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Abstract

We propose a framework to derive the
distance between concepts from distribu-
tional measures of word co-occurrences.
We use the categories in a published
thesaurus as coarse-grained concepts, al-
lowing all possible distance values to
be stored in a concept–concept matrix
roughly .01% the size of that created
by existing measures. We show that
the newly proposed concept-distance mea-
sures outperform traditional distributional
word-distance measures in the tasks of
(1) ranking word pairs in order of se-
mantic distance, and (2) correcting real-
word spelling errors. In the latter task,
of all the WordNet-based measures, only
that proposed by Jiang and Conrath out-
performs the best distributional concept-
distance measures.

1 Semantic and distributional measures

Measures of distance of meaning are of two kinds.
The first kind, which we will refer to asseman-
tic measures, rely on the structure of a resource
such as WordNet or, in some cases, a semantic
network, and hence they measure the distance be-
tween the concepts or word-senses that the nodes
of the resource represent. Examples include the
measure for MeSH proposed by Rada et al. (1989)
and those for WordNet proposed by Leacock and
Chodorow (1998) and Jiang and Conrath (1997).
(Some of the more successful measures, such as
Jiang–Conrath, also use information content de-
rived from word frequency.) Typically, these mea-
sures rely on an extensive hierarchy of hyponymy
relationships for nouns. Therefore, these measures

are expected to perform poorly when used to es-
timate distance between senses of part-of-speech
pairs other than noun–noun, not just because the
WordNet hierarchies for other parts of speech are
less well developed, but also because the hierar-
chies for the different parts of speech are not well
connected.

The second kind of measures, which we will
refer to asdistributional measures, are inspired
by the maxim “You shall know a word by the
company it keeps” (Firth, 1957). These measures
rely simply on raw text, and hence are much less
resource-hungry than the semantic measures; but
they measure the distance between words rather
than word-senses or concepts. In these measures,
two words are considered close if they occur in
similar contexts. The context (or “company”) of
a target word is represented by itsdistributional
profile (DP), which lists the strength of associ-
ation between the target and each of the lexical,
syntactic, and/or semantic units that co-occur with
it. Commonly usedmeasures of strength of as-
sociation are conditional probability (0 to 1) and
pointwise mutual information (�∞ to ∞)1. Com-
monly used units of co-occurrence with the target
are otherwords, and so we speak of thelexical dis-
tributional profile of a word (lexical DPW) . The
co-occurring words may be all those in a prede-
termined window around the target, or may be re-
stricted to those that have a certain syntactic (e.g.,
verb–object) or semantic (e.g., agent–theme) re-
lation with the target word. We will refer to the
former kind of DPs asrelation-free. Usually in

1In our experiments, we set negative PMI values to 0, be-
cause Church and Hanks (1990), in their seminal paper on
word association ratio, show that negative PMI values are not
expected to be accurate unless co-occurrence counts are made
from an extremely large corpus.

35



Table 1: Measures of DP distance and measures of
strength of association.

DP distance Strength of association
α-skew divergence conditional probability
cosine pointwise mutual information
Jensen–Shannon divergence
Lin

the latter case, separate association values are cal-
culated for each of the different relations between
the target and the co-occurring units. We will refer
to such DPs asrelation-constrained.

Typical relation-free DPs are those of Sch¨utze
and Pedersen (1997) and Yoshida et al. (2003).
Typical relation-constrained DPs are those of
Lin (1998) and Lee (2001). Below are contrived,
but plausible, examples of each for the wordpulse;
the numbers are conditional probabilities.

relation-free DP
pulse: beat (.28), racing (.2), grow
(.13),beans(.09),heart (.04), . . .

relation-constrained DP
pulse: <beat, subject–verb> (.34),
<racing, noun–qualifying adjective>
(.22),<grow, subject–verb> (.14), . . .

The distance between two words, given their
DPs, is calculated using ameasure of DP dis-
tance, such as cosine. While any of the mea-
sures of DP distance may be used with any of the
measures of strength of association (see Table 1),
in practiceα-skew divergence (ASD), cosine, and
Jensen–Shannon divergence (JSD) are used with
conditional probability (CP), whereas Lin is used
with PMI, resulting in the distributional measures
ASDcp (Lee, 2001),Coscp (Schütze and Pedersen,
1997),JSDcp, andLinpmi (Lin, 1998), respectively.
ASDcp is a modification of Kullback-Leibler diver-
gence that overcomes the latter’s problem of divi-
sion by zero, which can be caused by data sparse-
ness. JSDcp is another relative entropy–based
measure (likeASDcp) but it is symmetric.JSDcp

andASDcp are distance measures that give scores
between 0 (identical) and infinity (maximally dis-
tant).Linpmi andCoscp are similarity measures that
give scores between 0 (maximally distant) and 1
(identical). See Mohammad and Hirst (2005) for a
detailed study of these and other measures.

