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Abstract

Analogical learning is based on a two-
step inference process: (i) computation
of a structural mapping between a new
and a memorized situation; (ii) transfer
of knowledge from the known to the un-
known situation. This approach requires
the ability to search for and exploit such
mappings, hence the need to properly de-
fine analogical relationships, and to effi-
ciently implement their computation.

In this paper, we propose a unified defini-
tion for the notion of (formal) analogical
proportion, which applies to a wide range
of algebraic structures. We show that this
definition is suitable for learning in do-
mains involving large databases of struc-
tured data, as is especially the case in Nat-
ural Language Processing (NLP). We then
present experimental results obtained on
two morphological analysis tasks which
demonstrate the flexibility and accuracy of
this approach.

1 Introduction

Analogical learning (Gentner et al., 2001) is based
on a two-step inductive process. The first step con-
sists in the construction of astructuralmapping be-
tween a new instance of a problem and solved in-
stances of the same problem. Once this mapping
is established, solutions for the new instance can be

induced, based on one or several analogs. The im-
plementation of this kind of inference process re-
quires techniques for searching for, and reasoning
with, structural mappings, hence the need to prop-
erly define the notion of analogical relationships and
to efficiently implement their computation.

In Natural Language Processing (NLP), the typ-
ical dimensionality of databases, which are made
up of hundreds of thousands of instances, makes
the search for complex structural mappings a very
challenging task. It is however possible to take ad-
vantage of the specific nature of linguistic data to
work around this problem. Formal (surface) analog-
ical relationships between linguistic representations
are often a good sign of deeper analogies: a surface
similarity between the word stringswrite andwriter
denotes a deeper (semantic) similarity between the
related concepts. Surface similarities can of course
be misleading. In order to minimize such confu-
sions, one can take advantage of other specificities
of linguistic data: (i) their systemic organization in
(pseudo)-paradigms, and (ii) their high level of re-
dundancy. In a large lexicon, we can indeed expect
to find many instances of pairs likewrite-writer: for
instanceread -reader, review-reviewer...

Complementing surface analogies with statistical
information thus has the potential to make the search
problem tractable, while still providing with many
good analogs. Various attempts have been made to
use surface analogies in various contexts: automatic
word pronunciation (Yvon, 1999), morphological
analysis (Lepage, 1999a; Pirrelli and Yvon, 1999)
and syntactical analysis (Lepage, 1999b). These ex-
periments have mainly focused on linear represen-
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tations of linguistic data, taking the form of finite
sequences of symbols, using a restrictive and some-
timesad-hoc definition of the notion of an analogy.

The first contribution of this paper is to propose a
general definition of formal analogical proportions
for algebraic structures commonly used in NLP:
attribute-value vectors, words on finite alphabets and
labeled trees. The second contribution is to show
how these formal definitions can be used within an
instance-based learning framework to learn morpho-
logical regularities.

This paper is organized as follows. In Section 2,
our interpretation of analogical learning is intro-
duced and related to other models of analogical
learning and reasoning. Section 3 presents a general
algebraic framework for defining analogical propor-
tions as well as its instantiation to the case of words
and labeled trees. This section also discusses the
algorithmic complexity of the inference procedure.
Section 4 reports the results of experiments aimed
at demonstrating the flexibility of this model and at
assessing its generalization performance. We con-
clude by discussing current limitations of this model
and by suggesting possible extensions.

2 Principles of analogical learning

2.1 Analogical reasoning

The ability to identify analogical relationships be-
tween what looks like unrelated situations, and to
use these relationships to solve complex problems,
lies at the core of human cognition (Gentner et al.,
2001). A number of models of this ability have
been proposed, based on symbolic (e.g. (Falken-
heimer and Gentner, 1986; Thagard et al., 1990;
Hofstadter and the Fluid Analogies Research group,
1995)) or subsymbolic (e.g. (Plate, 2000; Holyoak
and Hummel, 2001)) approaches. The main focus
of these models is the dynamic process of analogy
making, which involves the identification of a struc-
tural mappings between a memorized and a new sit-
uation. Structural mapping relates situations which,
while being apparently very different, share a set of
common high-level relationships. The building of
a structural mapping between two situations utilizes
several subparts of their descriptions and the rela-
tionships between them.

