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Abstract

We propose a computational model of
visually-grounded spatial language under-
standing, based on a study of how people
verbally describe objects in visual scenes.
We describe our implementation of word
level visually-grounded semantics and their
embedding in a compositional parsing frame-
work. The implemented system selects the
correct referents in response to a broad range
of referring expressions for a large percentage
of test cases. In an analysis of the system’s
successes and failures we reveal how visual
context influences the semantics of utterances
and propose future extensions to the model
that take such context into account.

1 Introduction

We present a study of how people describe objects in vi-
sual scenes of the kind shown in Figure 1. Based on
this study, we propose a computational model of visually-
grounded language understanding. A typical referring ex-
pression for Figure 1 might be, ”the far back purple cone
that’s behind a row of green ones”. In such tasks, speak-
ers construct expressions to guide listeners’ attention to
intended objects. Such referring expressions succeed in
communication because speakers and listeners find sim-
ilar features of the visual scene to be salient, and share
an understanding of how language is grounded in terms
of these features. This work is a step towards our longer
term goals to develop a conversational robot (Roy et al.,
forthcoming 2003) that can fluidly connect language to
perception and action.

To study the characteristics of descriptive spatial lan-
guage, we collected several hundred referring expres-
sions based on scenes similar to Figure 1. We analysed
the descriptions by cataloguing the visual features that
they referred to within a scene, and the range of linguistic
devices (words or grammatical patterns) that they used to
refer to those features. The combination of a visual fea-
ture and corresponding linguistic device is referred to as
adescriptive strategy.

Figure 1: A sample scene used to elicit visually-grounded
referring expressions (if this figure has been reproduced
in black and white, the light cones are green in colour, the
dark cones are purple)

We propose a set of computational mechanisms that
correspond to the most commonly used descriptive strate-
gies from our study. The resulting model has been imple-
mented as a set of visual feature extraction algorithms,
a lexicon that is grounded in terms of these visual fea-
tures, a robust parser to capture the syntax of spoken ut-
terances, and a compositional engine driven by the parser
that combines visual groundings of lexical units. We use
the termgrounded semantic compositionto highlight that
both the semantics of individual words and the word com-
position process itself are visually-grounded. We propose
processes that combine the visual models of words, gov-
erned by rules of syntax. In designing our system, we
made several simplifying assumptions. We assumed that
word meanings are independent of the visual scene, and
that semantic composition is a purely incremental pro-
cess. As we will show, neither of these assumptions holds
in all of our data, but our system still understands most
utterances correctly.

To evaluate the system, we collected a set of spoken
utterances from three speakers. The model was able to
correctly understand the visual referents of 59% of the
expressions (chance performance was1/30

∑30
i=1 1/i =

13%). The system was able to resolve a range of linguis-
tic phenomena that made use of relatively complex com-
positions of spatial semantics. We provide an analysis of
the sources of failure in this evaluation, based on which
we propose a number of improvements that are required
to achieve human level performance.

An extended report on this work can be found in (Gor-
niak and Roy, 2003).



1.1 Related Work

Winograd’s SHRDLU is a well known system that could
understand and generate natural language referring to ob-
jects and actions in a simple blocks world (Winograd,
1970). Like our system it performs semantic interpreta-
tion during parsing by attaching short procedures to lexi-
cal units. However, SHRDLU had access to a clean sym-
bolic representation of the scene and only handles sen-
tences it could parse complete. The system discussed
here works with a synthetic vision system, reasons over
geometric and other visual measures, and works from ac-
curate transcripts of noisy human speech.

Partee provides an overview of the general formal se-
mantics approach and the problems of context based
meanings and meaning compositionality from this per-
spective (Partee, 1995). Our work reflects many of the
ideas from this work, such as viewing adjectives as func-
tions, as well as idea’s from Pustejovsky’s theory of the
Generative Lexicon (GL) (Pustejovsky, 1995). How-
ever, these formal approaches operate in a symbolic do-
main and leave the details of non-linguistic influences on
meaning unspecified, whereas we take the computational
modelling of these influences as our primary concern.

