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Abstract

We propose a framework to derive the
distance between concepts from distribu-
tional measures of word co-occurrences.
We use the categories in a published
thesaurus as coarse-grained concepts, al-
lowing all possible distance values to

are expected to perform poorly when used to es-
timate distance between senses of part-of-speech
pairs other than noun—-noun, not just because the
WordNet hierarchies for other parts of speech are
less well developed, but also because the hierar-
chies for the different parts of speech are not well

connected.

The second kind of measures, which we will

be stored in a concept—concept matrix
roughly .01% the size of that created
by existing measures. We show that
the newly proposed concept-distance mea-
sures outperform traditional distributional
word-distance measures in the tasks of
(1) ranking word pairs in order of se-
mantic distance, and (2) correcting real-
word spelling errors. In the latter task,
of all the WordNet-based measures, only
that proposed by Jiang and Conrath out-
performs the best distributional concept-
distance measures.

refer to asdistributional measures, are inspired
by the maxim “You shall know a word by the
company it keeps” (Firth, 1957). These measures
rely simply on raw text, and hence are much less
resource-hungry than the semantic measures; but
they measure the distance between words rather
than word-senses or concepts. In these measures,
two words are considered close if they occur in
similar contexts. The context (or “company”) of
a target word is represented by dsstributional
profile (DP), which lists the strength of associ-
ation between the target and each of the lexical,
syntactic, and/or semantic units that co-occur with
it. Commonly usedneasures of strength of as-
sociation are conditional probability (0 to 1) and
Measures of distance of meaning are of two kindspointwise mutual information-{e to ). Com-
The first kind, which we will refer to aseman- monly used units of co-occurrence with the target
tic measures rely on the structure of a resource are othemwords and so we speak of thexical dis-
such as WordNet or, in some cases, a semantitibutional profile of a word (lexical DPW) . The
network, and hence they measure the distance bee-occurring words may be all those in a prede-
tween the concepts or word-senses that the nodégrmined window around the target, or may be re-
of the resource represent. Examples include thetricted to those that have a certain syntactig.(
measure for MeSH proposed by Rada et al. (1989erb—object) or semantie(g., agent-theme) re-
and those for WordNet proposed by Leacock andation with the target word. We will refer to the
Chodorow (1998) and Jiang and Conrath (1997)former kind of DPs aselation-free. Usually in
(Some of the more successful measures, such as
Jiang—Conrath, also use information content de- 1in our experiments, we set negative PMI values to 0, be-
rived from word frequency.) Typically, these mea- cause Church and Hanks (1990), in their seminal paper on
. . word association ratio, show that negative PMI values are not
sures rely on an extensive hierarchy of hyponym

; ] Yexpected to be accurate unless co-occurrence counts are made
relationships for nouns. Therefore, these measurésm an extremely large corpus.

1 Semantic and distributional measures
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The distributional hypothesis and its

Table 1: Measures of DP distance and measures gf C
limitations

strength of association.

The distributional hypothesis (Firth, 1957) states

DP distance Strength of association

a-skew divergence conditional probability that words that_ oc_;cur in _similar contexts tend to be

cosine pointwise mutual information semantically similar. It is often suggested, there-

i‘?”se”‘Sha”“O” divergence fore, that a distributional measure can act as a
n

proxy for a semantic measure: the distance be-
tween the DPs of words will approximate the dis-
tance between their senses. But when words have

the latter case, separate association values are c3lo o than one sense. it is not at all clear what se-

culated for each of the different relations betweer) . ... jistance between them actually means. A
the target and the co-occurring units. We will referWord in each of its senses is likely to co-occur

