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Abstract 

In this paper, we explore how to adapt a 
general Hidden Markov Model-based 
named entity recognizer effectively to 
biomedical domain.  We integrate various 
features, including simple deterministic 
features, morphological features, POS 
features and semantic trigger features, to 
capture various evidences especially for 
biomedical named entity and evaluate 
their contributions.  We also present a 
simple algorithm to solve the abbreviation 
problem and a rule-based method to deal 
with the cascaded phenomena in biomedi-
cal domain.  Our experiments on GENIA 
V3.0 and GENIA V1.1 achieve the 66.1 
and 62.5 F-measure respectively, which 
outperform the previous best published 
results by 8.1 F-measure when using the 
same training and testing data.  

1 Introduction 

As the research in biomedical domain has grown 
rapidly in recent years, a huge amount of nature 
language resources have been developed and be-
come a rich knowledge base.  The technique of 
named entity (NE) recognition (NER) is strongly 
demanded to be applied in biomedical domain.  
Since in previous work, many NER systems have 
been applied successfully in newswire domain 
(Zhou and Su 2002; Bikel et al. 1999; Borthwich et 
al. 1999), more and more explorations have been 

done to port existing NER system into biomedical 
domain (Kazama et al. 2002; Takeuchi et al. 2002; 
Nobata et al. 1999 and 2000; Collier et al. 2000; 
Gaizauskas et al. 2000; Fukuda et al. 1998; Proux 
et al. 1998).  However, compared with those in 
newswire domain, these systems haven’t got high 
performance.  It is probably because of the follow-
ing factors of biomedical NE (Zhang et al. 2003): 

1. Some modifiers are often before basic NEs, 
e.g. activated B cell lines, and sometimes biomedi-
cal NEs are very long, e.g. 47 kDa sterol regula-
tory element binding factor.  This kind of factor 
highlights the difficulty for identifying the bound-
ary of NE. 

2. Two or more NEs share one head noun by 
using conjunction or disjunction construction, e.g. 
91 and 84 kDa proteins.  It is hard to identify these 
NEs respectively. 

3. An entity may be found with various spelling 
forms, e.g. N-acetylcysteine, N-acetyl-cysteine, 
NAcetylCysteine, etc.  Since the use of capitaliza-
tion is casual, the capitalization information may 
not be so evidential in this domain. 

4. NE may be cascaded.  One NE may be em-
bedded in another NE, e.g. <PROTEIN><DNA> 
kappa 3</DNA> binding factor </PROTEIN>.  
More effort must be made to identify this kind of 
NE. 

5. Abbreviations are frequently used in bio-
medical domain, e.g. TCEd, IFN, TPA, etc.  Since 
abbreviations don’t have many evidences for cer-
tain NE class, it is difficult to classify them cor-
rectly. 

These factors above make NER in biomedical 
domain difficult.  Therefore, it is necessary to ex-



plore more evidential features and more effective 
methods to cope with such difficulties. 

In this paper, we will study how to adapt a gen-
eral Hidden Markov Model (HMM)-based NE rec-
ognizer (Zhou and Su 2002) to biomedical domain.  
We specially explore various evidences for bio-
medical NE and propose methods to cope with ab-
breviations and cascaded phenomena.  As a result, 
features (simple deterministic features, morpho-
logical features, part-of-speech features and head 
noun trigger features) and methods (abbreviation 
recognition algorithm and rule-based cascaded 
phenomena resolution) are integrated in our system.  
The experiment shows that system outperforms the 
best published system by 8.1 F-measure. 

In Section 2, we will introduce the HMM-
based NE recognizer briefly.  In Section 3, we will 
focus on the features that we have used.  The 
methods and the adaptations of different features 
will be discussed in detail.  In Section 5 and 6, we 
will present the solutions of abbreviation and cas-
caded phenomena. Finally, our experiment results 
will be presented and the contributions of different 
features will be analyzed in Section 7. 

2 

3 

3.1 

HMM-based Named Entity Recognizer 

Our system is adapted from a HMM-based NE 
recognizer, which has been proved very effective 
in MUC (Zhou and Su 2002). 

