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Abstract

We present a general architecture for incremen-
tal interaction between modules in a speech-to-
intention continuous understanding dialogue sys-
tem. This architecture is then instantiated in the
form of an incremental parser which receives suit-
ability feedback on NP constituents from a refer-
ence resolution module. Oracle results indicate
that perfect NP suitability judgments can provide a
labelled-bracket error reduction of as much as 42%
and an efficiency improvement of 30%. Prelimi-
nary experiments in which the parser incorporates
feedback judgments based on the set of referents
found in the discourse context achieve a maximum
error reduction of 9.3% and efficiency gain of 4.6%.
The parser is also able to incrementally instantiate
the semantics of underspecified pronouns based on
matches from the discourse context. These results
suggest that the architecture holds promise as a plat-
form for incremental parsing supporting continuous
understanding.

1 Introduction

Humans process language incrementally, as has
been shown by classic psycholinguistic discussions
surrounding the garden-path phenomenon and pars-
ing preferences (Altmann and Steedman, 1988;
Konieczny, 1996; Phillips, 1996). Moreover, a va-
riety of eye-tracking experiments (Cooper, 1974;
Tanenhaus and Spivey, 1996; Allopenna et al.,
1998; Sedivy et al., 1999) suggest that complex se-
mantic and referential constraints are incorporated
on an incremental basis in human parsing decisions.

Computational parsers, however, still tend to op-
erate an entire sentence at a time, despite the ad-
vent of speech-to-intention dialogue systems such
as Verbmobil (Kasper et al., 1996; Noth et al., 2000;
Pinkal et al., 2000), Gemini (Dowding et al., 1993;
Dowding et al., 1994; Moore et al., 1995) andTRIPS

(Allen et al., 1996; Ferguson et al., 1996; Fergu-
son and Allen, 1998). Naturalness, robustness, and
interactivity are goals of such systems, but control

flow is typically the sequential execution of mod-
ules, each operating on the output of its predeces-
sor; only after the entire sentence has been parsed
do higher-level modules such as intention recogni-
tion and reference resolution get involved.

In contrast to this sequential model is thecon-
tinuous understandingapproach, in which all lev-
els of language analysis occur simultaneously, from
speech recognition to intention recognition. As well
as being psycholinguistically motivated, continuous
understanding models offer potential computational
advantages, including accuracy and efficiency im-
provements for real-time spoken language under-
standing and better support for the spontaneities of
natural human speech. Continuous understanding
is necessary if the system is to respond before the
entire utterance is analyzed, a prerequisite for in-
cremental confirmation and clarification. The major
computational advantage of continuous understand-
ing models is that high-level expectations and feed-
back should be able to influence the search of lower-
level processes, thus leading to a focused search
through hypotheses that are plausible at all levels
of processing.

One of the major current applications of parsers
that operate incrementally is for language modelling
in speech recognition (Brill et al., 1998; Jelinek and
Chelba, 1999). This work is important not only
for its ability to improve performance on the speech
recognition task; it also models the interactions be-
tween speech recognition and parsing in a contin-
uous understanding system. Our research attempts
to further the quest for continuous understanding by
moving one step up the hierarchy, building an incre-
mental parser which is the advisee rather than the
advisor.

We begin by presenting a general architecture
for incremental interaction between the parser and
higher-level modules, and then discuss a specific in-
stantiation of this general architecture in which a
reference resolution module provides feedback to
the parser on the suitability of noun phrases. Ex-
periments with incremental feedback from a refer-
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ence resolution module and an NP suitability oracle
are reported, and the ability of the implementation
to incrementally instantiate semantically underspec-
ified pronouns is outlined. We believe this research
provides an important start towards developing end-
to-end continuous understanding models.

2 An Incremental Parsing Architecture
Many current parsers fall into the class of history-
based grammars (Black et al., 1992). The indepen-
dence assumptions of these models make the pars-
ing problem both stochastically and computation-
ally tractable, but represent a simplification and may
therefore be a source of error. In a continuous un-
derstanding framework, higher-level modules may
have additional information that suggests loci for
improvement, recognizing either invalid indepen-
dence assumptions or errors in the underlying prob-
ability model.

We have designed a general incremental parsing
architecture (Figure 1) in which the Client, a dy-
namic programming parser, performs its calcula-
tions, the results of which are incrementally passed
on via a Mediator to an Advisor with access to
higher-level information. This higher-level Advi-
sor sends feedback to the Mediator which has ac-
cess to the Client’s chart, and which then surrepti-
tiously changes and/or adds to the chart in order to
make the judgments conform more closely to those
of the Advisor. The parser, whose chart has (unbe-
knownst to it) been changed, then simply calculates
chart expansions for the next word, naı̈vely expand-
ing the currently available (and possibly modified)
hypotheses.