to such DPs agelatlon—constralned. _with different sets of words. For exampleank
Typical relation-free DPs are those of S i the “financial institution’ sense is likely to co-
and Pedersen (1997) and Yoshida et al. (2003)y.¢r withinterest, money, accountand so on,
Typical relation-constrained DPs are those Ofynereas the ‘river bank’ sense might have words
Lin (1998) and Lee (2001). Below are contrived, 5 ,chy agiver, erosion,andsilt around it. If we de-
but plausible, examples of each for the wprdse  fine the distance between two words, at least one
the numbers are conditional probabilities. of which is ambiguous, to be the closest distance
between some sense of one and some sense of the

relation-free DP other, then distributional distance between words

pulse  beat (.28), racing (.2), grow may indeed be used in place of semantic distance
(.13),beans(.09), heart(.04), ... between concepts. However, because measures of
distributional distance depend on occurrences of
relation-constrained DP the target word in all its senses, this substitution is
pulse <beaf subject-verb (.34), inaccurate. For example, observe that both DPWs
<racing, noun—qualifying adjective of pulseabove have words that co-occur with its
(:22), <grow, subject-verb (.14), ... ‘throbbing arteries’ sense and words that co-occur

_ _ ~with its ‘edible seed’ sense. Relation-free DPs of
The distance between two words, given theirpyisein its two separate senses might be as fol-
DPs, is calculated using measure of DP dis- |ows:

tance such as cosine. While any of the mea-
sures of DP distance may be used with any of the
measures of strength of association (see Table 1),
in practicea-skew divergence (ASD), cosine, and
Jensen-Shannon divergence (JSD) are used with
conditional probability (CP), whereas Lin is used
with PMI, resulting in the distributional measures
ASDy, (Lee, 2001) Cog, (Schitze and Pedersen, Thus, itis clear that different senses of a word have
1997),JSDyp, andLinpmi (Lin, 1998), respectively. different distributional profiles (“different com-
ASDy, is a modification of Kullback-Leibler diver- pany”). Using a single DP for the word will mean
gence that overcomes the latter’s problem of divithe union of those profiles. While this might be
sion by zero, which can be caused by data sparseiseful for certain applications, we believe that in
ness. JSO, is another relative entropy—baseda number of tasks (including estimating linguistic
measure (likeASDyy) but it is symmetric.JSO,  distance), acquiring different DPs for the differ-
andASDy, are distance measures that give scoreent senses is not only more intuitive, but also, as
between 0 (identical) and infinity (maximally dis- we will show through experiments in Section 5,
tant). Linpmi andCosy, are similarity measures that more useful. We argue thalistributional pro-
give scores between 0 (maximally distant) and ffiles of senses or concepts (DPCsan be used to
(identical). See Mohammad and Hirst (2005) for ainfer semantic properties of the senses: “You shall
detailed study of these and other measures. know a sense by the company it keeps.”

pulse ‘throbbing arteries’: beat (.36),
racing (.27),heart(.11), ...

pulse ‘edible seeds’:grow (.24), beans
(.14), ...
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3 Conceptual grain size and storage of matrices required by existing measures). We
requirements evaluate our distributional concept-distance mea-
sures on two tasks: ranking word pairs in order

As applications for linguistic distance becomeof their semantic distance, and correcting real-
more sophisticated and demanding, it becomes afyqq spelling errors. We compare performance
tractive to pre-compute and store the distance valjth distributional word-distance measures and

ues between all possible pairs of words or sensege WordNet-based concept-distance measures.
But both kinds of measures have large space re-

quirements to do this, requiring matrices of size4 Distributional measures of
N x N, whereN is the size of the vocabulary (per- concept-distance
haps 100,000 for most languages) in the case of . o ,
distributional measures and the number of sense%‘1 Capturing distributional profiles of
(75,000 just for nouns in WordNet) in the case of concepts
semantic measures. We use relation-freiexical DPs—both DPWs and