The purpose of HMM is to find the most likely 
tag sequence T for a given sequence 
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In tag sequenceT , each tag consists of three 
parts: 1. Boundary category, which denotes the 
position of the current word in NE.  2. Entity cate-
gory, which indicates the NE class.  3. Feature set, 
which will be discussed in Section 3. 

n
1 it

When we incorporate a plentiful feature set in 
HMM, we will encounter data sparseness problem.  
An alternative back-off modeling approach by 
means of constraint relaxation is applied in our 
model (Zhou and Su 2002).  It enables the decod-
ing process effectively find a near optimal fre-

quently occurred pattern entry in determining the 
NE tag probability distribution of current word. 

Finally, the Viterbi algorithm (Viterbi 1967) is 
implemented to find the most likely tag sequence 
in the state space of the possible tag distribution 
based on the state transition probabilities.  Fur-
thermore, some constraints on the boundary cate-
gory and entity category between two consecutive 
tags are applied to filter the invalid NE tags (Zhou 
and Su 2002). 

Feature Set 

Simple Deterministic Features (Fsd) 

The purpose of simple deterministic features is to 
capture the capitalization, digitalization and word 
formation information.  This kind of features have 
been widely used in both newswire NER system, 
such as (Zhou and Su 2002), and biomedical NER 
system, such as (Nobata et al. 1999; Gaizauskas et 
al. 2000; Collier et al. 2000; Takeuchi and Collier 
2002; Kazama et al. 2002).  Based on the charac-
teristics of biomedical NEs, we designed simple 
deterministic features manually.  Table 1 shows the 
simple deterministic features with descending or-
der of priority. 

 
Fsd Name Example 
Comma , 
Dot . 
LRB ( 
RRB ) 
LSB [ 
RSB ] 
RomanDigit II 
GreekLetter Beta 
StopWord in, at 
ATCGsequence AACAAAG 
OneDigit 5 
AllDigits 60 
DigitCommaDigit 1,25 
DigitDotDigit 0.5 
OneCap T 
AllCaps CSF 
CapLowAlpha All 
CapMixAlpha IgM 
LowMixAlpha kDa 
AlphaDigitAlpha H2A 
AlphaDigit T4 
DigitAlphaDigit 6C2 
DigitAlpha 19D 

Table 1: Simple deterministic features 



From Table 1, we can find that: 
1. Features such as comma, dot, StopWord, etc. 

are designed intuitively to provide information to 
detect the boundary of NE. 

2. Features Parenthesis is often used to indicate 
the definition of abbreviation in biomedical docu-
ments. 

3. Features GreekLetter and RomanDigit are 
specially designed to capture the symbols 
frequently occurred in biomedical NE. 

4. Feature ATCG sequence identify the similar-
ity of words according to their word formations, 
e.g. AACAAAG, CTCAGGA, etc. 

5. Features dealing with mixed alphabets and 
digits such as AlphaDigitAlpha, CapMixAlpha, etc. 
are beneficial for biomedical abbreviations. 

Furthermore, we evaluate these features and 
compare with those used in MUC (Zhou and Su, 
2002).  The reported result of the simple determi-
nistic features used in MUC can achieve F-
measure of 74.1 (Zhou and Su 2002), but when 
they are used in biomedical domain, they only get 
F-measure of 24.3.  By contrast, using the simple 
deterministic features we designed for biomedical 
NER, the system achieves F-measure of 29.4.  Ac-
cording to the comparison, some findings may be 
concluded as follows: 

1) Simple deterministic features are domain de-
pendent, which suggests that it is necessary to de-
sign special features for biomedical NER. 

2) Simple deterministic features have weaker 
predictive power for NE classes in biomedical do-
main than in newswire domain. 

3.2 Morphological Feature (Fm) 

Morphological information, such as prefix/suffix, 
is considered as an important cue for terminology 
identification.  In our system, we get most frequent 
100 prefixes and suffixes from training data as 
candidates.  Then, each of these candidates is 
evaluated according to formula f1.  

( )
i
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in which, #INi is the number that prefix/suffix i 
occurs within NEs; #OUTi is the number that pre-
fix/suffix i occurs out of NEs; Ni is the total num-
ber of prefix/suffix i. 

The formula assumes that the particular pre-
fix/suffix, which is most likely inside NEs and 
least likely outside NEs, may be thought as a good 

evidence for distinguishing the NEs.  The candi-
dates with Wt above a certain threshold (0.7 in ex-
periment) are chosen.  Then, we calculated the 
frequency of each prefix/suffix in each NE class 
and group the prefixes/suffixes with the similar 
distribution among NE classes into one feature.  
This is because prefixes/suffixes with the similar 
distribution have the similar contribution, and it 
will avoid suffering from the data sparseness prob-
lem.  Some of morphological features were listed 
in Table 2. 

