
MULTIPLATFORM Testbed: An Integration Platform for Multimodal
Dialog Systems

Gerd Herzog, Heinz Kirchmann, Stefan Merten, Alassane Ndiaye, Peter Poller
German Research Center for Artificial Intelligence

Erwin-Schrödinger-Straße, D–67608 Kaiserslautern, Germany�
herzog,kirchman,merten,ndiaye,poller � @dfki.de

Abstract

Modern dialog and information systems are in-
creasingly based on distributed component ar-
chitectures to cope with all kinds of hetero-
geneity and to enable flexible re-use of ex-
isting software components. This contribu-
tion presents the MULTIPLATFORM testbed as a
powerful framework for the development of in-
tegrated multimodal dialog systems. The paper
provides a general overview of our approach
and explicates its foundations. It describes ad-
vanced sample applications that have been re-
alized using the integration platform and com-
pares our approach to related works.

1 Motivation

One central element of research in the field of intelli-
gent user interfaces is the construction of advanced natu-
ral language and multimodal dialog systems that demon-
strate the high potential for more natural and much more
powerful human-computer interaction. Although lan-
guage technology already found its way into fundamen-
tal software products—as exemplified by the Microsoft
Speech SDK (software development kit) for Windows
and the Java Speech API (application programming in-
terface)—the development of novel research prototypes
still constitutes a demanding challenge. State-of-the-art
dialog systems combine practical results from various re-
search areas and tend to be rather complex software sys-
tems which can not simply be realized as a monolithic
desktop computer application. More elaborate software
designs are required in order to assemble heterogeneous
components into an integrated and fully operational sys-
tem (Klüter et al., 2000).

A typical research project involves several or even
many work groups from different partners, leading to a
broad spectrum of practices and preferences that govern

the development of software components. In particular, a
common software platform for the construction of an in-
tegrated dialog system often needs to support different
programming languages and operating systems so that
already existing software can be re-used and extended.
Taking into account the potential costs it is usually not
feasible to start an implementation from scratch. Another
important aspect is the use of rapid prototyping for accel-
erated progress which leads to frequent changes in design
and implementation as the project unfolds.

Over the last ten years we have been concerned with
the realization of various complex distributed dialog
systems. A practical result of our long-term work as
a dedicated system integration group is the so-called
MULTIPLATFORM testbed1 (Multiple Language Target
Integration Platform for Modules) which provides a
powerful and complete integration platform. In this con-
tribution, we will report on the experience gained in
the construction of integrated large-scale research pro-
totypes. The results obtained so far will be presented
and the underlying principles of our approach will be dis-
cussed.

2 Anatomy of the Testbed

The MULTIPLATFORM testbed in its diverse instantia-
tions comprises the software infrastructure that is needed
to integrate heterogeneous dialog components into a com-
plete system. Built on top of open source software (Wu
and Lin, 2001), the testbed SDK offers APIs as well as a
large set of tools and utilities to support the whole devel-
opment process, including installation and distribution.
The following sections provide an overview of the testbed
and describe the design principles that govern its realiza-
tion.

1Our current work in the context of the SmartKom project
is being funded by the German Federal Ministry for Education
and Research (BMBF) under grant 01 IL 905 K7.

2.1 Architecture Framework

A distributed system constitutes the natural choice to re-
alize an open, flexible and scalable software architecture,
able to integrate heterogeneous software modules imple-
mented in diverse programming languages and running
on different operating systems. In our project work, for
example, we encountered modules for Sun Solaris, GNU
Linux, and Microsoft Windows written in Prolog and
Lisp, as classical AI languages, as well as in common
conventional programming languages like C, C++, and
Java.

The testbed framework is based on a component ar-
chitecture (Hopkins, 2000) and our approach assumes a
modularization of the dialog system into distinct and in-
dependent software modules to allow maximum decou-
pling. These large-grained components—ranging from
more basic modules that encapsulate access to specific
hardware devices to complex components which may in-
clude entire application-specific subsystems—constitute
self-contained applications which are executed as sepa-
rate processes, or even process groups. The principle be-
hind this view is to consider software architecture on a
higher-level of abstraction as modularization is not con-
cerned with decomposition on the level of component li-
braries in a specific programming language. Continuous
evolution is one of the driving forces behind the devel-
opment of novel dialog systems. The creation of a com-
ponentized system makes the integrated system easier to
maintain. In a well-designed system, the changes will be
localized, and such changes can be made with little or no
effect on the remaining components. Component integra-
tion and deployment are independent of the component
development life cycle, and there is no need to recompile
or relink the entire application when updating with a new
implementation of a component.

