields can

be predicted. We found that all fields can be pre-

dicted with a relatively high accuracy. The low-

est accuracy (63%) is obtained for the BIOTOPE

field. For most fields, accuracies of around 70%

7The author information provides useful cues for the pre-
diction of taxonomic fields because taxonomists often spe-
cialise on a particular zoological group. For example, a tax-
onomist who specialises on Ranidae (frogs) is unlikely to
have published a description of a species belonging to Ser-
pentes (snakes).

are achieved; this applies even to the “free text”

fields like SPECIAL REMARKS.

TiMBL random majority

CLASS 99.87% 50.00% 54.98%

ORDER 98.29% 1.92% 18.59%

FAMILY 98.02% 0.35% 10.13%

GENUS 92.57% 10.00% 44.76%

SPECIES 89.93% 0.20% 7.67%

SUB-SPECIES 95.03% 0.98% 21.35%

Table 2: Test set prediction accuracies for taxo-

nomic field values (horizontal method)

To determine whether this method is suitable

for semi-automatic error correction, we looked at

the cases in which the value predicted by TiMBL

differed from the original value. There are three

potential reasons for such a disagreement: (i) the

value predicted by TiMBL is wrong, (ii) the value

predicted by TiMBL is correct and the original

value in the database is wrong, and (iii) both val-

ues are correct and the two terms are (zoological)

synonyms. For the fields CLASS, ORDER, FAM-

ILY and GENUS, we checked the values predicted

by TiMBL against two published zoological tax-

onomies8 and counted how many times the pre-

dicted value was the correct value. We did not

check the two lowest fields (SUB SPECIES and

SPECIES), as the correct values for these fields can

only be determined reliably by looking at the spec-

imens themselves, not by looking at the other tax-

onomic values for an entry. For the evaluation, we

focused on error correction rather than error detec-

tion, hence cases where both the value predicted

by TiMBL and the original value in the database

were wrong, were counted as TiMBL errors.

Table 3 shows the results (the absolute numbers

of database errors, synonyms and TiMBL errors

are shown in brackets). It can be seen that TiMBL

detects several errors in the database and predicts

the correct values for them. It also finds several

synonyms. For GENUS, however, the vast ma-

jority of disagreements between TiMBL and the

database is due to TiMBL errors. This can be ex-

plained by the fact that GENUS is relatively low

in the taxonomy (directly above SPECIES). As the

values of higher fields only provide limited cues

8We used the ITIS Catalogue of Life (http:
//www.species2000.org/2005/search.php)
and the EMBL Reptile Database (http://www.
embl-heidelberg.de/˜uetz/LivingReptiles.

html).

43

disagreements database errors synonyms TiMBL errors

CLASS 2 50.00% (1) 0% (0) 50.00% (1)

ORDER 26 38.00% (10) 19.00% (5) 43.00% (11)

FAMILY 33 9.09% (3) 36.36% (12) 54.55% (18)

GENUS 135 5.93% (8) 4.44% (6) 89.63% (121)

Table 3: Error correction precision (horizontal method)

for the value of a lower field, the lower a field is in

the taxonomy the more difficult it is to predict its

value accurately.

So far we have only looked at the precision

of our error detection method (i.e., what propor-

tion of flagged errors are real errors). Error de-

tection recall (i.e., the proportion of real errors

that is flagged) is often difficult to determine pre-

cisely because this would involve manually check-

ing the dataset (or a significant subset) for errors,

which is typically quite time-consuming. How-

ever, if errors are identified and corrected semi-

automatically, recall is more important than pre-

cision; a low precision means more work for the

human expert who is checking the potential errors,

a low recall, however, means that many errors are

not detected at all, which may severely limit the

usefulness of the system.

To estimate the recall obtained by the horizontal

error detection method, we introduced errors arti-

ficially and determined what percentage of these

artificial errors was detected. For each taxonomic

field, we changed the value of 10% of the entries,

which were randomly selected. In these entries,

the original values were replaced by one of the

other attested values for this field. The new value

was selected randomly and with uniform probabil-

ity for all values. Of course, this method can only

provide an estimate of the true recall, as it is possi-

ble that real errors are distributed differently, e.g.,

some values may be more easily confused by hu-

mans than others. Table 4 shows the results. The

estimated recall is fairly high; in all cases above

90%. This suggests that a significant proportion

of the errors is detected by our method.