 
Fm Name Prefix/Suffix Example 
sOOC ~cin actinomycin 
 ~mide Cycloheximide 
 ~zole Sulphamethoxazole 
sLPD ~lipid Phospholipids 
 ~rogen Estrogen 
 ~vitamin dihydroxyvitamin 
sCTP ~blast erythroblast 
 ~cyte thymocyte 
 ~phil eosinophil 
sPEPT ~peptide neuropeptide 
sMA ~ma hybridoma 
sVIR ~virus cytomegalovirus 

Table 2: Examples of morphological features 
 
From Table 2, the suffixes ~cin, ~mide, ~zole 

have been grouped into one feature sOOC because 
they all have the high frequency in the NE class 
OtherOrganicCompound and relatively low fre-
quencies in the other NE classes.   In our system, 
totally 37 prefixes and suffixes were selected and 
grouped to 23 features. 

3.3 Part-of-Speech Features (Fpos) 

In the previous NER research in newswire domain, 
part-of-speech (POS) features were stated not use-
ful, as POS features may affect the use of some 
important capitalization information (Zhou and Su 
2002).  However, since more and more words with 
lower case are included in NEs, capitalization in-
formation in biomedical domain is not as eviden-
tial as it in newswire domain (Zhang et al. 2003).  
Moreover, since many biomedical NEs are descrip-
tive and long, identifying NE boundary is not a 
trivial task.  POS tagging can provide the evidence 
of noun phrase region based on word syntactic in-
formation and the noun phrases are most likely to 
be NE.  Therefore, we reconsidered the POS tag-
ging.   



In previous research, (Kazama et al. 2002) 
make use of POS information and conclude that it 
only slightly improves performance.  Moreover, 
(Collier et al. 2000; Nobata et al. 2000; Takeuchi 
and Collier. 2002) don’t incorporate POS informa-
tion in their systems.  The probable reason ex-
plained by them is that since POS tagger they used 
is trained on newswire articles, the assigned POS 
tags are often incorrect in biomedical documents.  
On the whole, it can be concluded that POS infor-
mation hasn’t been well used in previous work. 

In our experiment, a POS tagger was trained us-
ing 80% of GENIA V2.1 corpus (536 abstracts, 
123K words) and evaluated on the rest 20% (134 
abstracts, 29K words).  We use GENIA corpus to 
train the POS tagger in order to let it be adapted for 
biomedical domain.  As for comparison, we also 
trained the POS tagger on Wall Street Journal arti-
cles (2500 articles, 756K words) and tested on the 
20% of GENIA corpus.  The results are shown in 
Table 3. 

 
Training set Testing set Precision 

2500 WSJ articles 84.31 
536 GENIA abstracts 

134 GENIA 
abstracts 97.37 

Table 3: Comparison of POS tagger using dif-
ferent training data  

 
From Table 3, it can be found that POS tagger 

trained on the biomedical documents performs 
much better on the biomedical testing documents 
than that trained on WSJ articles.  This is consis-
tent with earlier explanation for why POS features 
are not so useful in biomedical NER (Nobata et al. 
2000; Takeuchi and Collier 2002).   

3.4 Semantic Trigger Features 

Semantic trigger features are collected to capture 
the evidence of certain NE class based on the se-
mantic information of some key words.  Initially, 
we design two types of semantic triggers: head 
noun triggers and special verb triggers. 

3.4.1 Head Noun Triggers (Fhnt) 

Head noun means the main noun or noun phrase of 
some compound words and describes the function 
or the property, e.g. “B cells” is the head noun for 
the NE “activated human B cells”.  Compared with 
the other words in NE, head noun is a much more 

decisive factor for distinguishing NE classes.  For 
instance, 
<OtherName>IFN-gamma treatment</OtherName> 
<DNA>IFN-gamma activation sequence</DNA> 

In our work, we extract uni-gram and bi-grams 
of head nouns automatically from training data, 
and rank them by frequency.  According to the ex-
periment, we selected 60% top ranked head nouns 
as trigger features for each NE class.  Some exam-
ples are shown in Table 4. 

In the future application, we may also extract 
the head nouns from some public resources to en-
hance the triggers. 

