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Abstract

This paperinvestigatesseveral augmentednixture

modelsthatarecompetitve alternatvesto standard
Bayesianmodelsand prove to be very suitableto

word sensedisambiguationand related classifica-
tion tasks. We presenta new classificationcorrec-
tion techniquethatsuccessfullyaddressethe prob-

lem of underestimationof infrequentclassesn the

training data. We shawv thatthe mixture modelsare
boosting-friendlyand that both Adaboostand our

original correctiontechniquecan improve the re-

sultsof theraw modelsignificantly achiezing state-
of-the-artperformanceon several standardestsets
in four languagesWith substantiallydifferentout-

putto Naive Bayesandotherstatisticaimethodsthe

investigatedmodelsare alsoshavn to be effective

participantsn classifiercombination.

1 Intr oduction

The focus tasks of this paper are two re-
lated problemsin lexical ambiguity resolution:
Word SenseDisambiguation(WSD) and Context-
Sensitve SpellingCorrection(CSSC).

Word SenseéDisambiguatiorhasalong historyas
a computationatask (Kelly and Stone,1975),and
thefield hasrecentlysupportedarge-scalenterna-
tional systemevaluationexercisesin multiple lan-
guagegSENSEVAL-1, Kilgarriff andPalmer(2000),
andSENSEVAL-2, EdmondsandCotton(2001)).

General purpose Spelling Correctionis also a
long-standingtask (e.g. Mcllroy, 1982), tradi-
tionally focusingon resolvingtypographicakerrors
suchastranspositiorand deletionto find the clos-
est“valid” word (in a dictionary or a morpholog-
ical variant), typically ignoring context. Yet Ku-
kich (1992) obsered that about 25-50% of the
spelling errorsfound in moderndocumentsare ei-
ther contet-inappropria¢ misusesor substitutions
of valid words (such as principal and principle)
which are not detectedby traditional spelling cor

rectors. Previous work hasaddressedhe problem
of CSSCfrom a machinelearningperspectie, in-
cluding Bayesianand DecisionList models(Gold-
ing, 1995), Winnow (GoldingandRoth, 1996)and
Transformation-Basetearning(Manguand Brill,
1997).

Generally both tasksinvolve the selectionbe-
tweenarelatively small setof alternatves perkey-
word (e.g. senseid’s such as church/BUILDING
and church/INSTITUTION or commonly confused
spellingssuchasquietandquite), andaredependent
onlocalandlong-distanceollocationalandsyntac-
tic patternsto resole betweenthe set of alterna-
tives. Thusbothtaskscansharea commonfeature
spacegdatarepresentatioandalgorithminfrastruc-
ture. We presenta framework of doingso,while in-
vestigatingheuseof mixturemodelsn conjunction
with a new errorcorrectiontechniqueas competi-
tive alternatvesto Bayesiamrmodels.While several
authorshave obsenred the fundamentakimilarities
betweenCSSCandWSD (e.g. Berleant,1995and
Roth, 1998), to our knowledge no previous com-
paratve empiricalstudyhastackledthesewo prob-
lemsin asingleunifiedframeawork.

2 Problem Formulation. Feature Space

The problemof lexical disambiguatiortanbe mod-
eled as a classificationtask, in which each in-
stanceof thewordto bedisambiguate¢targetword,
henceforth) identified by its context, hasto be la-
beledwith oneof the establishedensdabelsS =
{s1,52,...,8,}.1 The approacheswve investigate
are statisticalmethodsh : C x S — [0,1], out-
puttingconditionalprobabilitydistributionsoverthe
sensesetS givenacontt ¢ € C. Theclassifica-
tion of a contet ¢ is generallymadeby choosing
argmazscsh(c, s), but we alsopresentan alterna-

!In the caseof spelling correction the classificationabels
arerepresentedy the confusionsetratherthan senselabels
(for exampleS = {then,than}).