5 Vertical Error Correction

While the horizontal method described in the pre-

vious section aimed at correcting values which

are inconsistent with the remaining fields of a

database entry, vertical error correction is aimed

at a different type of error, namely, text strings

which were entered in the wrong column of the

recall

CLASS 95.56%

ORDER 96.82%

FAMILY 96.15%

GENUS 93.09%

SPECIES 96.75%

SUB SPECIES 95.38%

Table 4: Recall for artificially introduced errors

(horizontal method)

database. For example, in our database, informa-

tion about the biotope in which a specimen was

found may have been entered in the SPECIAL RE-

MARKS column rather than the BIOTOPE column.

Errors of this type are quite frequent. They can

be accidental, i.e., the person entering the infor-

mation inadvertently chose the wrong column, but

they can also be due to misinterpretation, e.g., the

person entering the information may believe that it

fits the SPECIAL REMARKS column better than the

BIOTOPE column or they may not know that there

is a BIOTOPE column. Some of these errors may

also stem from changes in the database structure

itself, e.g., maybe the BIOTOPE column was only

added after the data was entered.9

Identifying this type of error can be recast as a

text classification task: given the content of a cell,

i.e., a string of text, the aim is to determine which

column the string most likely belongs to. Text

strings which are classified as belonging to a dif-

ferent column than they are currently in, represent

a potential error. Recasting error detection as a

text classification problem allows the use of super-

vised machine learning methods, as training data

(i.e., text strings labelled with the column they be-

long to) can easily be obtained from the database.

We tokenised the text strings in all database

fields10 and labelled them with the column they

9Many databases, especially in the cultural heritage do-
main, are not designed and maintained by database experts.
Over time, such database are likely to evolve and change
structurally. In our specimens database, for example, several
columns were only added at later stages.

10We used a rule-based tokeniser for Dutch developed by

44

occur in. Each string was represented as a vec-

tor of 48 features, encoding the (i) string itself and

some of its typographical properties (13 features),

and (ii) its similarity with each of the 35 columns

(in terms of weighted token overlap) (35 features).

The typographical properties we encoded were:

the number of tokens in the string and whether it

contained an initial (i.e., an individual capitalised

letter), a number, a unit of measurement (e.g., km),

punctuation, an abbreviation, a word (as opposed

to only numbers, punctuation etc.), a capitalised

word, a non-capitalised word, a short word (< 4

characters), a long word, or a complex word (e.g.,

containing a hyphen).

The similarity between a string, consisting of a

set T of tokens t1 . . . tn, and a column colx was

defined as:

sim(T, colx) =

∑n
i=1

ti × tfidfti,colx

|T |

where tfidfticolx is the tfidf weight (term fre-

quency - inverse document frequency, cf. (Sparck-

Jones, 1972)) of token ti in column colx. This

weight encodes how representative a token is of

a column. The term frequency, tfti,colx , of a token

ti in column colx is the number of occurrences of

ti in colx divided by the number of occurrences

of all tokens in colx. The term frequency is 0 if

the token does not occur in the column. The in-

verse document frequency, idfti , of a token ti is

the number of all columns in the database divided

by the number of columns containing ti. Finally,

the tfidf weight for a term ti in column colx is de-

fined as:

tfidfti,colx = tfti,colx log idfti

A high tfidf weight for a given token in a given

column means that the token frequently occurs in

that column but rarely in other columns, thus the

token is a good indicator for that column. Typ-

ically tfidf weights are only calculated for con-

tent words, however we calculated them for all

tokens, partly because the use of stop word lists

to filter out function words would have jeopar-

dised the language independence of our method

and partly because function words and even punc-

tuation can be very useful for distinguishing dif-

ferent columns. For example, prepositions such as

under often indicate BIOTOPE, as in under a stone.

Sabine Buchholz. The inclusion of multi-lingual abbrevi-
ations in the rule set ensures that this tokeniser is robust
enough to also cope with text strings in English and other
Western European languages.

To assign a text string to one of the 35 database

columns, we trained TiMBL (Daelemans et al.,

2004) on the feature vectors of all other database

cells labelled with the column they belong to.11

Cases where the predicted column differed from

the current column of the string were recorded as

potential errors.

We applied the classifier to all filled database

cells. For each of the strings identified as potential

errors, we checked manually (i) whether this was

a real error (i.e., error detection) and (ii) whether

the column predicted by the classifier was the cor-

rect one (i.e., error correction). While checking

for this type of error is much faster than checking

for errors in the taxonomic fields, it is sometimes

difficult to tell whether a flagged error is a real er-

ror. In some cases it is not obvious which col-

umn a string belongs to, for example because two

columns are very similar in content (such as LO-

CATION and FINDING PLACE), in other cases the

content of a database field contains several pieces

of information which would best be located in dif-

ferent columns. For instance, the string found with

broken neck near Karlobag arguably could be split

between the SPECIAL REMARKS and the LOCA-

TION columns. We were conservative in the first

case, i.e., we did not count an error as correctly

identified if the string could belong to the origi-

nal column, but we gave the algorithm credit for

flagging potential errors where part of the string

should be in a different column.