2 The distributional hypothesis and its
limitations

The distributional hypothesis (Firth, 1957) states
that words that occur in similar contexts tend to be
semantically similar. It is often suggested, there-
fore, that a distributional measure can act as a
proxy for a semantic measure: the distance be-
tween the DPs of words will approximate the dis-
tance between their senses. But when words have
more than one sense, it is not at all clear what se-
mantic distance between them actually means. A
word in each of its senses is likely to co-occur
with different sets of words. For example,bank
in the ‘financial institution’ sense is likely to co-
occur with interest, money, accounts,and so on,
whereas the ‘river bank’ sense might have words
such asriver, erosion,andsilt around it. If we de-
fine the distance between two words, at least one
of which is ambiguous, to be the closest distance
between some sense of one and some sense of the
other, then distributional distance between words
may indeed be used in place of semantic distance
between concepts. However, because measures of
distributional distance depend on occurrences of
the target word in all its senses, this substitution is
inaccurate. For example, observe that both DPWs
of pulseabove have words that co-occur with its
‘throbbing arteries’ sense and words that co-occur
with its ‘edible seed’ sense. Relation-free DPs of
pulse in its two separate senses might be as fol-
lows:

pulse ‘throbbing arteries’: beat (.36),
racing (.27),heart(.11), . . .
pulse ‘edible seeds’:grow (.24), beans
(.14), . . .

Thus, it is clear that different senses of a word have
different distributional profiles (“different com-
pany”). Using a single DP for the word will mean
the union of those profiles. While this might be
useful for certain applications, we believe that in
a number of tasks (including estimating linguistic
distance), acquiring different DPs for the differ-
ent senses is not only more intuitive, but also, as
we will show through experiments in Section 5,
more useful. We argue thatdistributional pro-
files of senses or concepts (DPCs)can be used to
infer semantic properties of the senses: “You shall
know a sense by the company it keeps.”
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3 Conceptual grain size and storage
requirements

As applications for linguistic distance become
more sophisticated and demanding, it becomes at-
tractive to pre-compute and store the distance val-
ues between all possible pairs of words or senses.
But both kinds of measures have large space re-
quirements to do this, requiring matrices of size
N�N, whereN is the size of the vocabulary (per-
haps 100,000 for most languages) in the case of
distributional measures and the number of senses
(75,000 just for nouns in WordNet) in the case of
semantic measures.

It is generally accepted, however, that WordNet
senses are far too fine-grained (Agirre and Lopez
de Lacalle Lekuona (2003) and citations therein).
On the other hand, published thesauri, such asRo-
get’sandMacquarie, group near-synonymous and
semantically related words into a relatively small
number ofcategories—typically between 800 and
1100—that roughly correspond to very coarse
concepts or senses (Yarowsky, 1992). Words with
more than one sense are listed in more than one
category. A published thesaurus thus provides us
with a very coarse human-developed set or inven-
tory of word sensesor concepts2 that are more in-
tuitive and discernible than the “concepts” gener-
ated by dimensionality-reduction methods such as
latent semantic analysis. Using coarse senses from
a known inventory means that the senses can be
represented unambiguously by a large number of
possibly ambiguous words (conveniently available
in the thesaurus)—a feature that we exploited in
our earlier work (Mohammad and Hirst, 2006) to
determine useful estimates of the strength of asso-
ciation between a concept and co-occurring words.

In this paper, we go one step further and use
the idea of a very coarse sense inventory to de-
velop a framework for distributional measures of
concepts that can more naturally and more ac-
curately be used in place of semantic measures
of word senses. We use theMacquarie The-
saurus(Bernard, 1986) as a sense inventory and
repository of words pertaining to each sense. It has
812 categories with around 176,000 word tokens
and 98,000 word types. This allows us to have
much smallerconcept–concept distance matri-
cesof size just 812�812 (roughly .01% the size

2We use the termssensesandconceptsinterchangeably.
This is in contrast to studies, such as that of Cooper (2005),
that attempt to make a principled distinction between them.

of matrices required by existing measures). We
evaluate our distributional concept-distance mea-
sures on two tasks: ranking word pairs in order
of their semantic distance, and correcting real-
word spelling errors. We compare performance
with distributional word-distance measures and
the WordNet-based concept-distance measures.