... sametableasthe othersbut movedinio
theotherbar with my pintandmy ...

| Featurdype | Word | POS | Lemma |
Contet featues
Context | moved/VBD| VBD move/V
Contet into/IN IN into/I
Context the/DT DT the/D
Context other/JJ JJ other/J
Target bar/NN NN bar/N
Contet with/IN IN with/I
Context my/PRP$ | PRP$ my/P
Context pint/NN NN pint/N
Syntactiqpredicate-agument)eatues
Objectb |moved/VBD| VBD move/V
Modifier other/JJ JJ other/J
Bigramcollocationalfeatues
-1 Bigram other/JJ JJ other/J
+1 Bigram with/IN IN with/IN

Figure 1. Examplecontet for WSD SENSEVAL-2 target
word bar (inventoryof 21 sensesandextractedfeatures

tive approachin Section4.1.

The contexts C are representeds a collection
of features. Previous work in WSD and CSSC
(Golding, 1995; Bruce et al., 1996; Yarawvsky,
1996; Golding and Roth, 1996; Pedersen,1998)
has found diverse featuretypes to be useful, in-
cludinginflectedwords,lemmasandpart-of-speech
(POS)in avarietyof collocationalandsyntacticre-
lationships,including local bigramsand trigrams,
predicate-ggumentrelationshipsandwide-contet
bag-of-wordsassociationsExamplesof thefeature
typeswe employ areillustratedin Figuresl and2.

The syntactic featuresare intendedto capture
the predicate-ayjument relationshipsin the syn-
tactic window in which the tamget word occurs.
Different relations are considereddependingon
the target word’s POS. For nouns, theserelations
are: verb-object,subject-erb, modifiernoun, and
noun-modified_nounfor verbs: verb-object,verb-
particle/prepositin, verb-prepositional lect for
adjectives: modifying_adjectie-roun Also, words
with thesamePOSasthetaigetwordthatarelinked
to thetargetword by coordinatingconjunctionsare
extractedas sibling features. The extraction pro-
cessis performedusing simple heuristic patterns
andregularexpression®ver the POServironment.

As Figure 2 shaws, we consideredor the CSSC
taskthePOSbigramsof theimmediatdeft andright
word pairs as additionalfeaturesin orderto solwe
POS ambiguity and capturemore of the syntactic
ernvironmentin which the target word occurs(the
elementsof a confusionset often have disjoint or
very differentsyntacticfunctions).

[ ... presentanothed piece,peack of theproblem... |

[ Featuretype | Word | POS | Lemma |
Contet featues
Contet presents VBZ present/V
Contet another DT another/D
Target | {peace,pieck NN z/N
Context of IN of/l
Contet the DT the/D
Contet problem NN problem/N
Syntactidpredicate-agument)featues
ObjectD presents VBz present/V
Modifier problem NN problem/N
Bigramcollocationalfeatues
-1 Bigram another DT another/D
+1 Bigram of IN of/l
BigramPOServironment
POS-2-1 - VBZ+DT -
POS+1+2 - IN+DT -

Figure 2. Examplecontet for the spelling confusionset
{piecepeacé andextractedfeatures

3 Mixtur e Models (MM)

We investigatein this Sectiona direct statistical
modelthatusesthe samestartingpoint asthe algo-
rithm presentedh Walker (1987).We thencompare
thefunctionality andthe performancef this model
to thoseof the widely usedNaive Bayesmodelfor

the WSD task (Gale et al., 1992; Moonegy, 1996;
Pedersen]1998),enhancedvith the full richerfea-
ture spacebeyondthetraditionalunorderedag-of-
words.