The term middleware (Emmerich, 2000) denotes the
specific software infrastructure that facilitates the in-
teraction among distributed software modules, i.e. the
software layer between the operating system—including
the basic communication protocols—and the distributed
components that interact via the network. The testbed as
a component platform enables inter-process communica-
tion and provides means for configuring and deploying
the individual parts of the complete dialog system.

Our middleware solution does not exclude to connect
additional components during system execution. So far,
however, the testbed does not offer specific support for
dynamic system re-configuration at runtime. In our ex-
perience, it is acceptable and even beneficial to assume a
stable, i.e. a static but configurable, architecture of the
user interface components within a specific system in-
stantiation. It is obvious that ad hoc activation and invo-
cation of services constitutes an important issue in many
application scenarios, in particular Internet-based appli-

cations. We propose to hide such dynamic aspects within
the application-specific parts of the complete system so
that they do not affect the basic configuration of the dia-
log system itself.

The details of the specific component architecture of
different dialog systems vary significantly and an agreed-
upon standard architecture which defines a definite mod-
ularization simply does not exist. Nevertheless, we found
it helpful to use a well-defined naming scheme and dis-
tinguish the following categories of dialog system com-
ponents when designing a concrete system architecture:

Recognizer: Modality-specific components that pro-
cess input data on the signal level. Examples include
speech recognition, determination of prosodic informa-
tion, or gesture recognition.

Analyzer: Modules that further process recognized
user input or intermediary results on a semantic level.
Such components include in particular modality-specific
analyzers and media fusion.

Modeller: Active knowledge sources that provide ex-
plicit models of relevant aspects of the dialog system,
like for example discourse memory, lexicon, or a suitable
model of the underlying application functionality.

Generator: Knowledge-based components which de-
termine and control the reactions of the dialog system
through the transformation of representation structures.
This includes the planning of dialog contributions and
application-centric activities as well as fission of mul-
tiple modalities and media-specific generators, e.g., for
text and graphics.

Synthesizer: Media-specific realization components
that transform generated structures into perceivable out-
put. A typical example is a speech synthesis component.

Device: Connector modules that encapsulate access to
a hardware component like, for example, microphone and
sound card for audio input or a camera system that ob-
serves the user in order to identify facial expressions.

Service: Connector components that provide a well-
defined link to some application-specific functionality.
Service modules depend on the specific application
scenario and often encapsulate complete and complex
application-specific subsystems.

2.2 Inter-Process Communication

Nowadays, a very broad spectrum of practical technolo-
gies exists to realize communication between distributed
software modules. Techniques like remote procedure call
and remote method invocation, which follow the client-
server paradigm, have long been the predominant ab-
straction for distributed processing. In this programming

model, each component has to specify and implement a
specific API to make its encapsulated functionality trans-
parently available for other system modules. Only re-
cently, the need for scalability, flexibility, and decoupling
in large-enterprise and Internet applications has resulted
in a strong general trend toward asynchronous, message-
based communication in middleware systems.

In accordance with the long-standing distinction be-
ing made in AI between procedural vs. declarative rep-
resentations, we favor message-oriented middleware as
it enables more declarative interfaces between the com-
ponents of a dialog system. As illustrated by a hybrid
technology like SOAP, the simple object access proto-
col, where remote calls of object methods are encoded
in XML messages, the borderline between a procedural
and a declarative approach is rather difficult to draw in
general. Our own data-oriented interface specifications
will be discussed in more detail in section 3.

For message-based communication, two main schemes
can be distinguished:

� Basic point-to-point messaging employs unicast
routing and realizes the notion of a direct connection
between message sender and a known receiver. This
is the typical interaction style used within multi-
agent systems (Weiss, 2000).