4 Distributional measures of
concept-distance

4.1 Capturing distributional profiles of
concepts

We use relation-freelexicalDPs—both DPWs and
DPCs—in our experiments, as they allow deter-
mination of semantic properties of the target from
just its co-occurring words.

Determining lexical DPWs simply involves
making word–word co-occurrence counts in a
corpus. A direct method to determine lexical
DPCs, on the other hand, requires information
about which words occur with which concepts.
This means that the text from which counts are
made has to be sense annotated. Since exist-
ing labeled data is minimal and manual annota-
tion is far too expensive, indirect means must be
used. In an earlier paper (Mohammad and Hirst,
2006), we showed how this can be done with sim-
ple word sense disambiguation and bootstrapping
techniques. Here, we summarize the method.

First, we create a word–category co-
occurrence matrix (WCCM) using theBritish
National Corpus (BNC) and the Macquarie
Thesaurus. The WCCM has the following form:

c1 c2 : : : cj : : :

w1 m11 m12 : : : m1 j : : :

w2 m21 m22 : : : m2 j : : :

...
...

...
. . . : : : : : :

wi mi1 mi2 : : : mi j : : :

...
...

...
...

...
. . .

A cell mi j , corresponding to wordwi and cate-
gorycj , contains the number of timeswi co-occurs
(in a window of�5 words in the corpus) with
any of the words listed under categorycj in the
thesaurus. Intuitively, the cellmi j captures the
number of timescj and wi co-occur. A contin-
gency table for a single word and single category
can be created by simply collapsing all other rows
and columns into one and summing their frequen-
cies. Applying a suitable statistic, such as odds
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BNC
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word–wordco-occurrence matrix

co-occurrence counting
word–word

Figure 1: Distributional word-distance.

ratio, on the contingency table gives the strength
of association between a concept (category) and
co-occurring word. Therefore, the WCCM can be
used to create the lexical DP for any concept.

The matrix that is created after one pass of the
corpus, which we call thebase WCCM, although
noisy (as it is created from raw text and not sense-
annotated data), captures strong associations be-
tween categories and co-occurring words. There-
fore the intended sense (thesaurus category) of a
word in the corpus can now be determined using
frequencies of co-occurring words and its various
senses as evidence. A newbootstrapped WCCM
is created, after a second pass of the corpus, in
which the cellmi j contains the number of times
any word used in sense cj co-occurs withwi . We
have shown (Mohammad and Hirst, 2006) that the
bootstrapped WCCM captures word–category co-
occurrences much more accurately than the base
WCCM, using the task of determining word sense
dominance3 as a test bed.

4.2 Applying distributional measures to
DPCs

Recall that in computing distributional word-
distance, we consider two target words to be dis-
tributionally similar (less distant) if they occur in
similar contexts. The contexts are represented by
the DPs of the target words, where a DP gives the
strength of association between the target and the
co-occurring units. A distributional measure uses
a measure of DP distance to determine the distance
between two DPs and thereby between the two tar-
get words (see Figure 1). The various measures
differ in what statistic they use to calculate the
strength of association and the measure of DP dis-

3Near-upper-bound results were achieved in the task of
determining predominant senses of 27 words in 11 target texts
with a wide range of sense distributions over their two most
dominant senses.

distributional measures

BNC Thesaurus

distributional relatedness ofconcepts

word–categoryco-occurrence matrix sense disambiguation
bootstrapping and

co-occurrence counting
word–category

Figure 2: Distributional concept-distance.

tance they use (see Mohammad and Hirst (2005)
for details). For example, following is the cosine
formula for distance between wordsw1 andw2 us-
ing relation-free lexical DPWs, with conditional
probability of the co-occurring word given the tar-
get as the strength of association:

Coscp(w1;w2) =

∑w2C(w1)[C(w2) (P(wjw1)�P(wjw2))q
∑w2C(w1)P(wjw1)2�

q
∑w2C(w2)P(wjw2)2

Here,C(x) is the set of words that co-occur with
word xwithin a pre-determined window.