Algorithm 1 Naive BayesModel
P(s) - P(c|s)
P(c)
P(s) - [Twer(e) P(wls)
Yses P(s') - [wer(e) P(wls')

It is known that Bayesdecisionrule is optimal if
the distribution of the dataof eachclassis knowvn
(DudaandHart, 1973,ch. 2). However, the class-
conditionaldistributions of the dataare not known
and have to be estimated. Both Naive Bayesand
the mixture modelwe investigatedestimateP(s|c)
startingfrom mathematicallycorrectformulations,
and thus would be equivalent if the assumptions
they make werecorrect.Naive Bayesmalkesthe as-
sumption(usedto transformEquation(1) into (2))
thatthefeaturesareconditionallyindependengiven
a senselabel. The mixture model makes a simi-
lar assumptionpy regardinga documentas being
completelydescribedy aunionof independenfiea-
tures(Equation(3)). In practicethesearenottrue.
Given the strong correlationand commonredun-

P(sle) = 1)

(2)




dangy of the featuresin the caseof WSD-related
tasks,in conjunctionwith the limited training data
on which the probabilities are estimatedand the
high dimensionalityof the featurespace theseas-
sumptionslead to substantialmodeling problems.
Another important obsenation is that very mary

of the frequenciesnvolved in the probability esti-
mationare zerobecausef the very sparsefeature
space. Naive Bayesdependsheaily on probabil-
ities not being zero andthereforeit hasto rely on

smoothing.Ontheotherhand the mixturemodelis

morerobust to unseerevents,without the needfor

explicit smoothing.

Under the proposedmixture model, the condi-
tional probability of a senses givenatargetword
in acontet c is estimatedasa mixture of thecondi-
tional senseprobability distributions for individual
contet features:

Algorithm 2 Mixture Model
P(sle)= > P(slw,c)- Plw|)=  (3)
wEF(c)

Y P(slw)-Pwle)  (4)

weF(c)

asopposedo the Naive Bayesmodelin which the
probability of a senses givena contet c is derived
from theprior probability of s weightedby thecon-
ditionalprobabilitiesof thecontetual featuresF'(c)
giventhesense.

TheprobabilitiesP(s|w) in (4) andP(w|s) in (2)
canbe computedasmaximumlik elihood estimates
(MLE), by countingthe co-occurrencesf s andw
versusthe occurrence®f w, respectiely s in the
training data. An extensionto this classicalestima-
tion methodis to usedistance-weightedountsin-
steadof raw countsfor therelative frequencies:

P _ Afreq(w,Tw‘s) _ EC&ETz‘S A(w, cs)
(slw) = Afreqw,Tp) Y eer, Alw,c)
®)

(6)

A.freQ(wa Tw|s)
Ew’EF(c) Af're(I(wla Ta:|s)

T, denotesghetraining contets of word z and Ty,
the subsetof T,, correspondingo senses. When
w is asyntacticheadvord, A(w, ¢) is computedby
raw count. Whenw is a context word, A(w, ¢) is
computedasafunctionof theposition: of thetamget
word z in ¢ andthe positionsyy, ..., j, wherew oc-
cursine: A(w,¢) = > 63, 31). If 8(4, j;) areset

P(w|s) =

to 1 regardles®f thedistancei — j;| thenMLE es-
timatesareobtained. Therearevariousotherways
of choosingthe weightingmeasurej. Onenatural
way is to transformthedistancegi — j;| into aclose-
nessmeasureby consideringd(i, j;) ﬁ
(Manningand Schitze 1999,ch. 14.1). This mea-
sureprovesto be effective for the spelling correc-
tion task,wherethewordsin theimmediatevicinity
arefar moreimportantthanthe restof the contet
words’, but imposescounterproductie differences
betweernthe muchwider context positions(suchas
+30 vs. +31) usedin WSD, especiallywhen con-
sideringlarge context windows. Experimentalre-
sultsindicatethat it is more effective to level out
the local positionaldifferenceggiven by a continu-
ousweighting, by insteadusing weight-equyalent
regionswhich canbe d?SCI’ibedNith asimplestep-
functioné(j,t) = m (k is aconstant).
A filtering processbasedon the overall impor
tance of a word w for the disambiguationof x
is also emplo/ed, using alterationsof the form

X fAr Z(ej(;’;j'a?“ with a,,, proportionalto the
numberof sensesof target word x which it co-
occurswith in the training set? In this way, the
words that occur only oncein the training set, as
well asthosethat occurwith mostof the sense®of
aword, providing norelevantinformationaboutthe
sensatself, arepenalized.
Improvementsobtainedusingweightedfrequen-
ciesandfiltering over MLE areshawn in Table 1.