This architecture is general in that neither the Me-
diator nor the Advisor have been specified; either
of these modules can be instantiated in any number
of ways within the general framework. The typical
dynamic programming component will function in
very much the same way that it does in the vanilla
algorithm, except that the chart in which partial re-

sults are recorded may be modified between time
steps. The Client can be any system which uses dy-
namic programming to efficiently encode indepen-
dence assumptions, so long as it provides the Me-
diator with the ability to modify chart probabilities
and add chart entries; otherwise the original parser
can remain untouched. By having the Mediator per-
form these modifications rather than the Advisor,
we preserve modularity: in this architecture the Ad-
visor need not be aware of the specific implementa-
tion of the Client, although depending on the type
of advice provided, it may need access to the under-
lying grammar. The Mediator isolates the Advisor
and Client from each other as well as determining
how the feedback will be introduced into into the
Client’s chart.

Stoness (2004) identifies two broad categories of
subversion- our term for the Mediator’s surrepti-
tious modification of the Client’s chart - as outlined
below:

• Heuristic Subversion: the Mediator uses the
Advisor’s feedback as heuristic information,
affecting the search sequence but not the prob-
abilities calculated for a given hypothesis; and

• Chart Subversion: the Mediator is free to
modify the Client’s chart as necessary, but does
not directly affect the search sequence of the
Client (except insofar as this is accomplished
by the modifications to the chart).

The two types of subversion have very different
properties. Heuristic subversion will affect the set
of analyses which is output by the parser, but each
of those analyses will have exactly the same proba-
bility score as under the original parser; the effects
of the Advisor are essentially limited to determin-
ing which hypotheses remain within the beam, or
the order in which hypotheses are expanded, de-
pending on whether the underlying parser uses a
beam search or an agenda. Chart subversion, on the
other hand, will actually change the scores assigned
analyses, resulting in a new probability distribution.
Heuristic subversion is considerably less powerful,
but more stable; the effects of chart subversion can
be fairly chaotic, especially if care is not taken to
avoid feedback loops. Stoness (2004) outlines con-
ditions under which the effects of chart subversion
are predictable, becoming broadly equivalent to an
incremental version of a post-hoc re-ranking of the
Client’s output hypotheses.

Further details on the general architecture, in-
cluding properties of various modes of feedback in-
tegration, a discussion of the relationship between



incremental parsing and parse re-ranking, the pos-
sibilities of multiple Advisors working in combina-
tion, and provisions in the model for asynchronous
feedback are available in a University of Rochester
Technical Report (Stoness, 2004).

3 Instantiating the Architecture

Working in the context ofTRIPS, an existing task-
oriented dialogue system, we have modified the
existing parser and reference resolution modules
so that they communicate incrementally with each
other. This models the early incorporation of refer-
ence resolution information seen in humans (Cham-
bers et al., 1999; Allopenna et al., 1998), and al-
lows reference resolution information to affect pars-
ing decisions.

For example, in “Put the apple in the box in the
corner” there is an attachment ambiguity. Reference
resolution can determine the number of matches for
the noun phrase “the apple” incrementally; if there
is a single match, the parser would expect this to
be a complete NP, and prefer the reading where the
box is in the corner. If reference returns multiple
matches for “the apple”, the parser would expect
disambiguating information, and prefer a reading
where additional information about the apple is pro-
vided: in this case, an the NP “the apple in the box”.

With solid feedback from reference, it should be
possible to remove some of the ambiguity inherent
in the search process within the parser. This will
simultaneously guide the search to the most likely
region of the search space, improving accuracy, and
delay the search of unlikely regions, improving effi-
ciency. Of course, this comes at the cost of some
communication overhead and additional reference
resolution. Ideally, the overall improvement in the
parser’s search space would be enough to cover
the additional incremental operation costs of other
modules.

3.1 An Incremental Parser

The pre-existing parser in the dialogue system was a
pure bottom-up chart parser with a hand-built gram-
mar suited for parsing task-oriented dialogue. The
grammar consisted of a context-free backbone with
a set of associated features and semantic restric-
tions, including agreement, hard subcategorization
constraints, and soft selectional restriction prefer-
ences. The parser has been modified so that when-
ever a constituent is built, it can be sent forward to
the Mediator, allowing for the possibility of feed-
back. The architecture and experiments described in
this paper were performed in a synchronous mode,
but the parser can also operate in an incrementally

asynchronous mode, where it continues to build the
chart in parallel with other modules’ operations;
probability adjustments to the chart then cascade to
dependent constituents.