It is generally accepted, however, that WordNetPPCs—in our experiments, as they allow deter-
senses are far too fine-grained (Agirre and Lope#hination of semantic properties of the target from
de Lacalle Lekuona (2003) and citations therein)just its co-occurring words.
On the other hand, published thesauri, suicRas ~ Determining lexical DPWs simply involves
get'sandMacquarie group near-synonymous and making word-word co-occurrence counts in a
semantically related words into a relatively smallcorpus. A direct method to determine lexical
number ofcategories—typically between 800 and DPCs, on the other hand, requires information
1100—that roughly correspond to very coarsedbout which words occur with which concepts.
concepts or senses (Yarowsky, 1992). Words with" his means that the text from which counts are
more than one sense are listed in more than on@ade has to be sense annotated. Since exist-
category. A published thesaurus thus provides uld labeled data is minimal and manual annota-
with a very coarse human-developed set or invention is far too expensive, indirect means must be
tory of word senser concepté that are more in-  Used. In an earlier paper (Mohammad and Hirst,
tuitive and discernible than the “concepts” gener-2006), we showed how this can be done with sim-
ated by dimensionality-reduction methods such agle word sense disambiguation and bootstrapping
latent semantic analysis. Using coarse senses frofgchniques. Here, we summarize the method.
a known inventory means that the senses can be First, we create aword-category co-
represented unambiguously by a large number ddccurrence matrix (WCCM) using theBritish
possibly ambiguous words (conveniently availabléNational Corpus (BNC)and the Macquarie
in the thesaurus)—a feature that we exploited inf hesaurusThe WCCM has the following form:

our earlier work (Mohammad and Hirst, 2006) to

. : Ci C ... Cj
determine useful estimates of the strength of asso- W ml m2 mJ-
ciation between a concept and co-occurring words. o B

In this paper, we go one step further and use
the idea of a very coarse sense inventory to de- : :
velop a framework for distributional measures of Wi | Mg M2 ... M
concepts that can more naturally and more ac- : : : :
curately be used in place of semantic measures
of word senses. We use thidacquarie The- A cell mj, corresponding to wordy; and cate-
saurus(Bernard, 1986) as a sense inventory andjoryc;j, contains the number of timeg co-occurs
repository of words pertaining to each sense. Ithagn a window of £5 words in the corpus) with
812 categories with around 176,000 word tokensany of the words listed under categary in the
and 98,000 word types. This allows us to havethesaurus. Intuitively, the celly; captures the
much smallerconcept—concept distance matri- number of timesc; andw; co-occur. A contin-
cesof size just 812 812 (roughly .01% the size gency table for a single word and single category

e — _ can be created by simply collapsing all other rows
We use the termsensesand conceptsinterchangeably.

This is in contrast to studies, such as that of Cooper (2005),a_ml columng into one and summing their frequen-
that attempt to make a principled distinction between them. cies. Applying a suitable statistic, such as odds

W2 | Mpy Mp2 ... N
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BNC BNC Thesaurus
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word—word word—category
co-occurrence countin co-occurrence countin

- i . . bootstrapping and
word-wordco oi:currence matrix word—categor)co‘\‘occurrence matr»e’ sense disambiguation

‘ distributional measures ‘ distributional measures

| !

distributional relatedness afords distributional relatedness abncepts

Figure 1: Distributional word-distance. Figure 2: Distributional concept-distance.

ratio, on the contingency table gives the strengthance they use (see Mohammad and Hirst (2005)

of association between a concept (category) anfbr details). For example, following is the cosine

co-occurring word. Therefore, the WCCM can beformula for distance between words andw, us-

used to create the lexical DP for any concept. ing relation-free lexical DPWs, with conditional
The matrix that is created after one pass of therobability of the co-occurring word given the tar-

corpus, which we call thbase WCCM, although get as the strength of association:

noisy (as it is created from raw text and not sense-

annotated data), captures strong associations bE0%p(W1,W2) =

tween categories and co-occurring words. There- Y wec(wy)ucws) (P(W[wa) x P(W|w2))

fore the intended sense (thesaurus category) of a D) 2
P P
word in the corpus can now be determined using \/ZWEC(W” (Wiwa)* x \/ZWGC(W” (Wiwe)

frequencies qf co-occurring words and its Variouﬁiere,C(x) is the set of words that co-occur with
senses as evidence. A nbaotstrapped WCCM word xwithin a pre-determined window.