In order to calculate distributionalconcept-
distance, consider the same scenario, except that
the targets are now senses or concepts. Two con-
cepts are closer if their DPs are similar, and these
DPCs require the strength of association between
the targetconceptsand their co-occurring words.
The associations can be estimated from the boot-
strapped WCCM, described in Section 4.1 above.
Any of the distributional measures used for DPWs
can now be used to estimate concept-distance with
DPCs. Figure 2 illustrates our methodology. Be-
low is the formula for cosine with conditional
probabilities when applied to concepts:

Coscp(c1;c2) =

∑w2C(c1)[C(c2) (P(wjc1)�P(wjc2))q
∑w2C(c1)P(wjc1)2�

q
∑w2C(c2)P(wjc2)2

Now, C(x) is the set of words that co-occur with
concept xwithin a pre-determined window.

We will refer to such measures as distributional
measures of concept-distance (Distribconcept),
in contrast to the earlier-described distribu-
tional measures of word-distance (Distribword)
and WordNet-based (or semantic) measures of
concept-distance (WNetconcept). We shall refer
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to these three kinds of distance measures as
measure-types. Individual measures in each kind
will be referred to simply asmeasures.

A distributional measure of concept-distance
can be used to populate a small 812� 812
concept–concept distance matrixwhere a cell
mi j , pertaining to conceptsci and cj , contains
the distance between the two concepts. In con-
trast, a word–word distance matrix for a conserva-
tive vocabulary of 100,000 word types will have
a size 100,000� 100,000, and a WordNet-based
concept–concept distance matrix will have a size
75,000� 75,000 just for nouns. Our concept–
concept distance matrix is roughly .01% the size
of these matrices.

Note that the DPs we are using are relation-free
because (1) we use all co-occurring words (not just
those that are related to the target by certain syn-
tactic or semantic relations) and (2) the WCCM,
as described in Section 4.1, does not maintain sep-
arate counts for the different relations between the
target and co-occurring words. Creating a larger
matrix with separate counts for the different rela-
tions would lead torelation-constrainedDPs.

5 Evaluation

To evaluate the distributional concept-distance
measures, we used them in the tasks of ranking
word pairs in order of their semantic distance and
of correcting real-word spelling errors, and com-
pared our results to those that we obtained on the
same tasks with distributional word-distance mea-
sures and those that Budanitsky and Hirst (2006)
obtained with WordNet-based semantic measures.

The distributional concept-distance measures
used a bootstrapped WCCM created from theBNC
and theMacquarie Thesaurus. The word-distance
measures used a word–word co-occurrence matrix
created from theBNC alone. TheBNC was not
lemmatized, part of speech tagged, or chunked.
The vocabulary was restricted to the words present
in the thesaurus (about 98,000 word types) both
to provide a level evaluation platform and to keep
the matrix to a manageable size. Co-occurrence
counts less than 5 were reset to 0, and words
that co-occurred with more than 2000 other words
were stoplisted (543 in all). We usedASDcp (α =

0:99),Coscp, JSDcp, andLinpmi
4 to populate corre-

sponding concept–concept distance matrices and

4Whereas Lin (1998) used relation-constrained DPs, in
our experiments all DPs are relation-free.

Table 2: Correlation of distributional measures
with human ranking. Best results for each
measure-type are shown in boldface.

Measure-type
Distribword Distribconcept

Measure closest average

ASDcp .45 .60 –
Coscp .54 .69 .42
JSDcp .48 .61 –
Linpmi .52 .71 .59

word–word distance matrices. Applications that
require distance values will enjoy a run-time ben-
efit if the distances are precomputed. While it is
easy to completely populate the concept–concept
co-occurrence matrix, completely populating the
word–word distance matrix is a non-trivial task be-
cause of memory and time constraints.5

5.1 Ranking word pairs

A direct approach to evaluating linguistic dis-
tance measures is to determine how close they
are to human judgment and intuition. Given a
set of word-pairs, humans can rank them in or-
der of their distance—placing near-synonyms on
one end of the ranking and unrelated pairs on the
other. Rubenstein and Goodenough (1965) pro-
vide a “gold-standard” list of 65 human-ranked
word-pairs (based on the responses of 51 sub-
jects). One automatic word-distance estimator,
then, is deemed to be more accurate than another
if its ranking of word-pairs correlates more closely
with this human ranking. Measures of concept-
distance can perform this task by determining
word-distance for each word-pair by finding the
concept-distance between all pairs of senses of the
two words, and choosing the distance of the clos-
est sense pair. This is based on the assumption that
when humans are asked to judge the semantic dis-
tance between a pair of words, they implicitly con-
sider its closest senses. For example, most people
will agree thatbankand interestare semantically
related, even though both have multiple senses—
most of which are unrelated. Alternatively, the
method could take the average of the distance of
all pairs of senses.