 
1-gram 2-grams 
PROTEIN 
interleukin activator protein 
interferon binding protein 
kinase cell receptor 
ligand gene product 
CELL TYPE 
lymphocyte blast cell 
astrocyte blood lymphocyte 
eosinophil killer cell 
fibroblast peripheral monocyte 
DNA 
DNA X chromosome 
breakpoint alpha promoter 
cDNA binding motif 
chromosome promoter element 
Table 4: Examples of head noun triggers 

3.4.2 Special Verb Triggers (Fsvt) 

Besides collecting the triggers, such as head noun 
triggers, from the NEs themselves, we also extract 
the triggers from the local contexts of the NEs.  
Recently, some frequently occurred verbs in bio-
medical document have been proved useful for 
extracting the interaction between entities (Thomas 
et al. 2000; Sekimizu et al. 1998).  In biomedical 
NER, we have the intuition that particular verbs 
may also provide the evidence for boundary and 
NE class.  For instance, the verb bind is often used 
to indicate the interaction between proteins. 

In our system, we selected 20 most frequent 
verbs which occur adjacent to NE from training 
data automatically as the verb trigger features, 
which is shown in Table 5.   

 
 



Special Verb Triggers 
activate express 
bind induce 
inhibit interact 
regulate stimulate 
Table 5: Examples of special verb triggers 

4 Method for Abbreviation Recognition 

Abbreviations are widely used in biomedical do-
main.  Identifying the class of them constitutes an 
important and difficult problem (Zhang et al. 2003). 

In our current system, we incorporate a method 
to classify abbreviation by mapping the abbrevia-
tion to its full form. This approach is based on the 
assumption that it is easier to classify the full form 
than abbreviation.  In most cases, this assumption 
is valid because the full form has more evidences 
than its abbreviation to capture the NE class.  
Moreover, if we can map the abbreviation to its 
full form in the current document, the recognized 
abbreviation is still helpful for classifying the same 
forthcoming abbreviations in the same document, 
as in (Zhou and Su 2002). 

In practice, abbreviation and its full form often 
occur simultaneously with parenthesis when first 
appear in biomedical documents.  There are two 
cases: 

1. full form (abbreviation) 
2. abbreviation (full form) 
Most patterns conform to the first case and if 

the content inside the parenthesis includes more 
than two words, the second case is assumed 
(Schwartz and Hearst 2003).   

In these two cases, the use of parenthesis is 
both evidential and confusing.  On one hand, it is 
evidential because it can provide the indication to 
map the abbreviation to its full form.  On the other 
hand, it is confusing because it makes the annota-
tion of NE more complicated.  Sometimes, the ab-
breviation and its full form are annotated 
separately, such as  
<CellType>human mononulear leuko-
cytes</CellType>(<CellType>hMNL</CellType>), 
and sometimes, they are all embedded in the whole 
entity, such as 
<OtherName>leukotriene B4 (LTB4) genera-
tion</OtherName>.   
Therefore, parenthesis needs to be treated specially.  
We develop an abbreviation recognition algorithm 
described in Figure 1. 

In preprocessing stage, we remove the abbre-
viations and parentheses from the sentence, when 
the abbreviation is first defined.  This measure will 
make the annotation simpler and the NE recognizer 
more effective.  The main work in this stage is to 
judge which case the current pattern belongs to and 
record the original positions of the abbreviation 
and parenthesis. 

After applying the HMM-based NE recognizer 
to the sentence, we restore the abbreviation and 
parenthesis to the original position in the sentence.  
Next, the abbreviation is classified.  There are two 
priorities of the class (from high to low): the class 
of its full form identified by the recognizer, and the 
class of the abbreviation itself identified by the 
recognizer.  At last, the same abbreviation occur-
ring in the rest sentences of the current document 
are assigned the same NE class.   

 
for each sentence Si in the document{ 

if exist parenthesis{ 
judge the case of { 

“full form (abbr.)”; 
“abbr. (full form)”; 

} 
store the abbr. A and position Pa  to a list; 
record the parenthesis position Pp; 
remove A and parenthesis from sentence; 
apply HMM-based NE recognizer to Si; 
restore A and parenthesis into Pa, Pp; 
if Pp within an identified NE E with the class CE 

parenthesis is included in E; 
else{ 

parenthesis is not included; 
   classify A to CE; 
   classify A in the rest part of document to CE; 
} 

} 
else apply HMM-based NE recognizer to Si; 

} 
Figure 1: Abbreviation recognition algorithm 

5 Solution of Cascaded Phenomena 

In (Zhang et al. 2003), they state that 16.57% of 
NEs in GENIA V3.0 have cascaded annotations, 
such as  
<RNA><DNA>CIITA</DNA> mRNA</RNA>.   
Currently, we only consider the longest NE and 
ignore the embedded NEs.   