The results are shown in the second column (un-

filtered) in Table 5. The classifier found 836 poten-

tial errors, 148 of these were found to be real er-

rors. For 100 of the correctly identified errors the

predicted column was the correct column. Some

of the corrected errors can be found in Table 6.

Note that the system corrected errors in both En-

glish and Dutch text strings without requiring lan-

guage identification or any language-specific re-

sources (apart from tokenisation).

We also calculated the precision of error detec-

tion (i.e., the number of real errors divided by the

number of flagged errors) and the error correction

accuracy (i.e., the number of correctly corrected

errors divided by the number correctly identified

errors). The error detection precision is relatively

low (17.70%). In general a low precision means

relatively more work for the human expert check-

11We used the default settings (IB1, Weighted Overlap
Metric, Information Gain Ratio weighting) and k=3.

45

string original column corrected column
op boom ongeveer 2,5 m boven grond SPECIAL REMARKS BIOTOPE

(on a tree about 2.5 m above ground)

25 km N.N.W Antalya SPECIAL REMARKS LOCATION

1700 M BIOTOPE ALTITUDE

gestorven in gevangenschap 23 september 1994 LOCATION SPECIAL REMARKS

(died in captivity 23 September 1994)

roadside bordering secondary forest LOCATION BIOTOPE

Suriname Exp. 1970 COLLECTION NUMBER COLLECTOR

(Surinam Expedition 1970)

Table 6: Examples of automatically corrected errors (vertical method)

unfiltered filtered

flagged errors 836 262

real errors 148 67

correctly corrected 100 54

precision error detection 17.70 % 25.57%

accuracy error correction 67.57% 80.60%

Table 5: Results automatic error detection and cor-

rection for all database fields (vertical method)

ing the flagged errors. However, note that the sys-

tem considerably reduces the number of database

fields that have to be checked (i.e., 836 out of

229,430 filled fields). We also found that, for this

type of error, error checking can be done relatively

quickly even by a non-expert; checking the 836 er-

rors took less than 30 minutes. Furthermore, the

correction accuracy is fairly high (67.57%), i.e.,

for most of the correctly identified errors the cor-

rect column is suggested. This means that for most

errors the user can simply choose the column sug-

gested by the classifier.

In an attempt to increase the detection preci-

sion we applied two filters and only flagged errors

which passed these filters. First, we filtered out

potential errors if the original and the predicted

column were of a similar type (e.g., if both con-

tained person names or dates) as we noticed that

our method was very prone to misclassifications

in these cases.12 For example, if the name M.S.

Hoogmoed occurs several times in the COLLEC-

TOR column and a few times in the DONATOR col-

umn, the latter cases are flagged by the system as

potential errors. However, it is entirely normal for

a person to occur in both the COLLECTOR and the

DONATOR column. What is more, it is impossible

12Note, that this filter requires a (very limited) amount of
background knowledge, i.e. knowledge about which columns
are of a similar type.

to determine on the basis of the text string M.S.

Hoogmoed alone, whether the correct column for

this string in a given entry is DONATOR or COL-

LECTOR or both.13 Secondly, we only flagged er-

rors where the predicted column was empty for the

current database entry. If the predicted column is

already occupied, the string is unlikely to belong

to that column (unless the string in that column is

also an error). The third column in Table 5 (fil-

tered) shows the results. It can be seen that de-

tection precision increases to 25.57% and correc-

tion precision to 80.60%, however the system also

finds noticeably fewer errors (67 vs. 148).

Prec. Rec.

BIOTOPE 20.09% 94.00%

PUBLICATION 6.90% 100.00%

SPECIAL REMARKS 16.11% 24.00%

Table 7: Precision and Recall for three free text

columns (vertical method)

Estimating the error detection recall (i.e., the

number of identified errors divided by the over-

all number of errors in the database) would in-

volve manually identifying all the errors in the

database. This was not feasible for the database

as a whole. Instead we manually checked three

of the free text columns, namely, BIOTOPE, PUB-

LICATION and SPECIAL REMARKS, for errors and

calculated the recall and precision for these. Ta-

ble 7 shows the results. For BIOTOPE and PUB-

LICATION the recall is relatively high (94% and

100%, respectively), for SPECIAL REMARKS it is

much lower (24%). The low recall for SPECIAL

REMARKS is probably due to the fact that this col-

13Note, however, that the horizontal error detection method
proposed in the previous section might detect an erroneous
occurrence of this string (based on the values of other fields
in the entry).