3.2 Interaction with Reference
When the parser builds a potential referring expres-
sion (e.g. any NP), it is immediately passed on to the
Advisor, the reference resolution module described
in Tetreault et. al. (2004) modified for incremental
interaction. This module then determines all pos-
sible discourse referents, providing the parser with
a ranked classification based on the salience of the
referents and the (incremental) syntactic environ-
ment.

The reference module keeps a dynamically up-
dated list of currently salient discourse entities
against which incoming incrementally constructed
NP constituents are matched. Before any utterances
are processed, the module loads a static database
of relevant place names in the domain; all other
possible referents are discourse entities which have
been spoken of during the course of the dialogue.
For efficiency, the dynamic portion of the context
list is limited to the ten most recent contentful ut-
terances; human-annotated antecedent data for this
corpus shows that 99% of all pronoun antecendents
fall within this threshold. After each sentence is
fully parsed the context list is updated with new dis-
course entities introduced in the utterance; ideally,
these context updates would also be incremental,
but this feature was omitted in the current version
for simplicity.

The matching process is based on that described
by Byron (2000), and differs from that of many
other reference modules in that every entity and
NP-constituent has a (possibly underspecified) se-
mantic feature vector, and it is both the logical and
semantic forms which determine successful match-
ings. Adding semantic information increases the ac-
curacy of the reference resolution from 44% to 58%
(Tetreault and Allen, 2004), and consequently im-
proves the feedback provided to the parser.

The Mediator receives the set of all possible ref-
erents, including the semantic content of the refer-
ent and a classification of whether the referent is the
single salient entity infocus, has previously been
mentioned, or is arelevantplace name.

3.3 Mediator
The Mediator interprets the information received
from reference and determines how the parser’s
chart should be modified. If the NP matches noth-
ing in the discourse context,no matchis returned;
otherwise each referent is annotated with its type



and discourse distance, and this set is run through a
classifier to reduce it to a single tag. The resulting
tag is the reference resolution tag, orR. The NP
constituents are also classified by definiteness and
number, giving an NP tagN .

For each classifier, we trained a probability model
which calculatedPr, the probability that a noun
phrase constituentc would be in the final parse, con-
ditioned onR andN , or

Pr = p(c in final parse|R, N).

This probability was then linearly combined with
the parser’s constituent probability,

Pp = p(c → wn
m),

according to the equation

P (c) = (1− λ) · Pp + λ · Pr

for various values ofλ. Evaluation using held-out
data suggested that a value ofλ = 0.2 would be
optimal. This style of feedback is an example of
chart subversion, as it is a direct modification of
constituent probabilities by the Mediator, defining
a new probability distribution.

4 Experiments
The Monroe domain (Tetreault et al., 2004; Stent,
2001) is a series of task-oriented dialogues between
human participants set in a simulated rescue op-
eration domain, where participants collaboratively
plan responses to emergency calls. Dialogues were
recorded, broken up into utterances, and then tran-
scribed by hand, removing speech repairs from the
parser input. These transcriptions served as input
for all experiments reported below.

A probabilistic grammar was trained from su-
pervised data, assigning PCFG probabilities for the
rule expansions in the CFG backbone of the hand-
crafted, semantically constrained grammar. The
parser was run using this grammar, but without any
incremental interaction whatsoever, in order to es-
tablish baseline accuracy and efficiency numbers.
The corpus consists of six task-oriented dialogues;
four were used for the PCFG training, one was
held out to establish appropriate parameter values,
and one was selected for testing. The held-out and
test dialogues contain hand-checked gold standard
parses.

Under normal operation of the sequential dia-
logue system, the parser is run in best-first mode,
providing only a single analysis to higher-level
modules, and has a constituent construction limit in

Base All NPs Def-Sing
Precision 94.6 97.2 96.3
Recall 71.1 83.1 78.8
F-statistic 82.9 90.2 87.6
Improvement N/A 7.3 4.7
Error Red. N/A 42.4 27.2
Work Red. N/A 30.3 18.7
Perfect S 224 241 236
Parsed S 270 282 279

Table 1: Results for (a) The baseline parser without
reference feedback, (b) An Oracle Advisor correctly
determining status of all NPs, (c) An Oracle Advi-
sor correctly determining status of definite singular
NPs.

an attempt to simulate the demands of a real-time
system. When the parser reaches the constituent
limit, appropriate partial analyses are collected and
forwarded to higher-level modules. These con-
straints were kept in place during our experiments,
because they would be necessary under normal op-
eration of the system. Thus, the inability to parse a
sentence does not necessarily indicate a lack of cov-
erage of the grammar, but rather a lack of efficiency
in the parsing process.