is created, after a second pass of the corpus, in In order to calculate distributionatoncept-

which the cellm; contains the number of times distance consider the same scenario, except that

zny wc;]rd use,\cjl n;lsense;dco-c;c;grs V\ggg\g Y]VE h the targets are now senses or concepts. Two con-
ave shown (Mohammad and Hirst, ) that t %epts are closer if their DPs are similar, and these

bootstrapped WCCM captures word—category coppg require the strength of association between

occurrences much more accura'Fe!y than the bastﬂe targetconceptsand their co-occurring words.
WCC_:M' using the task of determining word S€NS€rhe associations can be estimated from the boot-
dominance as a test bed. strapped WCCM, described in Section 4.1 above.
4.2 Applying distributional measures to Any of the distributiona! measures usec! for DPW_S
DPCs can now be used to estimate concept-distance with
DPCs. Figure 2 illustrates our methodology. Be-

Recall that in computing distributional word- o is the formula for cosine with conditional
distance, we consider two target words to be dispropapilities when applied to concepts:
tributionally similar (less distant) if they occur in

similar contexts. The contexts are represented bZosy(cy,C2) =

the DPs of the target words, where a DP gives the Y weC(e)uc(cr) (P(W[C1) x P(w|cz))
strength of association between the target and the
co-occurring units. A distributional measure uses \/ 3 wec(cr) P(W]e1)? x \/ 3 weC(cz) P(W|C2)?
a measure of DP distance to determine the distance

between two DPs and thereby between the two tafN oW, C(9 IS t'he set of Wmd? that co-occur with
oncept xwithin a pre-determined window.

get words (see Figure 1). The various measure$ i S
differ in what statistic they use to calculate the We will refer to such measures as distributional

strength of association and the measure of DP diépeasures of concept-d|'stancdD|'s{tr|bconc.ep),_
in contrast to the earlier-described distribu-

SNear-upper-bound results were achieved in the task ofional measures of word-distanceigtribyorg)

determining predominant senses of 27 words in 11 target texts d WordNet-b d fi f
with a wide range of sense distributions over their two moste! ordNet-based (or semantic) measures o

dominant senses. concept-distance VWNetoncep). We shall refer
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to these three k|_nc_:|s of distance MEASUreS a3 ple 2: Correlation of distributional measures
measure-types Individual measures in each kind with human ranking Best results for each

will be referred to simply ameasures .
o . measure-type are shown in boldface.
A distributional measure of concept-distance

can be used to populate a small 812 812 Measure-type
concept—concept distance matrixwhere a cell Distribworg ~ Distribeoncept
mj, pertaining to concepts; and ¢j, contains Measure closest average
the distance between the two concepts. In con- ASDQ, .45 .60 -
trast, a word—word distance matrix for a conserva- Cogp .54 .69 42
tive vocabulary of 100,000 word types will have  JSDyp .48 .61 -

a size 100,000« 100,000, and a WordNet-based  Linpp .52 71 .59

concept—concept distance matrix will have a size
75,000 x 75,000 just for nouns. Our concept—

concept distance matrix is roughly .01% the siz&yord—word distance matrices. Applications that
of these matrices. require distance values will enjoy a run-time ben-
Note that the DPs we are using are relation-freefit if the distances are precomputed. While it is
because (1) we use all co-occurring words (not jusgasy to completely populate the concept—concept
those that are related to the target by certain syrnco-occurrence matrix, completely populating the

tactic or semantic relations) and (2) the WCCM,word—word distance matrix is a non-trivial task be-
as described in Section 4.1, does not maintain Seause of memory and time Constraiﬁts_