Analogy-making seems to play a central role in

our reasoning ability; it is also invoked to explain
some human skills which do not involve any sort of
conscious reasoning. This is the case for many tasks
related to the perception and production of language:
lexical access, morphological parsing, word pronun-
ciation, etc. In this context, analogical models have
been proposed as a viable alternative to rule-based
models, and many implementation of these low-
level analogical processes have been proposed such
as decision trees, neural networks or instance-based
learning methods (see e.g. (Skousen, 1989; Daele-
mans et al., 1999)). These models share an accepta-
tion of analogy which mainly relies on surfacesimi-
larities between instances.

Our learner tries to bridge the gap between these
approaches and attempts to remain faithful to the
idea of structural analogies, which prevails in the
AI literature, while also exploiting the intuitions of
large-scale, instance-based learning models.

2.2 Analogical learning

We consider the following supervised learning task:
a learner is given a setS of training instances
{X1, . . . , Xn} independently drawn from some un-
known distribution. Each instanceXi is a vector
containingm features:〈Xi1, . . . , Xim〉. GivenS,
the task is to predict the missing features of partially
informed new instances. Put in more standard terms,
the set of known (resp. unknown) features for a new
valueX forms theinput space(resp.output space):
the projections ofX onto the input (resp. output)
space will be denotedI(X) (resp.O(X)). This set-
ting is more general than the simpler classification
task, in which only one feature (the class label) is
unknown, and covers many other interesting tasks.

The inference procedure can be sketched as fol-
lows: training examples are simply stored for fu-
ture use; no generalization (abstraction) of the data
is performed, which is characteristic oflazy learning
(Aha, 1997). Given a new instanceX, we identify
formal analogical proportions involvingX in the in-
put space; known objects involved in these propor-
tions are then used to infer the missing features.

An analogical proportion is a relation involv-
ing four objectsA, B, C and D, denoted by
A : B :: C : D and which readsA is to B as C is
to D. The definition and computation of these pro-
portions are studied in Section 3. For the moment,
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we contend that it is possible to construct analogical
proportions between (possibly partially informed)
objects inS. Let I(X) be a partially described ob-
ject not seen during training. The analogical infer-
ence process is formalized as:

1. Construct the setT (X) ⊂ S3 defined as:

T (X) = {(A,B, C) ∈ S3 |
I(A) : I(B) :: I(C) : I(X)}

2. For each(A,B, C) ∈ T (X), compute hy-

potheseŝO(X) by solving the equation:

Ô(X) = O(A) : O(B) :: O(C) :?

This inference procedure shows lots of similari-
ties with thek-nearest neighbors classifier (k-NN)
which, given a new instance, (i) searches the training
set for close neighbors, (ii) compute the unknown
class label according to the neighbors’ labels. Our
model, however, does not use any metric between
objects: we only rely on the definition of analogical
proportions, which reveal systemic, rather than su-
perficial, similarities. Moreover, inputs and outputs
are regarded in a symmetrical way: outputs are not
restricted to a set of labels, and can also be structured
objects such as sequences. The implementation of
the model still has to address two specific issues.

• When exploringS3, an exhaustive search eval-
uates|S|3 triples, which can prove to be in-
tractable. Moreover, objects inS may be
unequally relevant, and we might expect the
search procedure to treat them accordingly.

• Whenever several competing hypotheses are

proposed forÔ(X), a ranking must be per-
formed. In our current implementation, hy-
potheses are ranked based on frequency counts.

These issues are well-known problems fork-NN
classifiers. The second one does not appear to be
critical and is usually solved based on a majority
rule. In contrast, a considerable amount of effort has
been devoted to reduce and optimize the search pro-
cess, via editing and condensing methods, as stud-
ied e.g. in (Dasarathy, 1990; Wilson and Martinez,
2000). Proposals for solving this problem are dis-
cussed in Section 3.4.

3 An algebraic framework for analogical
proportions

Our inductive model requires the availability of a de-
vice for computing analogical proportions on feature
vectors. We consider that an analogical proportion
holds between four feature vectors when the propor-
tion holds for all components. In this section, we
propose a unified algebraic framework for defining
analogical proportions between individual features.
After giving the general definition, we present its in-
stantiation for two types of features: words over a
finite alphabet and sets of labelled trees.