As can be seen in Table 1, the parser achieves a
94.6% labelled bracket precision, and a 71.1% la-
belled bracket recall. Note that only constituents
of complete parses were checked against the gold
standard, to avoid any bias introduced by the partial
parse evaluation metric. Of the 290 gold standard
utterances in the test data, 270 could be parsed, and
224 were parsed perfectly.

4.1 Oracle Evaluation

We began with a feasibility study to determine
how significant the effects of incremental advice on
noun phrases could be in principle. The feedback
from the reference module is designed to determine
whether particular NPs are good or bad from a refer-
ence standpoint. We constructed a simple feedback
oracle from supervised data which determined, for
each NP, whether or not the final parse of the sen-
tence contained an NP constituent which spanned
the same input. Those NPs marked “good”, which
did appear in the parse, were added to the chart as
new constituents. NPs marked “bad” were added to
the chart with a probability of zero1. A second or-

1In some sense, this style of feedback is an example of
heuristic subversion, as it has the effect of keeping “good” anal-
yses around while removing “bad” analyses from the search
space. Technically, this is also chart subversion, as each hy-
pothesis has its score multiplied by 1 or 0, depending on



acle evaluation performed this same task, but only
providing feedback on definite singular NPs.

The results of both oracles are shown in Table
1. The first five rows give the precision, recall, f-
statistic, the raw f-statistic improvement, and the f-
statistic error reduction percentage, all determined
in terms of labelled bracket accuracy. There is a
marked increase in both precision and recall, with
an overall error reduction of 42.4% with the full
oracle and 27.2% with the definite singular oracle.
Thus, in this domain over a quarter of all incorrectly
labelled constituents are attributable to syntactically
incorrect definite singular NPs. The number of con-
stituents built during the parse is used as a measure
of efficiency, and the work reduction is reported in
the sixth row of the table, showing an efficiency im-
provement of 30.3% or 18.7%, depending on the or-
acle. The final two lines of the table show that both
the number of sentences which can be parsed and
the number of sentences which are perfectly parsed
increase under both models.

The nature of the oracle experiment ensures some
reduction in error and complexity, but the magni-
tude of the improvement is surprising, and certainly
encouraging for the prospects of incremental refer-
ence. Definite singular NPs typically have a unique
referent, providing a locus for effective feedback,
and we believe that incremental interaction with an
accurate reference module might approach the ora-
cle performance.

4.2 Dialogue Experiments

For these experiments the parser interacted with the
actual reference module, incorporating feedback ac-
cording to the model discussed in Section 3.3. The
first data column of Table 2 repeats the baseline re-
sults of the parser without reference feedback. The
next two columns show statistics for a run of the
parser with incremental feedback from reference,
using a probability model based on a classification
scheme which distinguished only whether or not the
set of referent matches was empty. The second data
column shows the results for the estimated interpo-
lation parameter value ofλ = 0.2, while the third
data column shows results for the empirically deter-
mined optimalλ value of 0.1.

The results are encouraging, with an error reduc-
tion of 8.2% or 9.3% on the test dialogue, although
the amount of work the parser performed was re-
duced by only 4.0% and 3.6%. A further encour-
aging sign is that for every exploratoryλ value we

whether it is “good” or “bad”. In this degenerate case of all-
or-nothing feedback, chart subversion and heuristic subversion
are equivalent.

Base SC SC CC
λ = N/A 0.2 0.1 0.2
Precision 94.6 94.5 94.8 93.9
Recall 71.1 74.1 74.2 73.9
F-statistic 82.9 84.3 84.5 83.9
F-stat Imp. N/A 1.4 1.6 1.0
Error Red. N/A 8.2 9.3 5.8
Work Red. N/A 3.6 4.0 4.6
Perfect S 224 225 228 223
Parsed S 270 273 273 273

Table 2: Results for Discourse Experiment with
Simple (SC) and Complex (CC) Classifiers

tried in either the held-out or the test data, both the
accuracy and efficiency improved. Reference infor-
mation also helped increase both the number of sen-
tences that could be parsed and the number of sen-
tences that were parsed perfectly, although the im-
provements were small.