Based on the features described in section 3, 
our system counters some problems when dealing 
with cascaded NEs.  The probable reason is that 



the features we used are not so effective for this 
kind of NEs.   

For instance, POS is based on the assumption 
that NE is most likely to be a noun phrase.  For 
cascaded NE, this assumption may not always be 
valid because one NE may consist of two or more 
noun phrases connected by some special words, 
such as TSH receptor specific T cell lines. 

Moreover, in section 3.4.1, we have shown that 
head noun is the significant clue for distinguishing 
NE classes.  Even for cascaded NEs, head noun 
features are still effective to some extent, such as 
IL-2 mRNA.  However, cascaded NEs sometimes 
contain two or more head nouns, which belong to 
different NE classes.  For example, <DNA>IgG Fc 
receptor type IC gene</DNA>, in which receptor 
is the head noun of protein and gene is the head 
noun of DNA.  In general, the latter head noun will 
be more important.  Unfortunately, it seems that 
sometimes the shorter NE is more possible to be 
identified, such as <protein>IgG Fc recep-
tor</protein> type IC gene.   

On the whole, we have to explore an additional 
method to cope with the cascaded phenomena 
separately.  In our experiment, we attempt to solve 
this problem based on some rules. 

In GENIA corpus, we find that there are four 
basic types of cascaded NEs: 

1. < <NE> head noun >  
2. < modifier <NE> > 
3. < <NE1> <NE2> > 
4. < <NE1> word <NE2> > 

Moreover, these cascaded NEs may be generated 
iteratively.  For instance, 

5. < modifier <NE> head noun > 
6. < <NE1> <NE2> head noun > 
The rules are constructed automatically from 

the cascaded NEs in training data.  Corresponding 
to the four basic types of cascaded NEs mentioned 
before, we propose four patterns and apply them 
iteratively in each sentence: 
1. <entity1> head noun  <entity2>  

e.g. <Protein> binding motif  <DNA> 
2. <entity1> <entity2>  <entity3> 

e.g. <Lipid> <Protein>  <Protein> 
3. modifier <entity1>  <entity2> 

e.g. anti <Protein>  <Protein> 
4. <entity1> word <entity2>  <entity3> 

e.g. <Virus> infected <Multicell>  <Multicell> 
In our system, 102 rules are incorporated to 

classify the cascaded NEs. 
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6.1 

6.2 

Experiments 

GENIA Corpus 

GENIA corpus is the largest annotated corpus in 
molecular biology domain available to public 
(Ohta et al. 2002).  In our experiment, three ver-
sions are used: 

 GENIA Version 1.1 (V1.1) -- It contains 670 
MEDLINE abstracts.  Since a lot of previous re-
lated work used this version, we use it to compare 
our result with others’. 

 GENIA Version 2.1 (V2.1) -- It contains the 
same 670 abstracts as V1.1 and POS tagging.  We 
use it to train and evaluate our POS tagger. 

 GENIA Version 3.0 (V3.0) -- It contains 2000 
abstracts, which is the superset of V1.1.  We use it 
to get the latest result and find out the effect of 
training data size. 

The annotation of NE is based on the GENIA 
ontology.  In our task, we use 23 distinct NE 
classes.  As for the conjunctive and disjunctive 
NEs, we ignore such cases and take the whole con-
struction as one entity.  In addition, for the cas-
caded annotations in V3.0, currently, we only 
consider the longest one level of the annotations. 

Experimental Results 

The system is evaluated using standard “preci-
sion/recall/F-measure”, in which “F-measure” is 
defined as F-measure = (2PR) / (P+R). 

We evaluate our NER system on both V3.0 and 
V1.1, each of which has been split into a training 
set and a testing set.  As for V1.1, we divide the 
corpus into 590 abstracts (136K words) as training 
set and the rest 80 abstracts (17K words) as testing 
set.  As for V3.0, we use the same testing set as 
V1.1 and the rest 1920 abstracts (447K words) as 
training set. 