Bayes| Mixture

MLE bag-of-wordsonly 55.55 | 56.31
MLE with syntacticfeatures| 61.62 | 62.27
+ Weighting+ Filtering 63.28 | 63.06

+ CollocationalSenses 65.70 | 65.41

Tablel: Theincreasdn performancdor successie variants
of BayesandMixture Model asevaluatedby 5-fold crossvali-
dationon SENSEVAL-2 Englishdata

P(w|c) canbe seenasweighting factorsin the
mixture model formula (4). When w is a word,

2GoldingandSchabe$1996)shav thatthe mostimportant
wordsfor CSSCarecontainedwithin awindow of +3.

3The resultsshavn were obtainedfor & = 2 with term
weights doubled within a +3 contet window. Various
otherfunctionsand parametersvalueswere tried on held-out
parameteoptimizationdatafor SENSEVAL-2.

4A normalizationstepis requiredto outputprobability dis-
tributions.

5The collocational senseinformation is specific to the
SENSEVAL-2 Englishtaskandrelieson the giveninventory of
collocationsensdabels(e.g.art_gallery%1:06:00:).



P(w|c) expressesthe positional relationship be-
tweenthe occurrence®f w andthe taiget word z
in ¢, andis computedusing step-functionsas de-
scribedpreviously,. Whenw is a syntactichead-
word, P(w|c) is choserasthe averagevalueof two
ratios expressingthe usefulnessof the headverd
type for the given taiget word and respecitely for
the POS-clasof the target word (adjectve, noun,
verb). Theseratiosare estimatedby using a jack-
knife (hold-one-out)procedureon the training set
and countingthe numbertimesthe headverd type
is a goodpredictorversusthe numberof timesit is
abadpredictor

FeatureType Value DMM | Naive Bayeg

(position) | Lemma/POS| P(s]w) P(w]s) J ]

Syntactid~eatues
Subject® move/V 0 0 3
Modifier other/J 0 0 8
Bigrams

-1 Bigram other/J 0 0 2

+1 Bigram with/I 0.4444 0.0007 1
Contetual Featues
Contet(-17) pub/N 0.3677 0.0007 |.3
Contet(-13) sit/V 0.5708 0.0028 | .5
Contet(-9) table/N 0.7173 0.0008 |.5
Contet(-4) move/V 0.2990 0.0007 1
Contet(-3) into/I - - -
Contet(-2) the/D - - -
Context(-1) other/J - - -
Target bar/N 0.4296 [0.0530] | 2

Contet(+1) with/I - -
Contet(+2) my/P - - -
Context(+3) pint/N 0.3333 0.0001 | 2
Posteriomprobability P(sc): | & S°=.46] L2 [T=.29

Figure 3: A WSD example that shaws the influence of
syntactic,collocationalandlong-distanceontet featuresthe
probability estimatesusedby Naive BayesandMM andtheir
associatedveights(d), and the posteriorprobabilitiesof the
truesenseascomputecby thetwo models.

As shawvn in Table1, Bayesandmixture models
yield comparableesultsfor the given task. How-
ever, they capturethepropertieof thefeaturespace
in distinct ways (example applicationsof the two
modelsonthesentencen Figurel areillustratedin
Figure 3) andtherefore,are very appropriateto be
usedtogetherin combination(seeSection5.4).

4 ClassificationCorr ection and Boosting

We first presentanoriginal classificatiorcorrection
methodbasednthevariationof posteriomprobabil-
ity estimatesacrossdataandthenthe adaptatiorof
the Adaboostmethod(Freundand Schapire, 1997)
to thetaskof lexical classification.