� The more general publish/subscribe approach is
based on multicast addressing. Instead of address-
ing one or several receivers directly, the sender pub-
lishes a notification on a named message queue, so
that the message can be forwarded to a list of sub-
scribers. This kind of distributed event notification
makes the communication framework very flexible
as it focuses on the data to be exchanged and it de-
couples data producers and data consumers. The
well-known concept of a blackboard architecture,
which has been developed in the field of AI (Erman
et al., 1980), follows similar ideas.

Compared with point-to-point messaging, pub-
lish/subscribe can help to reduce the number and
complexity of interfaces significantly (Klüter et al.,
2000).

The MULTIPLATFORM testbed includes a message-
oriented middleware. The implementation is based on
PVM, which stands for parallel virtual machine (Geist
et al., 1994). In order to provide publish/subscribe mes-
saging on top of PVM, we have added another software
layer called PCA (pool communication architecture). In
the testbed context, the term data pool is used to refer to
named message queues. Every single pool can be linked
with a pool data format specification in order to define
admissible message contents.

In the different dialog systems we designed so far,
typical architecture patterns can be identified since the

pool structure reflects our classification into different cat-
egories of dialog components. The pool names together
with the module names define the backbone for the over-
all architecture of the dialog system.

The messaging system is able to transfer arbitrary data
contents and provides excellent performance characteris-
tics. To give a practical example, it is possible to perform
a telephone conversation within a multimodal dialog sys-
tem. Message throughput on standard PCs with Intel Pen-
tium III 500 MHz CPU is off-hand sufficient to establish
a reliable bi-directional audio connection, where uncom-
pressed audio data are being transferred as XML mes-
sages in real-time. A typical multimodal user interaction
of about 10 minutes duration can easily result in a mes-
sage log that contains far more than 100 Megabytes of
data.

The so-called module manager provides a thin API
layer for module developers with language bindings for
the programming languages that are used to implement
specific dialog components. It includes the operations re-
quired to access the communication system and to realize
an elementary component protocol needed for basic co-
ordination of all participating distributed components.

2.3 Testbed Modules and Offline Tools

In addition to the functional components of the dialog
system, the runtime environment includes also special
testbed modules in support of system operation.

The testbed manager component, or TBM for short,
is responsible for system initialization and activates all
distributed components pertaining to a given dialog sys-
tem configuration. It forms the counterpart for functional
modules to carry out the elementary component protocol,
which is needed for proper system start-up, controlled ter-
mination of processes and restart of single components,
or a complete soft reset of the entire dialog system.

The freely configurable testbed GUI constitutes a sepa-
rate component which provides a graphical user interface
for the administration of a running system. In Figure 1 the
specific testbed GUI of the SMARTKOM system (cf. Sec-
tion 4.2) is shown as an example. The GUI basically pro-
vides means to monitor system activity, to interact with
the testbed manager, and to manually modify configura-
tion settings of individual components while testing the
integrated system.

A further logging component is being employed to
save a complete protocol of all exchanged messages for
later inspection. Flexible replay of selected pool data pro-
vides a simple, yet elegant and powerful mechanism for
the simulation of small or complex parts of the dialog
system in order to test and debug components during the
development process.

Another important development tool is a generic data
viewer for the online and offline inspection of pool data.

Figure 1: Testbed administration GUI and data viewer.
Currently active components are highlighted using a dif-
ferent background color. The data viewer windows pro-
vide a compact display of selected pool data.

Further offline tools include a standardized build and
installation procedure for components and utilities for
the preparation of software distributions and incremen-
tal updates during system integration. Additional project-
specific APIs and specifically adapted utilities are being
developed and made avaliable as needed.

3 High-level Interfaces for Dialog System
Components

Instead of using programming interfaces, the interac-
tion between distributed components within the testbed
framework is based on the exchange of structured data
through messages. The communication platform is open
to transfer arbitrary contents but careful design of infor-
mation flow and accurate specification of content formats
constitute essential elements of our approach.