Word meanings have been approached by several re-
searchers as a problem of associating visual represen-
tations, often with complex internal structure, to word
forms. Models have been suggested for visual represen-
tations underlying spatial relations (Regier and Carlson,
2001). Models for verbs include grounding their seman-
tics in the perception of actions (Siskind, 2001). Landau
and Jackendoff provide a detailed analysis of additional
visual shape features that play a role in language (Landau
and Jackendoff, 1993).

We have previously proposed methods for visually-
grounded language learning (Roy and Pentland, 2002),
understanding (Roy et al., 2002), and generation (Roy,
2002). However, the treatment of semantic composition
in these efforts was relatively primitive. While this sim-
ple approach worked in the constrained domains that we
have addressed in the past, it does not scale to the present
task.

2 A Spatial Description Task

We designed a task that requires people to describe ob-
jects in computer generated scenes containing up to 30
objects with random positions on a virtual surface. The
objects all had identical shapes and sizes, and were ei-
ther green or purple in colour. Each of the objects had a
50% chance of being green, otherwise it was purple. This
design naturally led speakers to make reference to spa-
tial aspects of the scene, rather than the individual object
properties which subjects tended to use in our previous
work (Roy, 2002). We refer to this task as the Bishop
task, and to the resulting language understanding model
and implemented system simply as Bishop.

2.1 Data Collection

Participants in the study ranged in age from 22 to 30
years, and included both native and non-native English
speakers. Pairs of participants were seated with their
backs to each other, each person looking at a computer
screen which displayed a scene such as that in Figure 1.
Each screen showed the same scene. In each pair, one
participant served as describer, and the other as listener.
The describer wore a microphone that was used to record
his or her speech. The describer used a mouse to select an
object from the scene, and then verbally described the se-
lected object to the listener. The listener’s task was to se-
lect the same object on their own computer display based
on the verbal description. If the selected objects matched,
they disappeared from the scene and the describer would
select and describe another object. If they did not match,
the describer would re-attempt the description until un-
derstood by the listener. The scene contained 30 objects
at the beginning of each session, and a session ended
when no objects remained, at which point the describer
and listener switched roles and completed a second ses-
sion (some participants fulfilled a role multiple times).

Initially, we collected 268 spoken object descriptions
from 6 participants. The raw audio was segmented using
our speech segmentation algorithm based on pause struc-
ture (Yoshida, 2002). Along with the utterances, the cor-
responding scene layout and target object identity were
recorded together with the times at which objects were
selected. This 268 utterance corpus is referred to as the
development data set. We manually transcribed each spo-
ken utterance verbatim, retaining all speech errors (false
starts and various other ungrammaticalities). Off-topic
speech events (laughter, questions about the task, other
remarks, and filled pauses) were marked as such (they do
not appear in any results we report). We wrote a simple
heuristic algorithm based on time stamps to pair utter-
ances and selections based on their time stamps. When
we report numbers of utterances in data sets in this paper,
they correspond to how many utterance-selection pairs
our pairing algorithm produces.

Once our implementation based on the development
corpus yielded acceptable results, we collected another
179 spoken descriptions from three additional partici-
pants to evaluate generalization and coverage of our ap-
proach. The discussion and analysis in the following sec-
tions focuses on the development set. In Section 6 we
discuss performance on the test set.

2.2 Descriptive Strategies for Achieving Joint
Reference

We distinguish three subsets of our development data, 1)
a set containing those utterance/selection pairs that con-
tain errors, where an error can be due to a repair or mis-
take on the human speaker’s part, a segmentation mis-
take by our speech segmenter, or an error by our utter-
ance/selection pairing algorithm, 2) a set that contains
those utterance/selection pairs that employ descriptive
strategies other than those we cover in our computational



understanding system (we cover those in Sections 2.2.1
to 2.2.5), and 3) the set of utterance/selection pairs in the
development data that are not a member of either sub-
set described above. We refer to this last subset as the
‘clean’ set. Note that the first two subsets are not mu-
tually exclusive. As we catalogue descriptive strategies
from the development data in the following sections, we
report two percentages for each descriptive strategy. The
first is the percentage of utterance/selection pairs that em-
ploy a specific descriptive strategy relative to all the utter-
ance/selection pairs in the development data set. The sec-
ond is the percentage of utterance/selection pairs relative
to the clean set of utterance/selection pairs, as described
above.