3.1 Analogical proportions

Our starting point will be analogical proportions in
a setU , which we define as follows:∀x, y, z, t ∈
U, x : y :: z : t if and only if eitherx = y andz = t
or x = z andy = t. In the sequel, we assume that
U is additionally provided with an associative inter-
nal composition law⊕, which makes(U,⊕) a semi-
group. The generalization of proportions to semi-
groups involves two key ideas: thedecompositionof
objects into smaller parts, subject toalternation con-
straints. To formalize the idea of decomposition, we
define thefactorizationof an elementu in U as:

Definition 1 (Factorization)
A factorizationof u ∈ U is a sequenceu1 . . . un,
with ∀i, ui ∈ U , such that: u1 ⊕ . . . ⊕ un = u.
Each termui is a factorof u.

The alternation constraint expresses the fact that
analogically related objects should be made of alter-
nating factors: forx : y :: z : t to hold, each factor
in x should be found alternatively iny and inz. This
yields a first definition of analogical proportions:

Definition 2 (Analogical proportion)
(x, y, z, t) ∈ U form ananalogical proportion, de-

noted byx : y :: z : t if and only if there exists some
factorizationsx1⊕ . . . ⊕xd = x, y1⊕ . . . ⊕yd = y,
z1 ⊕ . . . ⊕ zd = z, t1 ⊕ . . . ⊕ td = t such that
∀i, (yi, zi) ∈ {(xi, ti), (ti, xi)}. The smallestd for
which such factorizations exist is termed thedegree
of the analogical proportion.

This definition is valid for any semigroup, anda
fortiori for any richer algebraic structure. Thus, it
readily applies to the case of groups, vector spaces,
free monoids, sets and attribute-value structures.
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3.2 Words over Finite Alphabets

3.2.1 Analogical Proportions between Words

Let Σ be a finite alphabet.Σ? denotes the set of
finite sequences of elements ofΣ, calledwordsover
Σ. Σ?, provided with the concatenation operation.
is a free monoid whose identity element is the empty
word ε. Forw ∈ Σ?, w(i) denotes theith symbol in
w. In this context, definition (2) can be re-stated as:

Definition 3 (Analogical proportion in ( Σ?,.))
(x, y, z, t) ∈ Σ? form an analogical proportion, de-
noted byx : y :: z : t if and only if there exists some
integer d and some factorizationsx1 . . . xd = x,
y1 . . . yd = y, z1 . . . zd = z, t1 . . . td = t such that
∀i, (yi, zi) ∈ {(xi, ti), (ti, xi)}.

An example of analogy between words is:

viewing : reviewer :: searching : researcher

with x1 = ε, x2 = view, x3 = ing andt1 = re,
t2 = search, t3 = er. This definition generalizes
the proposal of (Lepage, 1998). It does not ensure
the existence of a solution to an analogical equation,
nor its uniqueness when it exists. (Lepage, 1998)
gives a set of necessary conditions for a solution to
exist. These conditions also apply here. In particu-
lar, if t is a solution ofx : y :: z :?, thent contains,
in the same relative order, all the symbols iny andz
that are not inx. As a consequence, all solutions of
an equation have the same length.

3.2.2 A Finite-state Solver

Definition (3) yields an efficient procedure for
solving analogical equations, based on finite-state
transducers. The main steps of the procedure are
sketched here. A full description can be found in
(Yvon, 2003). To start with, let us introduce the no-
tions ofcomplementary setandshuffle product.

Complementary set If v is a subword ofw, the
complementary setof v with respect tow, denoted
by w\v is the set of subwords ofw obtained by re-
moving fromw, in a left-to-right fashion, the sym-
bols inv. For example,eea is a complementary sub-
word of xmplr with respect toexemplar. Whenv is
not a subword ofw, w\v is empty. This notion can
be generalized to any regular language.

The complementary set ofv with respect tow is
a regular set: it is the output language of the finite-
state transducerTw (see Figure 1) for the inputv.

0 1 k
w(1) : ε

ε : w(1)

w(k) : ε

ε : w(k)

Figure 1: The transducerTw computing comple-
mentary sets wrtw.