46

umn is very heterogeneous, thus it is fairly difficult

to find the true errors in it. While the precision is

relatively low for all three columns, the number

of flagged errors (ranging from 58 for PUBLICA-

TION to 298 for SPECIAL REMARKS) is still small

enough for manual checking.

6 Conclusion

We have presented two methods for

(semi-)automatic error detection and correc-

tion in textual databases. The two methods are

aimed at different types of errors: horizontal

error correction attempts to identify and correct

inconsistent values within a database record;

vertical error correction is aimed at values which

were accidentally entered in the wrong column.

Both methods are data-driven and require little

or no background knowledge. The methods are

also language-independent and can be applied to

multi-lingual databases. While we utilise super-

vised machine learning, no manual annotation

of training data is required, as the training set is

obtained directly from the database.

We tested the two methods on an animal spec-

imens database and found that a significant pro-

portion of errors could be detected: up to 97% for

horizontal error detection and up to 100% for ver-

tical error detection. While the error detection pre-

cision was fairly low for both methods (up to 55%

for the horizontal method and up to 25.57% for the

vertical method), the number of potential errors

flagged was still sufficiently small to check manu-

ally. Furthermore, the automatically predicted cor-

rection for an error was often the right one. Hence,

it would be feasible to employ the two methods in

a semi-automatic error correction set-up where po-

tential errors together with a suggested correction

are flagged and presented to a user.

As the two error correction methods are to some

extent complementary, it would be worthwhile to

investigate whether they can be combined. Some

errors flagged by the horizontal method will not be

detected by the vertical method, for instance, val-

ues which are valid in a given column, but incon-

sistent with the values of other fields. On the other

hand, values which were entered in the wrong col-

umn should, in theory, also be detected by the hor-

izontal method. For example, if the correct FAM-

ILY for Rana aurora is Ranidae, it should make

no difference whether the (incorrect) value in the

FAMILY field is Bufonidae, which is a valid value

for FAMILY but the wrong family for Rana aurora,

or Amphibia, which is not a valid value for FAM-

ILY but the correct CLASS value for Rana aurora;

in both cases the error should be detected. Hence,

if both methods predict an error in a given field

this should increase the likelihood that there is in-

deed an error. This could be exploited to obtain a

higher precision. We plan to experiment with this

idea in future research.

Acknowledgments The research reported in

this paper was funded by NWO (Netherlands Or-

ganisation for Scientific Research) and carried out

at the Naturalis Research Labs in Leiden. We

would like to thank Pim Arntzen and Erik van

Nieukerken from Naturalis for guidance and help-

ful discussions. We are also grateful to two anony-

mous reviewers for useful comments.

References

A. Bagga. 1998. Coreference, Cross-Document Coref-
erence, and Information Extraction Methodologies.
Ph.D. thesis, Dept. of Computer Science, Duke Uni-
versity.

W. Daelemans, J. Zavrel, K. van der Sloot, A. van den
Bosch, 2004. TiMBL: Tilburg Memory Based
Learner, version 5.1, Reference Guide, 2004. ILK
Research Group Technical Report Series no. 04-02.

H. Galhardas, D. Florescu, D. Shasha, E. Simon. 1999.
An extensible framework for data cleaning. Tech-
nical Report RR-3742, INRIA Technical Report,
1999.

D. M. Hawkins. 1980. Identification of outliers. Chap-
man and Hall, London.

M. A. Hernández, S. J. Stolfo. 1998. Real-world data
is dirty: Data cleansing and the merge/purge prob-
lem. Journal of Data Mining and Knowledge Dis-
covery, 2:1–31.

M.-F. Jiang, S.-S. Tseng, C.-M. Su. 2001. Two-phase
clustering process for outliers detection. Pattern
Recognition Letters, 22:691–700.

E. M. Knorr, R. T. Ng. 1998. Algorithms for min-
ing distance-based outliers in large datasets. In Pro-
ceedings of the 24th International Conference on
Very Large Data Bases (VLDB’98).

A. Marcus, J. I. Maletic. 2000. Utilizing association
rules for identification of possible errors in data sets.
Technical Report TR-CS-00-04, The University of
Memphis, Division of Computer Science, 2000.

I. Ruts, P. J. Rousseeuw. 1996. Computing depth
contours of bivariate point clouds. Computational
Statistics and Data Analysis, 23:153–168.

K. Sparck-Jones. 1972. A statistical interpretation of
term specificity and its application in retrieval. Jour-
nal of Documentation, 28:11–21.

A. van den Bosch. 2004. Wrapped progressive sam-
pling search for optimizing learning algorithm pa-
rameters. In Proceedings of the 16th Belgian-Dutch
Conference on Artificial Intelligence, 219–226.

47