Agent communication languages like KQML (Finin et
al., 1994) and FIPA ACL (Pitt and Mamdani, 1999) are
not a natural choice in our context. In general, large-
scale dialog systems are a mixture of knowledge-based
and conventional data-processing components. A further
aspect relates to the pool architecture, which does not
rely on unspecific point-to-point communication but on
a clear modularization of data links. The specification of
the content format for each pool defines the common lan-
guage that dialog system components use to interoperate.

3.1 XML-based Data Interfaces

Over the last few years, the so-called extensible markup
language has become the premier choice for the flexible

definition of application-specific data formats for infor-
mation exchange. XML technology, which is based on
standardized specifications, progresses rapidly and offers
an enormous spectrum of useful techniques and tools.

XML-based languages define an external notation for
the representation of structured data and simplify the
interchange of complex data between separate applica-
tions. All such languages share the basic XML syn-
tax, which defines whether an arbitrary XML structure
is well-formed, and they are build upon fundamental con-
cepts like elements and attributes. A specific markup lan-
guage needs to define the structure of the data by impos-
ing constraints on the valid use of selected elements and
attributes. This means that the language serves to encode
semantic aspects of the data into syntactic restrictions.

Various approaches have been developed for the for-
mal specification of XML-based languages. The most
prominent formalism is called document type definition.
A DTD basically defines for each allowed element all al-
lowed attributes and possibly the acceptable attribute val-
ues as well as the nesting and occurrences of each ele-
ment. The DTD approach, however, is more and more
superseded by XML Schema. Compared with the older
DTD mechanism, a schema definition (XSD) offers two
main advantages: The schema itself is also specified in
XML notation and the formalism is far more expressive
as it enables more detailed restrictions on valid data struc-
tures. This includes in particular the description of el-
ement contents and not only the element structure. As
a schema specification can provide a well-organized type
structure it also helps to better document the details of the
data format definition. A human friendly presentation of
the communication interfaces is an important aid during
system development.

It should be noted that the design of an XML language
for the external representation of complex data consti-
tutes a non-trivial task. Our experience is that design
decisions have to be made carefully. For example, it is
better to minimize the use of attributes. They are limited
to unstructured data and may occur at most once within a
single element. Preferring elements over attributes better
supports the evolution of a specification since the con-
tent model of an element can easily be redefined to be
structured and the maximum number of occurrences can
simply be increased to more than one. A further princi-
ple for a well-designed XML language requires that the
element structure reflects all details of the inherent struc-
ture of the represented data, i.e. textual content for an
element should be restricted to well-defined elementary
types. Another important guideline is to apply strict nam-
ing rules so that it becomes easier to grasp the intended
meaning of specific XML structures.

From the point of view of component development,
XML offers various techniques for the processing of

<intentionLattice>
[…]

<hypothesisSequences>
<hypothesisSequence>
<score>
<source> acoustic </source>
<value> 0.96448 </value>

</score>
<score>
<source> understanding </source>
<value> 0.91667 </value>

</score>
<hypothesis>
<discourseStatus>
<discourseAction> set </discourseAction>
<discourseTopic><goal> epg_info </goal></discourseTopic>

[…]
<event id="dim868">
<informationSearch id="dim869">

<pieceOfInformation>
<broadcast id="dim863">
<avMedium>
<avMedium id="dim866">
<avType> featureFilm </avType>
<title> Die innere Sicherheit </title>

[…]
</hypothesisSequence>

[…]
</hypothesisSequences>

</intentionLattice>

<intentionLattice>
[…]

<hypothesisSequences>
<hypothesisSequence>

<score>
<source> acoustic </source>
<value> 0.96448 </value>

</score>
<score>
<source> understanding </source>
<value> 0.91667 </value>

</score>
<hypothesis>
<discourseStatus>
<discourseAction> set </discourseAction>
<discourseTopic><goal> epg_info </goal></discourseTopic>

[…]
<event id="dim868">
<informationSearch id="dim869">
<pieceOfInformation>
<broadcast id="dim863">

<avMedium>
<avMedium id="dim866">
<avType> featureFilm </avType>
<title> Die innere Sicherheit </title>

[…]
</hypothesisSequence>

[…]
</hypothesisSequences>

</intentionLattice>

Confidence in the Speech
Recognition Result

Confidence in the Speech
Understanding Result

Planning Act

Object Reference

Figure 2: Partial M3L structure. The shown intention lat-
tice represents the interpretation result for a multimodal
user input that can be stated as: “I would like to know
more about this [