Shuffle Theshuffleu • v of two wordsu andv is
introduced e.g. in (Sakarovitch, 2003) as follows:

u • v = {u1v1u2v2 . . . unvn, st. ui, vi ∈ Σ?,

u1 . . . un = u, v1 . . . vn = v}

The shuffle of two wordsu andv contains all the
wordsw which can be composed using all the sym-
bols in u and v, subject to the condition that ifa
precedesb in u (or in v), then it precedesb in w.
Taking, for instance,u = abc and v = def , the
words abcdef , abdefc, adbecf are in u • v; this
is not the case withabefcd. This operation gen-
eralizes straightforwardly to languages. The shuf-
fle of two regular languages is regular (Sakarovitch,
2003); the automatonA, computingK•L, is derived
from the automataAK = (Σ, QK , q0

K , FK , δK) and
AL = (Σ, QL, q0

L, FL, δL) recognizing respectively
K andL as the product automataA = (Σ, QK ×
QL, (q0

K , q0
L), FK × FL, δ), whereδ is defined as:

δ((qK , qL), a) = (rK , rL) if and only if either
δK(qK , a) = rK andqL = rL or δL(qL, a) = rL

andqK = rK .
The notions of complementary set and shuffle are

related through the following property, which is a
direct consequence of the definitions.

w ∈ u • v ⇔ u ∈ w\v

Solving analogical equations The notions of
shuffle and complementary sets yield another
characterization of analogical proportion between
words, based on the following proposition:

Proposition 1.

∀x, y, z, t ∈ Σ?, x : y :: z : t⇔ x • t ∩ y • z 6= ∅

An analogical proportion is thus established if the
symbols inx andt are also found iny andz, and ap-
pear in the same relative order. A corollary follows:
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Proposition 2.

t is a solution ofx : y :: z :?⇔ t ∈ (y • z)\x

The set of solutions of an analogical equation
x : y :: z :? is a regular set, which can be computed
with a finite-state transducer. It can also be shown
that this analogical solver generalizes the approach
based on edit distance proposed in (Lepage, 1998).

3.3 Trees

Labelled trees are very common structures in NLP
tasks: they can represent syntactic structures, or
terms in a logical representation of a sentence. To
express the definition of analogical proportion be-
tween trees, we introduce the notion of substitution.

Definition 4 (Substitution)
A (single)substitutionis a pair (variable ← tree).
The application of the substitution(v ← t′) to a tree
t consists in replacing each leaf oft labelled byv by
the treet′. The result of this operation is denoted:
t(v ← t′). For each variablev, we define the binary
operator/v ast /v t′ = t (v ← t′).

Definition 2 can then be extended as:

Definition 5 (Analogical proportion (trees))
(x, y, z, t) ∈ U form an analogical propor-
tion, denoted byx : y :: z : t iff there exists some
variables (v1, . . . , vn−1) and some factorizations
x1 /v1 . . . /vn−1 xn = x, y1 /v1 . . . /vn−1 yn = y,
z1 /v1 . . . /vn−1 zn = z, t1 /v1 . . . /vn−1 tn = t such
that∀i, (yi, zi) ∈ {(xi, ti), (ti, xi)}.

An example of such a proportion is illustrated on
Figure 2 with syntactic parse trees.

This definition yields an effective algorithm
computing analogical proportions between trees
(Stroppa and Yvon, 2005). We consider here a sim-
pler heuristic approach, consisting in (i) linearizing
labelled trees into parenthesized sequences of sym-
bols and (ii) using the analogical solver for words
introduced above. This approach yields a faster, al-
beit approximative algorithm, which makes analogi-
cal inference tractable even for large tree databases.

3.4 Algorithmic issues

We have seen how to compute analogical relation-
ships for features whose values are words and trees.

S
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the police

VP

have VP

impounded

NP

his car

:
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NP

his car

VP

AUX
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VP
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PP
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S

NP
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VP

has VP

eaten

NP
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:
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NP
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VP

AUX
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been VP

eaten

PP

by NP

the mouse

Figure 2: Analogical proportion between trees.

If we use, for trees, the solver based on tree lin-
earizations, the resolution of an equation amounts,
in both cases, to solving analogies on words.

The learning algorithm introduced in Section 2.2
is a two-step procedure: a search step and a trans-
fer step. The latter step only involves the resolu-
tion of (a restricted number of) analogical equations.
When x, y and z are known, solvingx : y :: z :?
amounts to computing the output language of the
transducer representing(y • z)\x: the automaton
for this language has a number of states bounded by
|x |× |y |× |z |. Given the typical length of words in
our experiments, and given that the worst-case ex-
ponential bound for determinizing this automaton is
hardly met, the solving procedure is quite efficient.