The estimated value ofλ = 0.2 produced an error
reduction that was approximately 20% of the orac-
ular, which is a very good start, especially consider-
ing that this experiment used only the information of
whether there was a referent match or not. The effi-
ciency gains were more modest at just above 10% of
the oracular results, although one would expect less
radical efficiency improvements from this experi-
ment, since under the linear interpolation of the ex-
periment, even extremely dispreferred analyses may
be expanded, whereas the oracle simply drops all
dispreferred NPs off the beam immediately.

We performed a second experiment that made
more complete use of the reference data, break-
ing down referent sets according to when and how
often they were mentioned, whether they matched
the focus, and whether they were in the set of
relevant place names. We expected that this in-
formation would provide considerably better re-
sults than the simple match/no-match classification
above. For example, consider a definite singular
NP: if it matches a single referent, one would expect
it to be in the parse with high probability, but multi-
ple matches would indicate that the referent was not
unique, and that the base noun probably requires ad-
ditional discriminating information (e.g. a preposi-
tional phrase or restrictive relative clause).

Unfortunately, as the final column of Table 2
shows, the additional information did not provide
much of an advantage. The amount of work done
was reduced by 4.6%, the largest of any efficiency
improvement, but error reduction was only 5.8%,
and the number of sentences parsed perfectly actu-



ally decreased by one.
We conjecture that co-reference chains may be a

significant source of confusion in the reference data.
Ideally, if several entities in the discourse context
all refer to the same real-world entity, they should
be counted as a single match. The current refer-
ence module does construct co-referential chains,
but a single error in co-reference identification will
cause all future NPs to match both the chain and the
misidentified item, instead of producing the single
match desired.

The reference module has to rely on the parser
to provide the correct context, so there is something
of a bootstrapping problem at work, which indicates
both a drawback and a potential of this type of in-
cremental interaction. The positive feedback loop
bodes well for the potential benefits of the incre-
mental system, because as the incremental reference
information begins to improve the performance of
the parser, the context provided to the reference
resolution module improves, which provides even
more accurate reference information. Of course, in
the early stages of such a system, this works against
us; many of the reference resolution errors could be
a result of the poor quality of the discourse context.

Our current efforts aim to identify and correct
these and other reference resolution issues. Not only
will this improve the performance of the Reference
Advisor from an incremental parsing standpoint, but
it should also further our understanding of reference
resolution itself.

We have shown efficiency improvements in terms
of the overall number of constituents constructed by
the parser; however, one might ask whether this im-
provement in parsing speed comes at a large cost to
the overall efficiency of the system. We suggest that
this is in some sense the wrong question to ask, be-
cause for a real-time interactive system the primary
concern is to keep up with the human interlocutor,
and the incremental approach offers a far greater op-
portunity for parallelism between modules. In terms
of time elapsed from speech to analysis, the system
as a whole should benefit from the incremental ar-
chitecture.

5 Semantic Replacement

When the word “it” is parsed as a referential NP, it is
given highly underspecified semantics. We have im-
plemented a Mediator which, for each possible ref-
erent for “it”, adds a new item to the parser’s chart
with the underspecified semantics of “it” instanti-
ated to the semantics of the referent.

Consider the sentence sequence “Send the bus to
the hospital”, “Send it to the mall”. At the point

that the NP “it” is encountered in the second sen-
tence, it has not yet been connected to the verb,
so the incremental reference resolution determines
that “the bus” and “the hospital” are both possi-
ble referents. We add two new constituents to the
chart: “it”[the hospital] and “it”[the bus]. They
are given probabilities infinitesimally higher than
the “it”[underspecified] which already exists on the
chart. Thus, if either of the new versions of “it”
match the semantic restrictions inherent in the rest
of the parse, they will be featured in parses with a
higher probability than the underspecified version.
“It”[the bus] matches the mobility required of the
object of “send”, while “it”[the hospital] does not.
This results in a parse where the semantics of “it”
are instantiated early and incrementally.

This sort of capability is key for an end-to-end
incremental system, because neither the reference
module nor the parser is capable, by itself, of deter-
mining incrementally that the reference in question
must be “the bus”. If we want an end-to-end system
which can interact incrementally with the user, this
type of decision-making must be made in an incre-
mental fashion.

This ability is also key in the presence of soft con-
straints or other Advisors which prefer one possi-
ble moveable referent to another; under incremental
parsing, these constraints would have the chance to
be applied during the parsing process, whereas a se-
quential system has no alternatives to the default,
underspecified pronoun, and so cannot apply these
restrictions to discriminate between referents.