4.1 The Maximum Variance Correction
Method (MVC)

Oneproblemarisingfrom thesparsenessf training
datais that mixture modelstendto excessiely fa-

vor thebestrepresentedense thetrainingset. A

probablecauses thatspuriousvords,whichcannot
be consideredgeneralstopwords but do not carry
sense-disambiguatiomformation for a particular
targetword, mayoccuronly by chancebothin train-

ing andtestdata® Another causeis the fact that
mixture modelssearchfor decisionsurfaceslinear
in the featurespacé; therefore they cannot make

only correctclassificationgunlesshefeaturespace
canbe divided by linear conditions)and the sam-
plesfor the underrepresentedensesre likely to

beinterpretedasoutliers.

To addressthis estimationproblem, a second
classificationstepis emplgyed, basedon the obser
vationthatthedeviation of acomponenbf the pos-
terior distribution from its expectedvalue (ascom-
putedoverthetrainingset)canbeasrelevantasthe
maximumof the distribution maxsesﬁ(s|c). In-
steadof classifyingeachtestcontet independently
after estimatingits senseprobability distribution,
we classifyit by comparingit with thewhole space
of training contets, for which the posteriordistri-
butionsarecomputedusingajackknife procedure.

Figure4(a)illustratessuchanexample:eachline
in thetablerepresenttheposteriordistribution over
sensegiven a context, eachcolumn containsthe
values correspondingo a particular sensein the
posteriordistributions of all contets. Intuitively,
senses; may be preferredto the mostlikely sense
s™ for thetestcontet c;57(art) despitehefactthat

the P(s1|c157) is smallerthan P(s™|cy57) because
of the analogywith c4(art) andthe “expectedval-
ues”of thecomponentsorrespondingo s; ands™.

Unfortunately we face again the problem of
underrepresentatin in the training data: the ex-
pectedvaluesin the posteriordistributions for the
undefrepresentedensesvhenthey expresghecor-
rect classificationcan not be accuratelyestimated.
Therefore we have to look at the problemfrom an-
otherangle.

5For example,assuminghatevery contet containsapprox-
imatelythesamenumberof suchwords,thengiventwo senses,
one representedn the training set by 20 examples,and the
otheroneby 4, it is five timesmorelik ely thata spuriousword
in atestcontext co-occurswith thelargersampledsense.

"Roth (1998) shaws that Bayes, TBL and Decision Lists
alsosearchor a decisionsurfacewhich is a linearfunctionin
thefeaturespace



P(s|c)

Senses: St ... S™ Sk-1 Sk
G(art)0.04...044 ... ... ...
cfar)0.05...041 ... ...... cTs

Training cy(art) 0.13...0.26 0.33...
contexts cy@art)0.21...029 ... ... ...
G(art)0.04...036 ... ... ...
c(art) 0.06. ..0.29 0.26 } N
;:rgrsl:ext Cso(art)0.24...031 ... ... ...

(a) Probabilitydistributionscomputecby MM usingjack-

knife onthetrainingsetanda testcontext

Variational CoefficientdCs ¢

Sy ...SM . .sk1 Sk
G(art)-06...+16 ... ... ...
cfart)-04...+1.2 ... ... ...
cy(art)[+1.2...-0.8 ... +23...
cylart)+29...-04 ... ... ...
csart))-0.6...+05 ... ... ...
c6(art) -0.2...-04......+18

Csy(@art)+35...-02... ... ...

(b) The variational coeficients for the example
ontheleft

Figure4: wsD exampleshaving the utility of the MVC method.A senses; with a high variationalcoeficient is preferredto
themodes™ of theMM distribution (thefieldscorrespondingo thetrue sensearehighlighted)

The mathematicasupportis provided by Cheby-
she/'s inequality P(|X — u| > ao) < X, which
allows usto placeanupperboundon the probabil-
ity thatthe value of a randomvariable X is larger
thanasetvalue,giventhemeanu andvariances of
X. Consideringafinite selectionI’ = (z;); from a
distribution D for which p ando exist andcanbe
estimatefi astheempiricalmeant = 1, 3=, cr @i
andempiricalvariances? = IT\%I Yeier(@i—i)?,
andgiven anothersetU = (yi)x, the elementsof
U that are leastprobableas being generatedrom
D arethosefor which the variational coeficients
ve, = Y arelarge.