�
].”

transferred content structures. The DOM API makes the
data available as a generic tree structure—the document
object model—in terms of elements and attributes. An-
other interesting option is to employ XSLT stylesheets
to flexibly transform between the external XML format
used for communication and a given internal markup lan-
guage of the specific component. The use of XSLT makes
it easier to adapt a component to interface modifications
and simplifies its re-use in another dialog system. In-
stead of working on basic XML structures like elements
and attributes, XML data binding can be used for a di-
rect mapping between program internal data structures
and application-specific XML markup. In this approach,
the language specification in form of a DTD or an XML
Schema is exploited to automatically generate a corre-
sponding object model in a given programming language.

3.2 Multimodal Markup Language

In the context of the SMARTKOM project (see sec-
tion 4.2) we have developed M3L (Multimodal Markup
Language) as a complete XML language that covers all
data interfaces within this complex multimodal dialog
system. Instead of using several quite different XML
languages for the various data pools, we aimed at an in-
tegrated and coherent language specification, which in-
cludes all sub-structures that may occur on the different
pools. In order to make the specification process man-
ageable and to provide a thematic organization, the M3L
language definition has been decomposed into about 40
schema specifications.

Figure 2 shows an excerpt from a typical M3L expres-
sion. The basic data flow from user input to system output

continuously adds further processing results so that the
representational structure will be refined step-by-step. In-
tentionally, M3L has not been devised as a generic knowl-
edge representation language, which would require an
inference engine in every single component so that the
exchanged structures can be interpreted adequately. In-
stead, very specific element structures are used to convey
meaning on the syntactic level. Obviously, not all rele-
vant semantic aspects can be covered on the syntax level
using a formalism like DTD or XSD. This means, that
it is impossible to exclude all kinds of meaningless data
from the language definition and the design of an inter-
face specification will always be a sort of compromise.

Conceptual taxonomies provide the foundation for the
representation of domain knowledge as it is required
within a dialog system to enable a natural conversation
in the given application scenario. In order to exchange
instantiated knowledge structures between different sys-
tem components they need to be encoded in M3L. In-
stead of relying on a manual reproduction of the under-
lying terminological knowledge within the M3L defini-
tion we decided to automate that task. Our tool OIL2XSD

(Gurevych et al., 2003) transforms an ontology written in
OIL (Fensel et al., 2001) into an M3L compatible XML
Schema definition. The resulting schema specification
captures the hierarchical structure and a significant part
of the semantics of the ontology. For example in Figure
2, the representation of the event structure inside the in-
tention lattice originates from the ontology. The main ad-
vantage of this approach is that the structural knowledge
available on the semantic level is consistently mapped to
the communication interfaces and M3L can easily be up-
dated as the ontology evolves.

In addition to the language specification itself, a spe-
cific M3L API has been developed, which offers a light-
weight programming interface to simplify the process-
ing of such XML structures within the implementation
of a component. Customized testbed utilities like tailored
XSLT stylesheets for the generic data viewer as well as
several other tools are provided for easier evaluation of
M3L-based processing results.

4 Sample Applications

Our framework and the MULTIPLATFORM testbed have
been employed to realize various natural language and
multimodal dialog systems. In addition to the re-
search prototypes mentioned here, MULTIPLATFORM has
also been used as an integration platform for inhouse
projects of industrial partners and for our own commer-
cial projects.

The first incarnation of MULTIPLATFORM arose from
the VERBMOBIL project where the initial system archi-
tecture, which relied on a multi-agent approach with
point-to-point communication, did not prove to be scal-

able (Klüter et al., 2000). The testbed has been enhanced
in the context of the SMARTKOM project and was re-
cently adapted for the COMIC system. As described in
the previous sections, the decisive improvement of the
current MULTIPLATFORM testbed is, besides a more ro-
bust implementation, a generalized architecture frame-
work for multimodal dialog systems and the use of XML-
based data interfaces as examplified by the Multimodal
Markup Language M3L.