 
Corpus P R F 
Our system on V3.0 66.5 65.7 66.1 
Our system on V1.1 63.8 61.3 62.5 
Kazama’s on V1.1 56.2 52.8 54.4 

Table 6: Comparison of overall performance 
 

Table 6 shows the overall performance of our 
system on V3.0 and V1.1, and the best reported 
system on V1.1 described in (Kazama et al. 2002).  
On V1.1, we use the same training and testing data 
and capture the same NE classes as (Kazama et al. 



2002).  Our system (62.5 F-measure) outperforms 
Kazama’s (54.4 F-measure) by 8.1 F-measure.  
This probably benefits from the various evidential 
features and the effective methods we proposed.  
Furthermore, as our expectation, the performance 
achieved on V3.0 (66.1 F-measure) is better than 
that on V1.1 (62.5 F-measure), which indicate that 
our system still has some room for improvement 
with the larger training data set. 

 

 
Figure 2: Performance of each NE class 
 
In addition, Figure 2 shows the detailed per-

formance chart of each NE class on V3.0.  In the 
figure, the numbers in the parenthesis are the num-
ber that NEs of that class occur in training/testing 
data.  It can be found that the performances vary a 
lot among the NE classes.  Some NE classes that 
have very few training data, such as Carbohydrate 
and Organism, get extremely low performance.  

In order to evaluate the contributions of differ-
ent features, we evaluate our system using different 
combinations of features (Table 7). 

From Table 7, several findings are concluded:  
1) With only Fsd, our system achieves a basic 

level F-measure of 29.4. 
2) Fm shows the positive effect with 2.4 F-

measure improvement based on the basic level.  

However, it only can slightly improve the perform-
ance (+1.2 F-measure) based on Fsd, Fpos and Fhnt.  
The probable reason is that the evidences included 
in Fm have already been captured by Fhnt.  More-
over, the evidences captured by Fhnt are more accu-
rate than that captured by Fm.  The contribution 
made by Fm may come from where there is no indi-
cation of Fhnt. 

 
Fsd Fm Fpos Fhnt Fsvt P R F 
√     42.4 22.5 29.4 
√ √    44.8 24.6 31.8 
√ √ √   58.3 50.9 54.3 
√  √ √  62.0 61.6 61.8 
√ √ √ √  64.4 61.7 63.0 
√ √ √ √ √ 60.6 59.3 60.0 

Table 7: Effects of different features on V3.0 
 
3) Fpos is proved very beneficial as it makes 

great increase on F-measure (+22.5) based on Fsd 
and Fm.   

4) Fhnt leads to an improvement of 8.7 F-
measure based on Fsd, Fm and Fpos. 

5) Out of our expectation, the use of Fsvt de-
creases both precision and recall, which may be 
explained as the present and past participles of 
some special verbs often play the adjective-like 
roles inside biomedical NEs, such as IL10-
inhibited lymphocytes.  

 
 P R F 
Fsd+Fm+Fpos+Fhnt 64.4 61.7 63.0 
+abbr. recog. algorithm 64.6 62.5 63.5 
+rule-based casc. method 66.2 65.8 66.0 
+both 66.5 65.7 66.1 
Table 8: Effects of solution for abbr. and casc. 

 
From Table 8, it can be found that the abbrevia-

tion recognition method slightly improves the per-
formance by 0.5 F-measure.  The probable reason 
is that the recognition of abbreviation relies too 
much on the recognition of its full form.  Once the 
full form is wrongly classified, the abbreviation 
and the forthcoming ones throughout the document 
are wrong altogether.  In the near future, the pre-
defined abbreviation dictionary may be incorpo-
rated to enhance the decision of NE class. 

Moreover, it can be found that the rule-based 
method effectively solves the problem of cascaded 
phenomena and shows prominent improvement 



(+3.0 F-measure) based on the performance of 
“Fsd+Fm+Fpos+Fhnt”. 

7 Conclusion 

In the paper, we describe our exploration on how 
to adapt a general HMM-based named entity rec-
ognizer to biomedical domain.  We integrate vari-
ous evidences for biomedical NER, including 
lexical, morphological, syntactic and semantic in-
formation.  Furthermore, we present a simple algo-
rithm to solve the abbreviation problem and a rule-
based method to deal with the cascaded phenom-
ena. Based on such evidences and methods, our 
system is successfully adapted to biomedical do-
main and achieves significantly better performance 
than the best published system.  In the near future, 
more effective abbreviation recognition algorithm 
and some pre-defined NE lists for some classes 
may be incorporated to enhance our system. 
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