2.2.1 Colour

Almost every utterance employs colour to pick out ob-
jects. While designing the task, we intentionally trivial-
ized the problem of colour reference. Objects come in
only two distinct colours, green and purple. Unsurpris-
ingly, all participants used the terms “green” and “pur-
ple” to refer to these colours. Participants used colour to
identify one or more objects in 96% of the data, and 95%
of the clean data.

2.2.2 Spatial Regions and Extrema

The second most common descriptive strategy is to re-
fer to spatial extremes within groups of objects and to
spatial regions in the scene. The example in Figure 2
uses two spatial terms to pick out its referent: “front” and
“left”, both of which leverage spatial extrema to direct the
listener’s attention. Multiple spatial specifications tend to
be interpreted in left to right order, that is, selecting a
group of objects matching the first term, then amongst
those choosing objects that match the second term.

“the purple one in the front left corner”

Figure 2: Example utterance specifying objects by refer-
ring to spatial extrema

Being rather ubiquitous in the data, spatial extrema
and spatial regions are often used in combination with
other descriptive strategies like grouping, but are most
frequently combined with other extrema and region spec-
ifications. Participants used single spatial extrema to
identify one or more objects in 72% of the data, and in
78% of the clean data. They used spatial region specifi-
cations in 20% of the data (also 20% of the clean data),
and combined multiple extrema or regions in 28% (30%
of the clean data).

2.2.3 Grouping
To provide landmarks for spatial relations and to spec-

ify sets of objects to select from, participants used lan-
guage to describe groups of objects. Figure 3 shows an
example of such grouping constructs, which uses a count
to specify the group (“three”). In this example, the par-
ticipant first specifies a group containing the target ob-
ject, then utters another description to select within that
group. Note that grouping alone never yields an indi-
vidual reference, so participants compose grouping con-
structs with further referential tactics (predominantly ex-
trema and spatial relations) in all cases. Participants used
grouping to identify objects in 12% of the data and 10%
of the clean data.

“there’s three on the left side; the one in the
furthest back”

Figure 3: Example utterance using grouping

2.2.4 Spatial Relations
As already mentioned in Section 2.2.3, participants

sometimes used spatial relations between objects or
groups of objects. Examples of such relations are ex-
pressed through prepositions like “below” or “behind” as
well as phrases like “to the left of” or “in front of”. Fig-
ure 4 shows an example that involves a spatial relation
between individual objects. The spatial relation is com-
bined with another strategy, here an extremum (as well
as two speech errors by the describer). Participants used
spatial relations in 6% of the data (7% of the clean data).

“there’s a purple cone that’s it’s all the way on the
left hand side but it’s it’s below another purple”

Figure 4: Example utterance specifying a spatial relation

2.2.5 Anaphora
In a number of cases participants used anaphoric refer-

ences to the previous object removed during the descrip-
tion task. Figure 5 shows a sequence of two scenes and
corresponding utterances in which the second utterance
refers back to the object selected in the first. Participants



employed spatial relations in 4% of the data (3% of the
clean data).

“the closest purple one on the far left side”

“the green one right behind that one”

Figure 5: Example sequence of an anaphoric utterance

2.2.6 Other

In addition to the phenomena listed in the preceding
sections, participants used a small number of other de-
scription strategies. Some that occurred more than once
but that we have not yet addressed in our computational
model are selection by distance (lexicalised as “close to”
or “next to”), selection by neighbourhood (“the green
one surrounded by purple ones”), selection by symmetry
(“the one opposite that one”), and selection by something
akin to local connectivity (“the lone one”). We anno-
tated 13% of our data as containing descriptive strategies
other than the ones covered in the preceding sections. We
marked 15% of our data as containing errors.

3 The Understanding Framework

3.1 Synthetic Vision

Instead of relying on the information we use to render the
scenes in Bishop, which includes 3D object locations and
the viewing angle, we implemented a simple synthetic vi-
sion algorithm to ease a future transfer back to a robot’s
vision system. This algorithm produces a map attribut-
ing each pixel of the rendered image to one of the objects
or the background. In addition, we use the full colour
information for each pixel drawn in the rendered scene.
We chose to work in a virtual world for this project so
that we could freely change colour, number, size, shape
and arrangement of objects to elicit interesting verbal be-
haviours in our participants.