To apply this assumptiorto the disambiguation
task, a setT5 containingthe valuesP(s|c) for all
contets c¢ in the training setthat are not labeleds
is built for every senses (seeFigure4(a)). In this
way, the problem of poor representatiorof some
sensess overcomeand the selectionsls arelarge
for all sensesAn instancen thetestsetis consid-
eredmore likely to correspondo a senses if the
estimatedvalue P(s|c) is anoutlier with respecto
Ts (seeFigure4(b)) andthusit is viewed asa can-
didatefor having its classificatiorchangedo s.

Assumingthat the selectionsIs are representa-
tive andthereexist first andsecondordermoments
for the underlyingdistributions (conditionswhich
we call “good statisticalproperties”),an improve-
mentin the accurag 1 — ¢ of the classifiercan
be expectedwhen choosinga sensewith a varia-

. . . 1 . _
tional coeficient ve > Jip mstef\dof the clas

sifier distribution’s modeargmaz,;P(s|c) (if such
a senseexists). For example,knowing thatthe per
formanceof the mixture modelfor SENSEVAL-2 is

81t is hardto judge how well estimatedthesestatisticsare
without makingary distributionalassumptions.

approximatiely 0.65, the thresholdfor variational
coeficientsis setto 1.69. Becausespuriouswords
not only favor the betterrepresentedgensesn the
training set,but alsocanaffect the variationalcoef-
ficientsof unlikely sensessomerestrictionshadto
beimposedn ourimplementatiorio avoid the other
extremeof favoring unlikely senses.

The mixture model doesnot guaranteethe re-
quirementamposedby the MVC methodare met,
but it hasthe adwantageover the Bayesianmodel
that eachof the component®of the posteriordistri-
bution it computescanbe seenasa weightedmix-
ture of randomvariablescorrespondingo the indi-
vidual features.In the simplestcase whenconsid-
ering binary features thesevariablesare Bernoulli
trials. Furthermore,if the trials have the same
probability-masdunction thena componenbf the
posteriordistribution will follow a binomial distri-
bution, and thereforewould have good statistical
properties.In generalthe underlyingdistributions
cannotbecomputedput ourexperimentshaw that
they usually have good statisticalpropertiesasre-
quiredby MVC.

4.2 AdaBoost

AdaBoostis an iterative boostingalgorithmintro-
ducedby Freundand Schapire(1997)shavn to be
successfuffor several natural languageclassifica-
tion tasks.AdaBoostsuccessiely builds classifiers
basedon a weaklearner(baselearningalgorithm)
by weightingdifferentlytheexampledn thetraining
space,and outputsthe final classificationby mix-
ing thepredictionsof theiteratively built classifiers.
Becauseensalisambiguatioris amulti-classprob-
lem, we choseto useversionAdaBoost.M2.

We could not apply AdaBooststraightforvardly
to the problemof sensedisambiguatiorbecausef
the high dimensionalityand sparsenessf the fea-



ture space. Superficialmodeling of the training
set can easily be achiared becauseof the singu-
larity/rarity of mary featurevaluesin the context
space but this largely represent®verfitting of the
training data. In orderto solwe this problem,we
useAdaBoostin conjunctionwith jackknife anda
partialupdatingtechnique.At eachround, N clas-
sifiersarebuilt usingastrainingall the examplesin
the training setexceptthe oneto be classified,and
the weightsare updatedat featurelevel ratherthan
contet level. This modified Adaboostalgorithm
could only be implementedor the mixture model,
which “perceves” the contets asadditive mixture
of featuresThe Adaboost-enhancedixture model
is calledAdaMixt henceforth.