4.1 VERBMOBIL

VERBMOBIL (Wahlster, 2000) is a speaker-independent
and bidirectional speech-to-speech translation system
that aims to provide users in mobile situations with si-
multaneous dialog interpretation services for restricted
topics. The system handles dialogs in three business-
oriented domains—including appointment scheduling,
travel planning, and remote PC maintenance—and pro-
vides context-sensitive translations between three lan-
guages (German, English, Japanese).

VERBMOBIL follows a hybrid approach that incorpo-
rates both deep and shallow processing schemes. A pe-
culiarity of the architecture is its multi-engine approach.
Five concurrent translations engines, based on statistical
translation, case-based translation, substring-based trans-
lation, dialog-act based translation, and semantic transfer,
compete to provide complete or partial translation results.
The final choice of the translation result is done by a sta-
tistical selection module on the basis of the confidence
measures provided by the translation paths.

In addition to a stationary prototype for face-to-face di-
alogs, a another instance has been realized to offer trans-
lation services via telephone (Kirchmann et al., 2000).

The final VERBMOBIL demonstrator consists of about
70 distributed software components that work together to
recognize spoken input, analyze and translate it, and fi-
nally utter the translation. These modules are embedded
into an earlier version of the MULTIPLATFORM testbed
using almost 200 data pools—replacing several thousand
point-to-point connections—to interconnect the compo-
nents.

4.2 SMARTKOM

SMARTKOM is a multimodal dialog system that com-
bines speech, gesture, and facial expressions for both,
user input and system output (Wahlster et al., 2001). The
system aims to provide an anthropomorphic and affective
user interface through its personification of an interface
agent. The interaction metaphor is based on the so-called
situated, delegation-oriented dialog paradigm. The basic
idea is, that the user delegates a task to a virtual commu-
nication assistant which is visualized as a life-like char-
acter. The interface agent recognizes the user’s inten-
tions and goals, asks the user for feedback if necessary,

Multimodal
Dialog

Backbone

Home:
Consumer Electronics

EPG

Public:
Cinema,
Phone,

Fax,
Mail,

Biometrics

Mobile:
Car and
Pedestrian
Navigation

Application
Layer

SmartKom-Mobile

SmartKom-Public

SmartKom-Home

Figure 3: SMARTKOM kernel and application scenarios.
Smartakus, the SMARTKOM life-like character is shown
in the lower left corner.

accesses the various services on behalf of the user, and
presents the results in an adequate manner.

The current version of the MULTIPLATFORM testbed,
including M3L, is used as the integration platform for
SMARTKOM. The overall system architecture includes
about 40 different components. As shown in Figure 3, the
SMARTKOM project addresses three different application
scenarios.

SMARTKOM PUBLIC realizes an advanced multi-
modal information and communication kiosk for airports,
train stations, or other public places. It supports users
seeking for information concerning movie programs, of-
fers reservation facilities, and provides personalized com-
munication services using telephone, fax, or electronic
mail.

SMARTKOM HOME serves as a multimodal portal to
information services. Using a portable webpad, the user
is able to utilize the system as an electronic program
guide or to easily control consumer electronics devices
like a TV set or a VCR. Similar to the kiosk application,
the user may also use communication services at home.
In the context of SMARTKOM HOME two different inter-
action modes are supported and the user is able to easily
switch between them. In lean-forward mode coordinated
speech and gesture input can be used for multimodal in-
teraction with the system. Lean-backward mode instead
is constrained to verbal communication.

SMARTKOM MOBILE uses a PDA as a front end,
which can be added to a car navigation system or is
carried by a pedestrian. This application scenario com-
prises services like integrated trip planning and incre-
mental route guidance through a city via GPS and GSM,
GPRS, or UMTS connectivity.

Figure 4: Adapted testbed GUI for the COMIC system.

4.3 COMIC

COMIC2 (Conversational Multimodal Interaction with
Computers) is a recent research project that focuses on
computer-based mechanisms of interaction in coopera-
tive work. One specific sample application for COMIC

is a design tool for bathrooms with an enhanced multi-
modal interface. The main goal of the experimental work
is to show that advanced multimodal interaction can make
such a tool usable for non-experts as well.