arate counts for the different relations between the
target and co-occurring words. Creating a large 1 Ranking word pairs
matrix with separate counts for the different rela-

tions would lead taelation-constrainedPs. A direct approach to evaluating linguistic dis-

tance measures is to determine how close they
5 Evaluation are to human judgment and intuition. Given a

set of word-pairs, humans can rank them in or-
To evaluate the distributional concept-distanceder of their distance—placing near-synonyms on
measures, we used them in the tasks of rankingne end of the ranking and unrelated pairs on the
word pairs in order of their semantic distance antther. Rubenstein and Goodenough (1965) pro-
of correcting real-word spelling errors, and com-vide a “gold-standard” list of 65 human-ranked
pared our results to those that we obtained on th@ord-pairs (based on the responses of 51 sub-
same tasks with distributional word-distance meajects). One automatic word-distance estimator,
sures and those that Budanitsky and Hirst (2006)hen, is deemed to be more accurate than another
obtained with WordNet-based semantic measures its ranking of word-pairs correlates more closely

The distributional concept-distance measuresvith this human ranking. Measures of concept-

used a bootstrapped WCCM created fromBINC  distance can perform this task by determining
and theMacquarie ThesaurusThe word-distance word-distance for each word-pair by finding the
measures used a word—word co-occurrence matrigoncept-distance between all pairs of senses of the
created from theBNC alone. TheBNC was not two words, and choosing the distance of the clos-
lemmatized, part of speech tagged, or chunkedest sense pair. This is based on the assumption that
The vocabulary was restricted to the words presenvhen humans are asked to judge the semantic dis-
in the thesaurus (about 98,000 word types) bothance between a pair of words, they implicitly con-
to provide a level evaluation platform and to keepsider its closest senses. For example, most people
the matrix to a manageable size. Co-occurrencevill agree thatbankandinterestare semantically
counts less than 5 were reset to 0, and wordselated, even though both have multiple senses—
that co-occurred with more than 2000 other wordsmost of which are unrelated. Alternatively, the
were stoplisted (543 in all). We usébBD, (0 = method could take the average of the distance of
0.99), Cosp, JSDp, andLinpmi* to populate corre-  all pairs of senses.

sponding concept—concept distance matricesand

- SAs we wanted to perform experiments with both
4Whereas Lin (1998) used relation-constrained DPs, inconcept—concept and word—word distance matrices, we pop-

our experiments all DPs are relation-free. ulated them as and when new distance values were calculated.
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spelling-variant is considered it®rrection. Hirst
and Budanitsky tested the method on 500 articles
from the 1987-89Nall Street Journakorpus for

Table 3: Hirst and St-Onge metrics for evaluation
of real-word spelling correction.

no. of true-suspects their experiments, replacing every 200th word b
fmal
suspect ratio = 5 oralse-suspEcts a spelling-variant. We adopt this method and this
no. of non-malaps test data, but whereas Hirst and Budanitsky used
_no. of true-alarms WordNet-based semantic measures, we use distri-
. _ no. of true-suspects . L. L)
alarmratio = 5 orrake-aarms butional measureBistribyorg andDistribeoncept
no. of false-suspects )
no. of true-alarms In order to determine whether two words are
detection ratio = mn—cc;f%;%%s “semantlcally close” or not as per any measure
no. of non-malaps of distance, ahreshold must be set. If the dis-
no. correfcted| malaps tance between two words is less than the threshold,
correction ratio = 5 ormmeas then they will be consideredemantically close
no. of non-malaps Hirst and Budanitsky (2005) pointed out that there
correction accuracy = 0o-ofcomected malaps js g notably wide band between 1.83 and 2.36