3.2 Lexical Entries and Concepts

Conceptually, we treat lexical entries like classes in an
object oriented programming language. When instanti-
ated, they maintain an internal state that can be as simple
as a tag identifying the dimension along which to perform

an ordering, or as complex as multidimensional probabil-
ity distributions. Each entry can contain a semantic com-
poser that encapsulates the function to combine this entry
with other constituents during a parse. These composers
are described in-depth in Section 4. The lexicon used
for Bishop contains many lexical entries attaching differ-
ent semantic composers to the same word. For exam-
ple, “left” can be either a spatial relation or an extremum,
which may be disambiguated by grammatical structure
during parsing.

During composition, structures representing the ob-
jects a constituent references are passed between lexical
entries. We refer to these structures asconcepts. Each en-
try accepts zero or more concepts, and produces zero or
more concepts as the result of the composition operation.
A concept lists the entities in the world that are possible
referents of the constituent it is associated with, together
with real numbers representing their ranking due to the
last composition operation.

3.3 Parsing

We use a bottom-up chart parser to guide the interpre-
tation of phrases (Allen, 1995). Such a parser has the
advantage that it employs a dynamic programming strat-
egy to efficiently reuse already computed subtrees of the
parse. Furthermore, it produces all sub components of a
parse and thus produces a useable result without the need
to parse to a specific symbol.

Bishop performs only a partial parse, a parse that is not
required to cover a whole utterance, but simply takes the
longest referring parsed segments to be the best guess.
Unknown words do not stop the parse process. Rather,
all constituents that would otherwise end before the un-
known word are taken to include the unknown word, in
essence making unknown words invisible to the parser
and the understanding process. In this way we recover
essentially all grammatical chunks and relations that are
important to understanding in our restricted task.

We use a simple grammar containing 19 rules. With
each rule, we associate an argument structure for seman-
tic composition. When a rule is syntactically complete
during a parse, the parser checks whether the composers
of the constituents in the tail of the rule can accept the
number of arguments specified in the rule. If so, it calls
the semantic composer associated with the constituent
with the concepts yielded by its arguments to produce a
concept for the head of the rule.

4 Semantic Composition

Most of the composers presented follow the same com-
position schema: they take one or more concepts as ar-
guments and yield another concept that references a pos-
sibly different set of objects. Composers may introduce
new objects, even ones that do not exist in the scene as
such, and they may introduce new types of objects (e.g.
groups of objects referenced as if they were one object).
Most composers first convert an incoming concept to the
objects it references, and subsequently perform compu-



tations on these objects. If ambiguities persist at the end
of understanding an utterance (multiple possible referents
exist), we let Bishop choose the one with maximum ref-
erence strength.

4.1 Colour - Probabilistic Attribute Composers

As mentioned in Section 3.1, we chose not to exploit the
information used to render the scene, and therefore must
recover colour information from the final rendered im-
age. The colour average for the 2D projection of each
object varies due to occlusion by other objects, as well
as distance from and angle with the virtual camera. We
separately collected a set of labelled instances of “green”
and “purple” cones, and estimated a three dimensional
Gaussian distribution from the average red, green and
blue values of each pixel belonging to the example cones.
When asked to compose with a given concept, this type of
probabilistic attribute composer assigns each object refer-
enced by the source concept the probability density func-
tion evaluated at the average colour of the object.

4.2 Spatial Extrema and Spatial Regions - Ordering
Composers

To determine spatial regions and extrema, an ordering
composer orders objects along a specified feature dimen-
sion (e.g. x coordinate relative to a group) and picks ref-
erents at an extreme end of the ordering. To do so, it
assigns an exponential weight function to objects accord-
ing toγi(1+v) for picking minimal objects, wherei is the
object’s position in the sequence,v is its value along the
feature dimension specified, normalized to range between
0 and1 for the objects under consideration. The maximal
case is weighted similarly, but using the reverse order-
ing subtracting the fraction in the exponent from 2. For
our reported resultsγ = 0.38. This formula lets refer-
ent weights fall off exponentially both with their posi-
tion in the ordering and their distance from the extreme
object. In that way extreme objects are isolated except
for cases in which many referents cluster around an ex-
tremum, making picking out a single referent difficult.
We attach this type of composer to words like “leftmost”
and “top”.