The problem faced during the search procedure
is more challenging: givenx, we need to retrieve
all possible triples(y, z, t) in a finite setL such
that x : y :: z : t. An exhaustive search requires
the computation of the intersection of the finite-
state automaton representing the output language of
(L • L)\x with the automaton forL. Given the size
of L in our experiments (several hundreds of thou-
sands of words), a complete search is intractable and
we resort to the following heuristic approach.

L is first split intoK bins{L1, ..., LK}, with |Li |
small with respect to|L |. We then randomly select
k bins and compute, for each binLi, the output lan-
guage of(Li •Li)\x, which is then intersected with
L: we thus only consider triples containing at least
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two words from the same bin. It has to be noted that
the bins are not randomly constructed: training ex-
amples are grouped into inflectional or derivational
families. To further speed up the search, we also im-
pose an upper bound on the degree of proportions.
All triples retrieved during thesek partial searches
are then merged and considered for the transfer step.

The computation of analogical relationships has
been implemented in a generic analogical solver;
this solver is based on Vaucanson, an automata ma-
nipulation library using high performance generic
programming (Lombardy et al., 2003).

4 Experiments

4.1 Methodology

The main purpose of these experiments is to demon-
strate the flexibility of the analogical learner. We
considered two different supervised learning tasks,
both aimed at performing the lexical analysis of iso-
lated word forms. Each of these tasks represents a
possible instantiation of the learning procedure in-
troduced in Section 2.2.

The first experiment consists in computing one
or several vector(s) of morphosyntactic features to
be associated with a form. Each vector comprises
the lemma, the part-of-speech, and, based on the
part-of-speech, additional features such as number,
gender, case, tense, mood, etc. An (English) in-
put/output pair for this tasks thus looks like: in-
put=replying; output={reply; V-pp-- }, where the
placeholder ’- ’ denotes irrelevant features. Lexi-
cal analysis is useful for many applications: a POS
tagger, for instance, needs to “guess” the possi-
ble part(s)-of-speech of unknown words (Mikheev,
1997). For this task, we use the definition of analog-
ical proportions for “flat” feature vectors (see sec-
tion 3.1) and for word strings (section 3.2). The
training data is a list of fully informed lexical en-
tries; the test data is a list of isolated word forms
not represented in the lexicon. Bins are constructed
based on inflectional families.

The second experiment consists in computing a
morphological parse of unknown lemmas: for each
input lemma, the output of the system is one or sev-
eral parse trees representing a possible hierarchical
decomposition of the input into (morphologically
categorized) morphemes (see Figure 3). This kind

of analysis makes it possible to reconstruct the series
of morphological operations deriving a lemma, to
compute its root, its part-of-speech, and to identify
morpheme boundaries. This information is required,
for instance, to compute the pronunciation of an un-
known word; or to infer the compositional meaning
of a complex (derived or compound) lemma. Bins
gather entries sharing a common root.

input=acrobatically; output =
B

���
HHH

A
�� HH

N

acrobat

A|N.

ic

B|A.

ally

Figure 3: Input/output pair for task 2. Bound mor-
phemes have a compositional type:B|A. denotes a
suffix that turns adjectives into adverbs.

These experiments use the English, German, and
Dutch morphological tables of the CELEX database
(Burnage, 1990). For task 1, these tables contain
respectively 89 000, 342 000 and 324 000 different
word forms, and the number of features to predict is
respectively 6, 12, and 10. For task 2, which was
only conducted with English lemma, the total num-
ber of different entries is 48 407.

For each experiment, we perform 10 runs, using
1 000 randomly selected entries for testing1. Gen-
eralization performance is measured as follows: the
system’s output is compared with the reference val-
ues (due to lexical ambiguity, a form may be asso-
ciated in the database with several feature vectors
or parse trees). Per instanceprecisionis computed
as the relative number of correct hypotheses, i.e.
hypotheses which exactly match the reference: for
task 1, all features have to be correct; for task 2, the
parse tree has to be identical to the reference tree.
Per instancerecall is the relative number of refer-
ence values that were actually hypothesized. Preci-
sion and recall are averaged over the test set; num-
bers reported below are averaged over the 10 runs.

Various parameters affect the performance:k, the
number of randomly selected bins considered during
the search step (see Section 3.4) andd, the upper

1Due to lexical ambiguity, the number of tested instances is
usually greater than 1 000.
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bound of the degree of extracted proportions.