5 Evaluation

We presenta comparatie studyfor four languages
(English, Swedish, Spanish,and Basque)by per
forming 5-fold cross-alidationonthe SENSEVAL-2
lexical-sampletraining data,usingthe fine-grained
senseinventory For English and Swedish, for
which POS-taggedraining datawas available to
us, the fnTBL algorithm (Ngai and Florian, 2001)
basedn Brill (1995)wasusedto annotatehedata,
while for Spanisha mildly-supervisedOS-tagging
systensimilarto theonepresentedh Cucerzarand
Yaravsky (2000) was employed. We also present
the resultsobtainedby the differentalgorithmson
anotherWSD standardset, SENSEVAL-1, also by
performing 5-fold crossvalidation on the original
training data. For CSSC,we testedour system
on the identical datafrom the Brown corpusused
by Golding (1995), Golding and Roth (1996) and
ManguandBrill (1997). Finally, we presenthere-
sultsobtainedby theinvestigatednethodson a sin-
glerunonthe Senseal-1 andSensegal-2 testdata.

The describedmodelswereinitially trainedand
testedby performing5-fold cross-alidationon the
SENSEVAL-2 English lexical-sample-taskraining
data. When parametermeededto be estimated,
jackknife or a 3-1-1 split (training and/orparame-
ter estimation- testing)wereused.

5.1 SENSEVAL-2

The Englishtraining setfor SENSEVAL-2 is com-
posed of 8861 instancesrepresenting73 tamget
words with an averagenumberof 12.5 senseger
word. Table 2 illustratesthe performanceof each
of the studied models broken down by part-of-
speech. As obsered in most experiments, the
feature-enhancedNaive Bayes has the tendeng

to outperformby a small mamgin the raw mixture
model,but becausehelatterprovedto beboosting-
friendly, its augmentedersionsachiezed the high-
estfinal accuraciesThedifferencebetweerMMVC
andenhancedNaive Bayesis significant(McNemar
rejectionrisk of 4 x 1073).

[ Adjectives] Nouns] Verbs [[ Overall|

MostLikely 5211 | 52.01] 27.28] 41.79
Naive Bayes(FE)| 73.18 | 72.74 | 55.54 || 65.70
Mixture 73.90 | 71.09]| 56.16 | 65.41
AdaMixt 7468 | 72.17]| 56.41 | 66.09
MMVC 7468 | 73.06| 57.06| 66.72

Table2: Resultsusing5-fold crossvalidationon SENSEVAL -
2 Englishlexical-sampléraining data

Figure5 shawvs boththe performancef the mix-
ture model alone and in conjunctionwith MVC,
and highlights the improvement in performance
achieved by the latter for eachof the 4 languages.
All MMVC versusMM differencesarestatistically
significant(for SENSEVAL-2 Englishdata therejec-
tion probabilityof a pairedMcNemartestis 10719).
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Figure5: MM andMMVC performanceby performing5-
fold crossvalidationon SENSEVAL-2 datafor 4 languages
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Figure6 shavs whatis generallya log-linearin-
creasdn performanceof MM aloneandin combi-
nationwith the MVC methodover increasingrain-
ing sizes.Becausef the way the smallesttraining
setswerecreatedo includeatleastoneexamplefor
eachsensethey weremorebalancedsasideeffect,
and the compensationsntroducedby MVC were
lessproductve asaresult. Givenmoretrainingdata,
MMVC startsto improve relative to the raw model
both becauséhe training setsbecomemore unbal-
ancedin their sensedistributions and becausehe
empiricalmomentsand the variationalcoeficients
onwhichthemethodreliesarebetterestimated.