The ordering composer can also order objects accord-
ing to their absolute position, corresponding more closely
to spatial regions rather than spatial extrema relative to a
group. The reference strength formula for this version
is γ(1+ d

dmax
) whered is the euclidean distance from a

reference point, anddmax the maximum such distance
amongst the objects under consideration. This version of
the composer is attached to words like “middle”. It has
the effect that reference weights are relative to absolute
position on the screen. An object close to the centre of
the board achieves a greater reference weight for the word
“middle”, independently of the position of other objects
of its kind. Ordering composers work across any number
of dimensions by simply ordering objects by their Eu-
clidean distance, using the same exponential falloff func-
tion as in the other cases.

4.3 Grouping Composers

For non-numbered grouping (e.g., when the describer
says “group” or “cones”), the grouping composer
searches the scene for groups of objects that are all within
a maximum distance threshold from another group mem-
ber. It only considers objects that are referenced by the
concept it is passed as an argument. For numbered groups
(“two”, “three”), the composer applies the additional con-
straint that the groups have to contain the correct number
of objects. Reference strengths for the concept are de-
termined by the average distance of objects within the
group.

The output of a grouping composer may be thought
of as a group of groups. To understand the motivation
for this, consider the utterance, “the one to the left of
the group of purple ones”. In this expression, the phrase
“group of purple ones” will activate a grouping composer
that will find clusters of purple cones. For each clus-
ter, the composer computes the convex hull (the minimal
“elastic band” that encompasses all the objects) and cre-
ates a new composite object that has the convex hull as its
shape. When further composition takes place to under-
stand the entire utterance, each composite group serves
as a potential landmark relative to “left”.

However, concepts can be marked so that their be-
haviour changes to split apart concepts refering to groups.
For example, the composer attached to “of” sets this flag
on concepts passing through it. Note that “of” is only in-
volved in composition for grammar rules of the type NP
← NP P NP, but not for those performing spatial com-
positions for phrases like “to the left of”. Therefore, the
phrase “the frontmost one of the three green ones” will
pick the front object within the best group of three green
objects.

4.4 Spatial Relations - Spatial Composers

The spatial semantic composer employs a version of the
Attentional Vector Sum (AVS) suggested in (Regier and
Carlson, 2001). The AVS is a measure of spatial relation
meant to approximate human judgements corresponding
to words like “above” and “to the left of” in 2D scenes of
objects. Given two concepts as arguments, the spatial se-
mantic composer converts both into sets of objects, treat-
ing one set as providing possible landmarks, the other as
providing possible targets. The composer then calculates
the AVS for each possible combination of landmarks and
targets. Finally, the spatial composer divides the result
by the Euclidean distance between the objects’ centres of
mass, to account for the fact that participants exclusively
used nearby objects to select through spatial relations.

4.5 Anaphoric Composers

Triggered by words like “that” (as in “to the left of that
one”) or “previous”, an anaphoric composer produces a
concept that refers to a single object, namely the last ob-
ject removed from the scene during the session. This ob-
ject specially marks the concept as referring not to the
current, but the previous visual scene, and any further



calculations with this concept are performed in that vi-
sual context.

5 Example: Understanding a Description

“the purple one”

“one on the left”

“the purple one on the left”

Figure 6: Example: “the purple one on the left”

Consider the scene in Figure 6, and the output of the
chart parser for the utterance, “the purple one on the left”
in Figure 7. Starting at the top left of the parse output,
the parser finds “the” in the lexicon as an ART (article)
with a selecting composer that takes one argument. It
finds two lexical entries for “purple”, one marked as a
CADJ (colour adjective), and one as an N (noun). Each
of them have the same composer, a probabilistic attribute
composer marked as P(), but the adjective expects one ar-
gument whereas the noun expects none. Given that the
noun expects no arguments and that the grammar con-
tains a rule of the form NP← N, an NP (noun phrase) is
instantiated and the probabilistic composer is applied to
the default set of objects yielded by N, which consists of
all objects visible. This composer call is marked P(N) in
the chart. After composition, the NP contains a subset of
only the purple objects (Figure 6, top right). At this point
the parser applies NP← ART NP, which produces the NP
spanning the first two words and again contains only the
purple objects, but is marked as unambiguously referring
to an object. S(NP) marks the application of this selecting
composer called S.