(on a scale of 0—4), such that all Rubenstein and
Goodenough word pairs were assigned values ei-
ther higher than 2.36 or lower than 1.83 by human
Table 2 lists correlations of human rank- subjects. They argue that somewhere within this
ings with those created using distributional mea-and is a suitable threshold between semantically
sures.  Observe thaDistribconcept Measures close and semantically distant, and therefore set
give markedly higher correlation values thanthresholds for the WordNet-based measures such
Distribworg measures. Also, using the distance ofthat there was maximum overlap in what the mea-
the closest sense pair (fQrogp andLinpm) gives  syres and human judgments considered semanti-
much better results than using the average discally close and distant. Following this idea, we
tance of all relevant sense pairs. (We do not repofse an automatic method to determine thresholds
average distance foASDy, and JSDy because for the variousDistribyorg and Distribeonceptmea-
they give very large distance values when sensesyres. Given a list of Rubenstein and Goodenough
pairs are unrelated—values that dominate the aMword pairs ordered according to a distance mea-
erages, overwhelming the others, and making thgure, we repeatedly consider the mean of all con-
results meaningless.) These correlations are, howsecutive distance values esndidate thresholds
ever, notably lower than those obtained by the best'hen we determine the number of Word-pairs cor-
WordNet-based measures (not shown in the table}ectly classified as semantically close or semanti-

which fall in the range .78 to .84 (Budanitsky and cally distant for each candidate threshold, consid-

Hirst, 2006). ering which side of the band they lie as per human
judgments. The candidate threshold with highest
5.2 Real-word spelling error correction accuracy is chosen as the threshold.

The set of Rubenstein and Goodenough word pairs We follow Hirst and St-Onge (1998) in the met-
is much too small to safely assume that measurescs that we use to evaluate real-word spelling cor-
that work well on them do so for the entire En- rection; they are listed in Table Suspect ratio
glish vocabulary. Consequently, semantic meaandalarm ratio evaluate the processes of identify-
sures have traditionally been evaluated through apgng suspects and raising alarms, respectivBlg-
plications that use them, such as the work by Hirstection ratio is the product of the two, and mea-
and Budanitsky (2005) on correctimgal-word  sures overall performance in detecting the errors.
spelling errors (or malapropisms). If a word  Correction ratio indicates overall correction per-
in a text is not “semantically close” to any other formance, and is the “bottom-line” statistic that we
word in its context, then it is consideredsas- focus on. Values greater than 1 for each of these
pect If the suspect has a spelling-variant thatratios indicate results better than random guessing.
is “semantically close” to a word in its context, The ability of the system to determine the intended
then the suspect is declared a probable real-wordiord, given that it has correctly detected an error,
spelling error and andlarm” is raised; the related is indicated by thecorrection accuracy (O to 1).
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Table 4: Real-word error correction using distributional word-distarigistiib,,orq), distributional
concept-distance Dfstribconcep), and Hirst and Budanitsky’s (2005) results using WordNet-based
concept-distance measur&¥Netoncep). Best results for each measure-type are shown in boldface.

suspect alarm detection correctioncorrection detection correction
Measure ratio  ratio ratio  accuracy ratio P R F performance
Distribyorg
ASDy, 3.36 1.78 5.98 0.84 5.03 7.37 4553 12.69 10.66
Cogp 291 1.64 4.77 0.85 406 597 37.15 10.28 8.74
Jshy, 329 177 5.82 0.83 488 7.19 4432 12.37 10.27
Lin pmi 3.63 215 7.78 0.84 6.52 9.38 58.38 16.16 13.57
Distribconcept
ASDgp 4.11 2.54 10.43 0.91 9.49 12.19 25.28 16.44 14.96
Cogyp 4.00 251 10.03 0.90 9.05 11.77 26.99 16.38 14.74
Jshy, 3.58 2.46 8.79 0.90 7.87 10.47 34.66 16.08 14.47
Linpmi 3.02 2.60 7.84 0.88 6.87 9.45 36.86 15.04 13.24
WNetoncept
Hirst—St-Onge 424 195 8.27 0.93 7.70 9.67 26.33 14.15 13.16
Jiang—Conrath 473 297 14.02 0.92 1291 14.33 46.22 21.88 20.13
Leacock—Chodrow 3.23 272 8.80 0.83 7.30 1156 60.33 19.40 16.10
Lin 357 271 9.70 0.87 8.48 9.56 5156 16.13 14.03
Resnik 2.58 2.75 7.10 0.78 555 9.00 55.00 15.47 12.07