The realization of the integrated COMIC demonstrator
is based on the MULTIPLATFORM testbed. Figure 4 dis-
plays the control interface of the multimodal dialog sys-
tem. On the input side, speech and handwriting in com-
bination with 3-dimensional pen-based gestures can be
employed by the user. On the output side, a dynamic
avatar with synthesized facial, head and eye movements
is combined with task-related graphical and textual infor-
mation. In addition to multiple input and output chan-
nels, there are components that combine the inputs—
taking into account paralinguistic information like into-
nation and hesitations—and interpret them in the context
of the dialog, plan the application-specific actions to be
taken and finally split the output information over the
available channels.

5 Related Work

GCSI, the Galaxy Communicator software infrastructure
(Seneff et al., 1999), is an open source architecture for
the realization of natural language dialog systems. It
can be described as a distributed, message-based, client-
server architecture, which has been optimized for con-
structing spoken dialog systems. The key component in
this framework is a central hub, which mediates the inter-
action among various servers that realize different dialog
system components. The central hub does not only han-
dle all communications among the server modules but is

2see http://www.hcrc.ed.ac.uk/comic/

also responsible to maintain the flow of control that de-
termines the processing within the integrated dialog sys-
tem. To achieve this, the hub is able to interpret scripts
encoded in a special purpose, run-time executable pro-
gramming language.

The GCSI architecture is fundamentally different from
our approach. Within the MULTIPLATFORM testbed there
exists no centralized controller component which could
become a potential bottleneck for more complex dialog
systems.

OAA, the Open Agent Architecture (Martin et al.,
1999), is a framework for integrating a community of
heterogeneous software agents in a distributed environ-
ment. All communication and cooperation between the
different is achieved via messages expressed in ICL, a
logic-based declarative language capable of representing
natural language expressions. Similar to the GCSI archi-
tecture, a sort of centralized processing unit is required
to control the behavior of the integrated system. So-
called facilitator agents reason about the agent interac-
tions necessary for handling a given complex ICL ex-
pression, i.e. the facilitator coordinates the activities of
agents for the purpose of achieving higher-level, complex
problem-solving objectives. Sample applications built
with the OAA framework also incorporated techniques to
use multiple input modalities. The user can point, speak,
draw, handwrite, or even use a standard graphical user
interface in order to communicate with a collection of
agents.

RAGS (Cahill et al., 2000) does not address the entire
architecture of dialog systems and multimodal interac-
tion. The RAGS approach, which stands for Reference
Architecture for Generation Systems, focuses instead on
natural language generation systems and aims to produce
an architectural specification and model for the develop-
ment of new applications in this area. RAGS is based
on the well-known three-stage pipeline model for natural
language generation which distinguishes between content
determination, sentence planning, and linguistic realiza-
tion. The main component of the RAGS architecture is a
data model, in the form of a set of declarative linguistic
representations which cover the various levels of repre-
sentation that have to be taken into account within the
generation process. XML-based notations for the data
model can be used in order to exchange RAGS represen-
tations between distributed components. The reference
architecture is open regarding the technical interconnec-
tion of the different components of a generation system.
One specifically supported solution is the use of a single
centralized data repository.

6 Conclusion

MULTIPLATFORM provides a practical framework for
large-scale software integration that results from the re-

alization of various natural language and multimodal di-
alog systems. The MULTIPLATFORM testbed is based on
an open component architecture which employs message-
passing to interconnect distributed software modules. We
propose to operationalize interface specifications in the
form of an XML language as a viable approach to assem-
ble knowledge-based as well as conventional components
into an integrated dialog system. The testbed software is
currently being refactored and we are planning to make it
publicly available as open source software.

More than one hundred modules have already been
used within the MULTIPLATFORM testbed. So far, how-
ever, these dialog system components are not freely avail-
able for public distribution. The availability of pre-
fabricated modules as part of the testbed software would
also enable third parties to develop complete dialog sys-
tem applications through the reuse of provided standard
components.

In addition to the software infrastructure, the practical
organization of the project constitutes a key factor for the
successful realization of an integrated multimodal dialog
system. Stepwise improvement and implementation of
the design of architecture details and interfaces necessi-
tates an intensive discussion process that has to include
all participants who are involved in the realization of sys-
tem components in order to reach a common understand-
ing of the intended system behavior. Independent integra-
tion experts that focus on the overall dialog system have
proven to be helpful for the coordination of this kind of
activities.