5As we wanted to perform experiments with both
concept–concept and word–word distance matrices, we pop-
ulated them as and when new distance values were calculated.
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Table 3: Hirst and St-Onge metrics for evaluation
of real-word spelling correction.

suspect ratio =
no. of true-suspects

no. of malaps
no. of false-suspects
no. of non-malaps

alarm ratio =
no. of true-alarms

no. of true-suspects
no. of false-alarms

no. of false-suspects

detection ratio =
no. of true-alarms

no. of malaps
no. of false-alarms
no. of non-malaps

correction ratio =
no. corrected malaps

no. of malaps
no. of false-alarms
no. of non-malaps

correction accuracy = no. of corrected malaps
no. of true-alarms

Table 2 lists correlations of human rank-
ings with those created using distributional mea-
sures. Observe thatDistribconcept measures
give markedly higher correlation values than
Distribword measures. Also, using the distance of
the closest sense pair (forCoscp andLinpmi) gives
much better results than using the average dis-
tance of all relevant sense pairs. (We do not report
average distance forASDcp and JSDcp because
they give very large distance values when sense-
pairs are unrelated—values that dominate the av-
erages, overwhelming the others, and making the
results meaningless.) These correlations are, how-
ever, notably lower than those obtained by the best
WordNet-based measures (not shown in the table),
which fall in the range .78 to .84 (Budanitsky and
Hirst, 2006).

5.2 Real-word spelling error correction

The set of Rubenstein and Goodenough word pairs
is much too small to safely assume that measures
that work well on them do so for the entire En-
glish vocabulary. Consequently, semantic mea-
sures have traditionally been evaluated through ap-
plications that use them, such as the work by Hirst
and Budanitsky (2005) on correctingreal-word
spelling errors (or malapropisms). If a word
in a text is not “semantically close” to any other
word in its context, then it is considered asus-
pect. If the suspect has a spelling-variant that
is “semantically close” to a word in its context,
then the suspect is declared a probable real-word
spelling error and an “alarm” is raised; the related

spelling-variant is considered itscorrection. Hirst
and Budanitsky tested the method on 500 articles
from the 1987–89Wall Street Journalcorpus for
their experiments, replacing every 200th word by
a spelling-variant. We adopt this method and this
test data, but whereas Hirst and Budanitsky used
WordNet-based semantic measures, we use distri-
butional measuresDistribword andDistribconcept.

In order to determine whether two words are
“semantically close” or not as per any measure
of distance, athreshold must be set. If the dis-
tance between two words is less than the threshold,
then they will be consideredsemantically close.
Hirst and Budanitsky (2005) pointed out that there
is a notably wide band between 1.83 and 2.36
(on a scale of 0–4), such that all Rubenstein and
Goodenough word pairs were assigned values ei-
ther higher than 2.36 or lower than 1.83 by human
subjects. They argue that somewhere within this
band is a suitable threshold between semantically
close and semantically distant, and therefore set
thresholds for the WordNet-based measures such
that there was maximum overlap in what the mea-
sures and human judgments considered semanti-
cally close and distant. Following this idea, we
use an automatic method to determine thresholds
for the variousDistribword andDistribconceptmea-
sures. Given a list of Rubenstein and Goodenough
word pairs ordered according to a distance mea-
sure, we repeatedly consider the mean of all con-
secutive distance values ascandidate thresholds.
Then we determine the number of word-pairs cor-
rectly classified as semantically close or semanti-
cally distant for each candidate threshold, consid-
ering which side of the band they lie as per human
judgments. The candidate threshold with highest
accuracy is chosen as the threshold.