Notice that the correction ratio is the product of thethan the besDistribconceptmeasures. While it is
detection ratio and correction accuracy. The over€lear that the Leacock—Chodorow measure is rela-
all (single-point) precisiorP (no. of true-alarms / tively less accurate in choosing the right spelling-
no. of alarms), recalR (no. of true-alarms / no. variant for an alarm (correction accuracy), detec-
of malapropisms), an&-score E%R) of detec- tion ratio and detectioffr-score present contrary
tion are also computed. The product of detectiorpictures of relative performance in detection. As
F-score and correction accuracy, which we will correction ratio is determined by the product of
call correction performance, can also be used as a number of ratios, each evaluating the various
a bottom-line performance metric. stages of malapropism correction (identifying sus-
pects, raising alarms, and applying the correction),
we believe it is a better indicator of overall per-
formance than correction performance, which is

Table 4 details the performance Distribyrg
and Distribconceptmeasures. For comparison, re-

sults obtained by Hirst and Budanitsky (2005)a not-so-elegant product of &hscore and accu-

with the use ofWNe measures are also ) .
boncept ) ) racy. However, no matter which of the two is
shown. Observe that the correction ratio results . -
- chosen as the bottom-line performance statistic,

for the Distrib,,org measures are poor compared to

L . the results show that the newly proposed distri-
Distribconceptmeasures; the concept-distance mea; Y prop

L h butional concept-distance measures are clearly su-
sures are clearly superior, in particukgDl:, and . .
. . . : perior to word-distance measures. Further, of all
Cosp. Moreover, if we consider correction ratio to the WordNet-based measures, only that proposed
be the bottom-line statistic, then tistribconcept Oy

by Jiang and Conrath outperforms the best dis-
measures outperform alVNegonceptmeasures ex- = . . ;
. tributional concept-distance measures consistently
cept the Jiang—Conrath measure. If we con

sider correction performance to be the bottom-lineWlth respect to both bottom-line statistics.

statistic, then again we see that the distributionab Related Work

concept-distance measures outperform the word-

distance measures, except in the casdiofn, Patwardhan and Pedersen (2006) craggregate
which gives slightly poorer results with concept- co-occurrence vectorsfor a WordNet sense by
distance. Also, in contrast to correction ratio val-adding the co-occurrence vectors of the words in
ues, using the Leacock—Chodorow measure resulttss WordNet gloss. The distance between two
in relatively higher correction performance valuessenses is then determined by the cosine of the an-
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gle between their aggregate vectors. However, asrrors. We showed that distributional concept-
we pointed out in Mohammad and Hirst (2005),distance measures outperformed word-distance
such aggregate co-occurrence vectors are expectateasures in both tasks. They do not perform
to be noisy because they are created from data thas well as the best WordNet-based measures in
is not sense-annotated. Therefore, we employerhnking a small set of word pairs, but in the task
simple word sense disambiguation and bootstrapef correcting real-word spelling errors, they beat
ping techniques on our base WCCM to createall WordNet-based measures except for Jiang—
more-accurate co-occurrence vectors, which gav€onrath (which is markedly better) and Leacock-
markedly higher accuracies in the task of deterChodorow (which is slightly better if we consider
mining word sense dominance. In the exper-correction performance as the bottom-line statis-
iments described in this paper, we used theséc, but slightly worse if we rely on correction
bootstrapped co-occurrence vectors to determingtio). It should be noted that the Rubenstein
concept-distance. and Goodenough word-pairs used in the ranking
Pantel (2005) also provides a way to creatdask, as well as all the real-word spelling errors
co-occurrence vectors for WordNet senses. Thé the correction task are nouns. We expect that
lexical co-occurrence vectors of words in a leafthe WordNet-based measures will perform poorly
node are propagated up the WordNet hierarchywhen other parts of speech are involved, as those
A parent node inherits those co-occurrences thatierarchies of WordNet are not as extensively de-
are shared by its children. Lastly, co-occurrenceseloped. On the other hand, our DPC-based mea-
not pertaining to the leaf nodes are removed fronsures do not rely on any hierarchies (even if they
its vector. Even though the methodology at-exist in a thesaurus) but on sets of words that un-
tempts at associating a WordNet node or sensambiguously represent each sense. Further, be-
with only those co-occurrences that pertain to it,cause our measures are tied closely to the corpus
no attempt is made at correcting the frequencyirom which co-occurrence counts are made, we
counts. After allwordl—word2co-occurrence fre- expect the use of domain-specific corpora to result
quency (or association) is likely not the same adn even better results.
SENSEL-word2 co-occurrence frequency (or asso-
ciation), simply becauseordl may have senses