Our implementation performs the semantic vet-
ting discussed above, but we have done no large-
scale experiments in this area.

6 Related Work

There are instances in the literature of incremental
parsers that pass forward information to higher-level
modules, but none, to our knowledge, are designed
as continuous understanding systems, where all lev-
els of language analysis occur (virtually) simultane-
ously.

For example, there are a number of robust seman-
tic processing systems (Pinkal et al., 2000; Rose,
2000; Worm, 1998; Zechner, 1998) which contain
incremental parsers that pass on partial results im-
mediately to the robust semantic analysis compo-
nent, which begins to work on combining these
sentence fragments. If the parser cannot find a
parse, then the semantic analysis program has al-
ready done at least part of its work. However, none
of the above systems have a feedback loop between
the semantic analysis component and the incremen-



tal parser. So, while all of these are in some sense
examples of incremental parsing, they are not con-
tinuous understanding models.

Schuler (2002) describes a parser which builds
both a syntactic tree and a denotation-based seman-
tic analysis as it parses. The denotations of con-
stituents in the environment are used to inform pars-
ing decisions, much as we use the static database of
place names. However, the feedback in our system
is richer, based on the context provided by the pre-
ceding discourse. Furthermore, as an instantiation
of the general architecture presented in Section 2,
our system is more easily extensible to other forms
of feedback.

7 Future Work

There is a catch-22 in that the accurate reference in-
formation necessary to improve parsing accuracy is
dependent on an accurate discourse context which
is reliant on accurate parsing. One way to cut this
Gordian Knot is to use supervised data to ensure that
the discourse context in the reference module is up-
dated with the gold standard parse of the sentence
rather than the parse chosen by the parser; a context
oracle, if you will.

A major undertaking necessary to advance this
work is an error analysis of the reference module
and of the parser’s response to feedback; when does
feedback lead to additional work or decreased ac-
curacy on the part of the incremental parser, and is
the feedback that leads to these errors correct from
a reference standpoint?

Currently, the accuracy of the parser is couched
in syntactic terms. The precision of the baseline
PCFG is fairly high at 94.6%, but that could conceal
semantic errors, which could be corrected with ref-
erence information. Assessing semantic accuracy is
one of a number of alternative evaluation metrics
that we are exploring.

We intend to gather timing data and investigate
other efficiency metrics to determine to what extent
the efficiency gains in the parser offset the commu-
nication overhead and the extra work performed by
the reference module.

We also plan to do experiments with different
feedback regimes, experimenting both with the ac-
tual reference results and with the oracle data. Fur-
ther experiments with this oracle data should enable
us to appropriately parameterize the linear interpo-
lation, and indeed, to investigate whether linear in-
terpolation itself is a productive feedback scheme,
or whether an integrated probability distribution
over parser and reference judgments is more effec-
tive. The latter scheme is not only more elegant, but

can also be shown to produce probabilities equiva-
lent to those assigned parses in the parse re-ranking
task (Stoness, 2004).

We’ve shown (Stoness, 2004) that feedback
which punishes constituents that are not in the fi-
nal parse cannot result in reduced accuracy or effi-
ciency; under certain restrictions, the same holds of
rewarding constituents that will be in the final parse.
However, it is not clear how quickly the efficiency
and accuracy gains drop off as errors mount. By in-
troducing random mistakes into the Oracle Advisor,
we can artificially achieve any desired level of accu-
racy, which will enable us to explore the character-
istics of this curve. The accuracy and efficiency re-
sponse under error has drastic consequences on the
types of Advisors that will be suitable under this ar-
chitecture.

Finally, it is clear that finding only the discourse
context referents of a noun phrase is not sufficient;
intuitively, and as shown by Schuler (2002), real-
world referents can also aid in the parsing task. We
intend to enhance the reference resolution compo-
nent of the system to identify both discourse and
real-world referents.

8 Conclusion
These preliminary experiments, using the coars-
est grain of reference information possible, achieve
a significant fraction of the oracular accuracy im-
provements, highlighting the potential benefits of
incremental interaction between the parser and ref-
erence in a continuous understanding system.

The Oracle feedback for NPs shows that it is pos-
sible to simultaneously improve both the accuracy
and efficiency of an incremental parser, providing a
proof-in-principle for the general incremental pro-
cessing architecture we introduced. This architec-
ture holds great promise as a platform for instantiat-
ing the wide range of interactions necessary for true
continuous understanding.
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