We follow Hirst and St-Onge (1998) in the met-
rics that we use to evaluate real-word spelling cor-
rection; they are listed in Table 3.Suspect ratio
andalarm ratio evaluate the processes of identify-
ing suspects and raising alarms, respectively.De-
tection ratio is the product of the two, and mea-
sures overall performance in detecting the errors.
Correction ratio indicates overall correction per-
formance, and is the “bottom-line” statistic that we
focus on. Values greater than 1 for each of these
ratios indicate results better than random guessing.
The ability of the system to determine the intended
word, given that it has correctly detected an error,
is indicated by thecorrection accuracy (0 to 1).
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Table 4: Real-word error correction using distributional word-distance (Distribword), distributional
concept-distance (Distribconcept), and Hirst and Budanitsky’s (2005) results using WordNet-based
concept-distance measures (WNetconcept). Best results for each measure-type are shown in boldface.

suspect alarm detection correctioncorrection detection correction
Measure ratio ratio ratio accuracy ratio P R F performance

Distribword

ASDcp 3.36 1.78 5.98 0.84 5.03 7.37 45.53 12.69 10.66
Coscp 2.91 1.64 4.77 0.85 4.06 5.97 37.15 10.28 8.74
JSDcp 3.29 1.77 5.82 0.83 4.88 7.19 44.32 12.37 10.27
Linpmi 3.63 2.15 7.78 0.84 6.52 9.38 58.38 16.16 13.57

Distribconcept

ASDcp 4.11 2.54 10.43 0.91 9.49 12.19 25.28 16.44 14.96
Coscp 4.00 2.51 10.03 0.90 9.05 11.77 26.99 16.38 14.74
JSDcp 3.58 2.46 8.79 0.90 7.87 10.47 34.66 16.08 14.47
Linpmi 3.02 2.60 7.84 0.88 6.87 9.45 36.86 15.04 13.24

WNetconcept

Hirst–St-Onge 4.24 1.95 8.27 0.93 7.70 9.67 26.33 14.15 13.16
Jiang–Conrath 4.73 2.97 14.02 0.92 12.91 14.33 46.22 21.88 20.13
Leacock–Chodrow 3.23 2.72 8.80 0.83 7.30 11.56 60.33 19.40 16.10
Lin 3.57 2.71 9.70 0.87 8.48 9.56 51.56 16.13 14.03
Resnik 2.58 2.75 7.10 0.78 5.55 9.00 55.00 15.47 12.07

Notice that the correction ratio is the product of the
detection ratio and correction accuracy. The over-
all (single-point) precisionP (no. of true-alarms /
no. of alarms), recallR (no. of true-alarms / no.
of malapropisms), andF-score (2�P�R

P+R ) of detec-
tion are also computed. The product of detection
F-score and correction accuracy, which we will
call correction performance, can also be used as
a bottom-line performance metric.

Table 4 details the performance ofDistribword

andDistribconcept measures. For comparison, re-
sults obtained by Hirst and Budanitsky (2005)
with the use ofWNetconcept measures are also
shown. Observe that the correction ratio results
for theDistribword measures are poor compared to
Distribconceptmeasures; the concept-distance mea-
sures are clearly superior, in particularASDcp and
Coscp. Moreover, if we consider correction ratio to
be the bottom-line statistic, then theDistribconcept

measures outperform allWNetconceptmeasures ex-
cept the Jiang–Conrath measure. If we con-
sider correction performance to be the bottom-line
statistic, then again we see that the distributional
concept-distance measures outperform the word-
distance measures, except in the case ofLinpmi,
which gives slightly poorer results with concept-
distance. Also, in contrast to correction ratio val-
ues, using the Leacock–Chodorow measure results
in relatively higher correction performance values

than the bestDistribconcept measures. While it is
clear that the Leacock–Chodorow measure is rela-
tively less accurate in choosing the right spelling-
variant for an alarm (correction accuracy), detec-
tion ratio and detectionF-score present contrary
pictures of relative performance in detection. As
correction ratio is determined by the product of
a number of ratios, each evaluating the various
stages of malapropism correction (identifying sus-
pects, raising alarms, and applying the correction),
we believe it is a better indicator of overall per-
formance than correction performance, which is
a not-so-elegant product of anF-score and accu-
racy. However, no matter which of the two is
chosen as the bottom-line performance statistic,
the results show that the newly proposed distri-
butional concept-distance measures are clearly su-
perior to word-distance measures. Further, of all
the WordNet-based measures, only that proposed
by Jiang and Conrath outperforms the best dis-
tributional concept-distance measures consistently
with respect to both bottom-line statistics.