References

Lynne Cahill, Christy Doran, Roger Evans, Rodger Kib-
ble, Chris Mellish, Daniel Paiva, Mike Reape, Donia
Scott, and Neil Tipper. 2000. Enabling Resource Shar-
ing in Language Generation: An Abstract Reference
Architecture. In Proc. of the 2nd Int. Conf. on Lan-
guage Resources and Evaluation, Athens, Greece.

Wolfgang Emmerich. 2000. Software Engineering and
Middleware: A Roadmap. In Proc. of the Conf. on the
Future of Software Engineering, pages 117–129. ACM
Press.

Lee D. Erman, Frederick Hayes-Roth, Victor R. Lesser,
and D. Raj Reddy. 1980. The Hearsay-II Speech-
Understanding System: Integrating Knowledge to
Resolve Uncertainty. ACM Computing Surveys,
12(2):213–253.

Dieter Fensel, Frank van Harmelen, Ian Horrocks, Deb-
orah L. McGuinness, and Peter F. Patel-Schneider.
2001. OIL: An Ontology Infrastructure for the Seman-
tic Web. IEEE Intelligent Systems, 16(2):38–45.

Tim Finin, Richard Fritzson, Don McKay, and Robin
McEntire. 1994. KQML as an Agent Communica-
tion Language. In Proc. of the 3rd Int. Conf. on Infor-
mation and Knowledge Management, pages 456–463.
ACM Press.

Al Geist, Adam Beguelin, Jack Dongorra, Weicheng
Jiang, Robert Manchek, and Vaidy Sunderman. 1994.
PVM: Parallel Virtual Machine. A User’s Guide and
Tutorial for Networked Parallel Computing. MIT
Press.

Iryna Gurevych, Stefan Merten, and Robert Porzel. 2003.
Automatic creation of interface specifications from
ontologies. In Proc. of the HLT-NAACL’03 Work-
shop on the Software Engineering and Architecture of
Language Technology Systems (SEALTS), Edmonton,
Canada.

Jon Hopkins. 2000. Component Primer. Communica-
tions of the ACM, 43(10):27–30.

Heinz Kirchmann, Alassane Ndiaye, and Andreas Klüter.
2000. From a Stationary Prototype to Telephone
Translation Services. In Wahlster (Wahlster, 2000),
pages 659–669.

Andreas Klüter, Alassane Ndiaye, and Heinz Kirchmann.
2000. Verbmobil From a Software Engineering Point
of View: System Design and Software Integration. In
Wahlster (Wahlster, 2000), pages 635–658.

David L. Martin, Adam J. Cheyer, and Douglas B.
Moran. 1999. The Open Agent Architecture: A
Framework for Building Distributed Software Sys-
tems. Applied Artificial Intelligence, 13(1–2):91–128.

Jeremy Pitt and Abe Mamdani. 1999. Some Remarks on
the Semantics of FIPA’s Agent Communication Lan-
guage. Autonomous Agents and Multi-Agent Systems,
2(4):333–356.

Stephanie Seneff, Raymond Lau, and Joseph Polifroni.
1999. Organization, Communication, and Control in
the Galaxy-II Conversational System. In Proc. of Eu-
rospeech’99, pages 1271–1274, Budapest, Hungary.

Wolfgang Wahlster, Norbert Reithinger, and Anselm
Blocher. 2001. SmartKom: Multimodal Communi-
cation with a Life-Like Character. In Proc. of Eu-
rospeech’01, pages 1547–1550, Aalborg, Denmark.

Wolfgang Wahlster, editor. 2000. Verbmobil: Foun-
dations of Speech-to-Speech Translation. Springer,
Berlin.

Gerhard Weiss, editor. 2000. Multiagent Systems:
A Modern Approach to Distributed Artificial Intelli-
gence. MIT Press.

Ming-Wei Wu and Ying-Dar Lin. 2001. Open Source
Software Development: An Overview. Computer,
34(6):33–38.