All the distributional measures that we have
considered in this paper aftexical—that is, the
other thansensel, as well. The co-occurrence yigyinytional profiles of the target word or con-

frequency of a parent is the weighted sum of COent are hased on their co-occurrence with words

occurrence frequencies of its children. The fre—in a text. By contrastsemanticDPs would be

quencies of the child nodes are used as weightaqeq on information such as what concepts usu-

Sense ambiguity issues apart, this is still proby ¢4 occur with the target word or concept. Se-

lematic because a parent concept (8§D) MaY  mantic profiles of words can be obtained from
co-occur much more frequently (or infrequently) the WCCM itself (using the row entry for the

with a word than its children (such aBen, ar-  4rq) 1t would be interesting to see how distri-
chaeopteryx, aquatic bird, trogoand others). In 1, sional measures of word-distance that use these
contrast, the bootstrapped WCCM we use not onlye yantic DPs of words perform. We also intend

identifies which words co—occgr'with whigh con- ¢ explore the use of semantic DPs of concepts
cepts, but also has more sophlstlcated estimates QEquired from aoncept—concept co-occurrence
the co-occurrence frequencies. matrix (CCCM) . A CCCM can be created from
the WCCM by setting the row entry for a concept
or category to be the average of WCCM row val-

We have proposed a framework that allows disUes for all the words pertaining to it.

tributional measures to estimate concept-distance Both DPW- and WordNet-based measures have
using a published thesaurus and raw text. Weéarge space and time requirements for pre-
evaluated them in comparison with traditional dis-computing and storing all possible distance val-
tributional word-distance measures and WordNetues for a language. However, by using the cate-
based measures through their ability in rankinggories of a thesaurus as very coarse concepts, pre-
word-pairs in order of their human-judged linguis- computing and storing all possible distance values
tic distance, and in correcting real-word spellingfor our DPC-based measures requires a matrix of

7 Conclusion
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size only about 80& 800. This level of concept-  taxonomy. InProceedings of International Con-
coarseness might seem drastic at first glance, but ference on Research on Computational Linguistics
we have shown that distributional measures of dis- (RQCLlNG X) Taiwan. _
tance between these coarse concepts are quite ué@%%’d'a '—FaCCI’Ck ar:d ':/'a”'('; %‘Ogﬁfc’tw- _19|93-t Cfom-
. . _ INing IocCal context an or et similarity Tor
ful. Eart of our future work will be t9 try an inter word sense identification. In Christiane Fellbaum,
mediate degree of coarseness (still much coarser egitor, wordNet: An Electronic Lexical Database
than WordNet) by using the paragraph subdivi- chapter 11, pages 265-283. The MIT Press, Cam-

sions of the thesaurus instead of its categories to bridge, MA.

see if this gives even better results. Lillian Lee. 2001. On the effectiveness of the skew
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