The parser goes on to produce a similar NP covering
the first three words by combining the “purple” CADJ
with “one” and the result with “the”. The “on” P (prepo-

ART:the
CADJ:purple
N:purple
NP:P(N)

NP:S(NP)
N:one
NP:one

NP:P(N)
NP:S(NP)

P:on
ART:the

N:left
ADJ:left
N:left
NP:left
NP:left

NP:S(NP)
NP:S(NP)

NP:O.x.min(NP)
NP:O.x.min(NP)

NP:O.x.min(NP)

the purple one on the left

Figure 7: Sample parse of a referring noun phrase

sition) is left dangling for the moment as it needs a con-
stituent that follows it. It contains a modifying seman-
tic composer that simply bridges the P, applying the first
argument to the second. After another “the”, “left” has
several lexical entries: in its ADJ and one of its N forms
it contains an ordering semantic composer that takes a
single argument, whereas its second N form contains a
spatial semantic composer that takes two arguments to
determine a target and a landmark object. At this point
the parser can combine “the” and “left” into two possible
NPs, one containing the ordering and the other the spatial
composer. The first of these NPs in turn fulfills the need
of the “on” P for a second argument according to NP←
NP P NP, performing its ordering compose first on “one”
(for “one on the left”), selecting all the objects on the left
(Figure 6, bottom left). The application of the ordering
composer is denoted asO.x.min(NP) in the chart, indi-
cating that this is an ordering composer ordering along
thex axis and selecting the minimum along this axis. On
combining with “purple one”, the same composer selects
all the purple objects on the left (Figure 6, bottom right).
Finally on “the purple one”, it produces the same set of
objects as “purple one”, but marks the concept as unam-
biguously picking out a single object. Note that the parser
attempts to use the second interpretation of “left” (the one
containing a spatial composer) but fails because this com-
poser expects two arguments that are not provided by the
grammatical structure of the sentence.

6 Results and Discussion

6.1 Overall Performance

In Table 1 we present overall accuracy results, indicating
for which percentage of different groups of examples our



system picked the same referent as the person describing
the object. The first line in the table shows performance
relative to the total set of utterances collected. The second
one shows the percentage of utterances our system un-
derstood correctly excluding those marked as using a de-
scriptive strategy that was not listed in Section 4, and thus
not expected to be understood by Bishop. The final line in
Table 1 shows the percentage of utterances for which our
system picked the correct referent relative to the clean de-
velopment and testing sets. Although there is obviously
room for improvement, these results are significant given
that chance performance on this task is only 13.3% and
linguistic input was transcripts of unconstrained speech.

Utterance Set Accuracy -
Development

Accuracy -
Testing

All 76.5% 58.7%
All except ‘Other’ 83.2% 68.8%
Clean 86.7% 72.5%

Table 1: Overall Results

Colour Due to the simple nature of colour naming in the
Bishop task, the probabilistic composers responsible
for selecting objects based on colour made no errors.

Spatial Extrema Our ordering composers correctly
identify 100% of the cases in which a participant
uses only colour and a single spatial extremum in his
or her description. Participants also favour this de-
scriptive strategy, using it with colour alone in 38%
of the clean data. In the clean training data, Bishop
understands 86.8% of all utterances employing spa-
tial extrema. Participants composed one or more
spatial region or extrema references in 30% of the
clean data. Our ordering composers correctly inter-
pret 85% of these cases, for example that in Figure 2
in Section 2.2.2. The mistakes our composers make
are usually due to overcommitment and faulty order-
ing.