6 Related Work

Patwardhan and Pedersen (2006) createaggregate
co-occurrence vectorsfor a WordNet sense by
adding the co-occurrence vectors of the words in
its WordNet gloss. The distance between two
senses is then determined by the cosine of the an-
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gle between their aggregate vectors. However, as
we pointed out in Mohammad and Hirst (2005),
such aggregate co-occurrence vectors are expected
to be noisy because they are created from data that
is not sense-annotated. Therefore, we employed
simple word sense disambiguation and bootstrap-
ping techniques on our base WCCM to create
more-accurate co-occurrence vectors, which gave
markedly higher accuracies in the task of deter-
mining word sense dominance. In the exper-
iments described in this paper, we used these
bootstrapped co-occurrence vectors to determine
concept-distance.

Pantel (2005) also provides a way to create
co-occurrence vectors for WordNet senses. The
lexical co-occurrence vectors of words in a leaf
node are propagated up the WordNet hierarchy.
A parent node inherits those co-occurrences that
are shared by its children. Lastly, co-occurrences
not pertaining to the leaf nodes are removed from
its vector. Even though the methodology at-
tempts at associating a WordNet node or sense
with only those co-occurrences that pertain to it,
no attempt is made at correcting the frequency
counts. After all,word1–word2co-occurrence fre-
quency (or association) is likely not the same as
SENSE1–word2co-occurrence frequency (or asso-
ciation), simply becauseword1 may have senses
other thanSENSE1, as well. The co-occurrence
frequency of a parent is the weighted sum of co-
occurrence frequencies of its children. The fre-
quencies of the child nodes are used as weights.
Sense ambiguity issues apart, this is still prob-
lematic because a parent concept (say,BIRD) may
co-occur much more frequently (or infrequently)
with a word than its children (such as,hen, ar-
chaeopteryx, aquatic bird, trogon,and others). In
contrast, the bootstrapped WCCM we use not only
identifies which words co-occur with which con-
cepts, but also has more sophisticated estimates of
the co-occurrence frequencies.

7 Conclusion

We have proposed a framework that allows dis-
tributional measures to estimate concept-distance
using a published thesaurus and raw text. We
evaluated them in comparison with traditional dis-
tributional word-distance measures and WordNet-
based measures through their ability in ranking
word-pairs in order of their human-judged linguis-
tic distance, and in correcting real-word spelling

errors. We showed that distributional concept-
distance measures outperformed word-distance
measures in both tasks. They do not perform
as well as the best WordNet-based measures in
ranking a small set of word pairs, but in the task
of correcting real-word spelling errors, they beat
all WordNet-based measures except for Jiang–
Conrath (which is markedly better) and Leacock-
Chodorow (which is slightly better if we consider
correction performance as the bottom-line statis-
tic, but slightly worse if we rely on correction
ratio). It should be noted that the Rubenstein
and Goodenough word-pairs used in the ranking
task, as well as all the real-word spelling errors
in the correction task are nouns. We expect that
the WordNet-based measures will perform poorly
when other parts of speech are involved, as those
hierarchies of WordNet are not as extensively de-
veloped. On the other hand, our DPC-based mea-
sures do not rely on any hierarchies (even if they
exist in a thesaurus) but on sets of words that un-
ambiguously represent each sense. Further, be-
cause our measures are tied closely to the corpus
from which co-occurrence counts are made, we
expect the use of domain-specific corpora to result
in even better results.

All the distributional measures that we have
considered in this paper arelexical—that is, the
distributional profiles of the target word or con-
cept are based on their co-occurrence with words
in a text. By contrast,semanticDPs would be
based on information such as what concepts usu-
ally co-occur with the target word or concept. Se-
mantic profiles of words can be obtained from
the WCCM itself (using the row entry for the
word). It would be interesting to see how distri-
butional measures of word-distance that use these
semantic DPs of words perform. We also intend
to explore the use of semantic DPs of concepts
acquired from aconcept–concept co-occurrence
matrix (CCCM) . A CCCM can be created from
the WCCM by setting the row entry for a concept
or category to be the average of WCCM row val-
ues for all the words pertaining to it.

Both DPW- and WordNet-based measures have
large space and time requirements for pre-
computing and storing all possible distance val-
ues for a language. However, by using the cate-
gories of a thesaurus as very coarse concepts, pre-
computing and storing all possible distance values
for our DPC-based measures requires a matrix of
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size only about 800�800. This level of concept-
coarseness might seem drastic at first glance, but
we have shown that distributional measures of dis-
tance between these coarse concepts are quite use-
ful. Part of our future work will be to try an inter-
mediate degree of coarseness (still much coarser
than WordNet) by using the paragraph subdivi-
sions of the thesaurus instead of its categories to
see if this gives even better results.
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