4.2 Experimental results

Experimental results for task 1 are given in Tables 1,
2 and 3. For each main category, two recall and pre-
cision scores are computed: one for the sole lemma
and POS attributes (left column); and one for the
lemma and all the morpho-syntactic features (on the
right). In these experiments, parameters are set as
follows: k = 150 andd = 3. Ask grows, both recall
and precision increase (up to a limit);k = 150 ap-
pears to be a reasonable trade-off between efficiency
and accuracy. A further increase ofd does not sig-
nificantly improve accuracy: takingd = 3 or d = 4
yields very comparable results.

Lemma + POS Lemma + Features
Rec. Prec. Rec. Prec.

Nouns 76.66 94.64 75.26 95.37
Verbs 94.83 97.14 94.79 97.37

Adjectives 26.68 72.24 27.89 87.67

Table 1: Results on task 1 for English

Lemma + POS Lemma + Features
Rec. Prec. Rec. Prec.

Nouns 71.39 92.17 54.59 74.75
Verbs 96.75 97.85 93.26 94.36

Adjectives 91.59 96.09 90.02 95.33

Table 2: Results on task 1 for Dutch

Lemma + POS Lemma + Features
Rec. Prec. Rec. Prec.

Nouns 93.51 98.28 77.32 81.70
Verbs 99.55 99.69 90.50 90.63

Adjectives 99.14 99.28 99.01 99.15

Table 3: Results on task 1 for German

As a general comment, one can note that high
generalization performance is achieved for lan-
guages and categories involving rich inflectional
paradigms: this is exemplified by the performance
on all German categories. English adjectives, at
the other end of this spectrum, are very difficult to
analyze. A simple and effective workaround for
this problem consists in increasing the size the sub-
lexicons (Li in Section 3.4) so as to incorporate in a

given bin all the members of the same derivational
(rather than inflectional) family. For Dutch, these
results are comparable with the results reported in
(van den Bosch and Daelemans, 1999), who report
an accuracy of about 92% on the task of predicting
the main syntactic category.

Rec. Prec.
Morphologically Complex 46.71 70.92

Others 17.00 46.86

Table 4: Results on task 2 for English

The second task is more challenging since the ex-
act parse tree of a lemma must be computed. For
morphologically complex lemmas (involving affixa-
tion or compounding), it is nevertheless possible to
obtain acceptable results (see Table 4, showing that
some derivational phenomena have been captured.
Further analysis is required to assess more precisely
the potential of this method.

From a theoretical perspective, it is important to
realize that our model does not commit us to a
morpheme-based approach of morphological pro-
cesses. This is obvious in task 1; and even if
task 2 aims at predicting a morphematic parse of in-
put lemmas, this goal is achievedwithout segment-
ing the input lemma into smaller units. For in-
stance, our learner parses the lemmaenigmatically
as: [[[.N enigma][.A|N ical]]B|A. ly], that is with-
out trying to decide to which morph the orthographic
t should belong. In this model, input and output
spaces are treated symmetrically and correspond to
distinct levels of representation.

5 Discussion and future work

In this paper, we have presented a generic analog-
ical inference procedure, which applies to a wide
range of actual learning tasks, and we have detailed
its instantiation for common feature types. Prelimi-
nary experiments have been conducted on two mor-
phological analysis tasks and have shown promising
generalization performance.

These results suggest that our main hypotheses
are valid: (i) searching for triples is tractable even
with databases containing several hundred of thou-
sands instances; (ii) formal analogical proportions
are a reliable sign of deeper analogies between lin-
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guistic entities; they can thus be used to devise flex-
ible and effective learners for NLP tasks.

This work is currently being developed in various
directions: first, we are gathering additional experi-
mental results on several NLP tasks, to get a deeper
understanding of the generalization capabilities of
our analogical learner. One interesting issue, not
addressed in this paper, is the integration of vari-
ous forms of linguistic knowledge in the definition
of analogical proportions, or in the specification of
the search procedure. We are also considering al-
ternative heuristic search procedures, which could
improve or complement the approaches presented in
this paper. A possible extension would be to define
and take advantage of non-uniform distributions of
training instances, which could be used both during
the searching and ranking steps. We finally believe
that this approach might also prove useful in other
application domains involving structured data and
are willing to experiment with other kinds of data.
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