Spatial Regions Description by spatial region occurs
alone in only 5% of the clean data, and together with
other strategies in 15% of the clean data. Almost
all the examples of this strategy occurring alone use
words like “middle” or “centre”. The top image in
Figure 8 exemplifies the use of “middle” that our
ordering semantic composer models. The object re-
ferred to is the one closest to the centre of the board.
The bottom image in Figure 8 shows a different in-
terpretation of middle: the object in the middle of
a (linguistically not mentioned) group of objects.
Note that within the group there are two candidate
centre objects, and that the one in the front is pre-
ferred. There are also further meanings of middle
that we expand on in (Gorniak and Roy, 2003). In
summary, we can catalogue a number of different
meanings for the word “middle” in our data that
are linguistically indistinguishable, but depend on

visual and historical context to be correctly under-
stood.

“the green one in the middle”

“the purple cone in the middle”

Figure 8: Types of “middles”

Grouping Our composers implementing the grouping
strategies used by participants are the most simplis-
tic of all composers we implemented, compared to
the depth of the actual phenomenon of visual group-
ing. As a result, Bishop only understands 29% of ut-
terances that employ grouping in the clean training
data. More sophisticated grouping algorithms have
been proposed, such as Shi and Malik’s (2000).

Spatial Relations The AVS measure divided by distance
between objects corresponds very well to human
spatial relation judgements in this task. All the er-
rors that occur in utterances that contain spatial rela-
tions are due to the possible landmarks or targets not
being correctly identified (grouping or region com-
posers might fail to provide the correct referents).
Our spatial relation composer picks the correct ref-
erent in all those cases where landmarks and tar-
gets are the correct ones. Bishop understands 64.3%
of all utterances that employ spatial relations in the
clean training data. There are types of spatial rela-
tions such as relations based purely on distance and
combined relations (“to the left and behind”) that we
decided not to cover in this implementation, but that
occur in the data and should be covered in future ef-
forts.

Anaphora Our solution to the use of anaphora in the
Bishop task performs perfectly (100% of utter-
ances employing anaphora) in understanding refer-
ence back to a single object in the clean development
data. However, there are more complex variants of
anaphora that we do not currently cover, for example
reference back to groups of objects.



7 Future Directions

Every one of our semantic composers attempts to solve a
separate hard problem, some of which (e.g. grouping and
spatial relations) have seen long lines of work dedicated
to more sophisticated solutions than ours. The individual
problems were not the emphasis of this paper, and the
solutions presented here can be improved.

If a parse does not produce a single referent, backtrack-
ing would provide an opportunity to revise the decisions
made at various stages of interpretation until a referent
is produced. Yet backtracking only solves problems in
which the system knows that it has either failed to ob-
tain a good answer. We demonstrated cases of selection
of word meanings by visual context in our data. Here, a
good candidate solution according to one word meaning
may still produce the wrong referent due to a specific vi-
sual context. A future system should take into account
local and global visual context during composition to ac-
count for these human selection strategies.

By constructing the parse charts we obtain a rich set
of partial and full syntactic and semantic fragments offer-
ing explanations for parts of the utterance. In the future,
we plan to use this information to engage in clarification
dialogue with the human speaker.

Machine learning algorithms may be used to learn
many of the parameter settings that were set by hand in
this work, including on-line learning to adapt parame-
ters during verbal interaction. Furthermore, learning new
types of composers and appropriate corresponding gram-
matical constructs poses a difficult challenge for the fu-
ture.

8 Summary

We have presented a model of visually-grounded lan-
guage understanding. At the heart of the model is a set
of lexical items, each grounded in terms of visual fea-
tures and grouping properties when applied to objects in
a scene. A robust parsing algorithm finds chunks of syn-
tactically coherent words from an input utterance. To de-
termine the semantics of phrases, the parser activates se-
mantic composers that combine words to determine their
joint reference. The robust parser is able to process gram-
matically ill-formed transcripts of natural spoken utter-
ances. In evaluations, the system selected correct objects
in response to utterances for 76.5% of the development
set data, and for 58.7% of the test set data. On clean data
sets with various speech and processing errors held out,
performance was higher yet. We suggested several av-
enues for improving performance of the system including
better methods for spatial grouping, semantically guided
backtracking during sentence processing, the use of ma-
chine learning to replace hand construction of models,
and the use of interactive dialogue to resolve ambiguities.
In the near future, we plan to transplant Bishop into an
interactive conversational robot (Roy et al., forthcoming
2003), vastly improving the robot’s ability to comprehend
spatial language in situated spoken dialogue.
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