5.2 SENSEVAL-1

The systemsused for SENSEVAL-2 English data
were also evaluatedon the SENSEVAL-1 training
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Figure 6: Learning Cune for MM and MMVC on
SENSEVAL-2 English(cross-alidatedon heldoutdata)

data (30 words, 12479instanceswith an average
of 10.8senseperword) by using5-fold crossval-
idation. Therewasno further tuning of the feature
spaceor modelparameterso adaptthemto thepar
ticularitiesof this new testset. Comparatre perfor
manceis shavn in Table3. Thedifferencebetween
MMVC andenhanced\aive Bayesis statistically
significant(McNemarrejectionrisk 0.036).

| Adjectives] Nouns] Verbs [[ Overall]

MostLikely 63.43 | 66.52| 57.6 || 63.09
Naive Bayes(FE)| 75.67 | 84.15| 76.65 || 80.16
Mixture 76.45 | 81.57| 75.9 || 78.79
AdaMixt 76.83 | 83.39| 77.10| 80.16
MMVC 78.49 | 84.79| 76.81| 81.06

Table3: Resultsusing5-fold crossvalidationon SENSEVAL-
1 trainingdata(English)

5.3 Spelling Correction

Both MM andtheenhancedayesmodelobtainvir-
tually the sameoverall performance as the TriB-
ayes systemreportedin (Golding and Schabes,
1996), which usesa similar feature space. The
correction and boosting methodswe investigated
mamginally improve the performanceof the mixture
model, as can be seenin Table 4 but they do not
achieve the performanceof RuleS93.1% (Mangu
andBrill, 1997)andWinnow 93.5% (Golding and
Roth, 1996; Golding and Roth, 1999), methods
that include featuresmore directly specializedfor
spellingcorrection.Becausef thesmallsizeof the
testset, the differencesin performanceare dueto
only 14 and 20 more incorrectly classifiedexam-
plesrespectiely. More importantthanthis differ-
encé® may be the fact that the systemsbuilt for
WSDwereableto achieze competitive performance

%Al figuresreportedarefor the standardl4 confusionsets;
theaccuraciesor the 18 setsaregenerallyhigher
10wWe did not have the actualclassificationsrom the other
systemgo checkthe significanceof thedifference.

with little to no adaptation(we only enrichedthe
featurespaceby addingthe POSbigramsto the left
andright of thetargetwordandchangedheweight-
ing modelaspresenteth Section3 becausespelling
correctionreliesmoreon theimmediatethanlong-
distancecontext). Anotherimportantaspecthatcan

siwe || M.L. |Bayes) MM | AdaMixt | MMVC |
accept | 50 70.0 | 92.0 | 90.0 90.0 94.2
affect 49 91.8| 95.9| 98.0 98.0 93.9
among | 186 || 71.5| 80.6 | 785 | 81.2 80.6
amount| 123 || 71.5| 79.7 | 79.7 82.9 83.7
begin 146 || 93.2 | 96.6 | 96.6 97.3 96.6
country | 62 91.9| 93.5| 95.2 935 935
lead 49 46.9 | 93.9| 91.8 95.9 91.8
past 74 68.9| 86.5| 93.2 93.2 93.2
peace | 50 44,0 | 78.0 | 80.0 78.0 80.0
principal| 34 | 58.8| 82.3| 88.2| 85.3 88.2
quiet 66 83.3| 93.9| 93.9 93.9 955
raise 39 64.1| 87.2 | 84.6 84.6 87.2
than 514 || 63.4| 96.9 | 96.5 96.5 96.5
weather| 61 86.9| 98.4| 95.1 96.7 98.4

[Overall [1503]] 71.1] 91.2] 91.2] 91.8 | 92.2 |

Table4: Resultsonthestandardl4 CSSCdatasets

be seenin Table4 is that therewasno modelthat
constantlyperformedbestin all situations suggest-
ing the advantageof developinga diversespaceof

modelsfor classifiercombination.

5.4 UsingMMVC in Classifier Combination

The investigatedMMVC model proves to be a
very effective participantin classifiercombination,
with substantiallydifferent outputto Naive Bayes
(9.6% averagedcomplementaryate, as definedin
Brill and Wu (1998)). Table 5 shavs the im-
provementobtainedby addingthe MMVC model
to empirically the bestvoting systemwe had us-
ing Bayes, BayesRatio, TBL and Decision Lists
(all classifiercombinationmethodstried and their
results are presentedexhaustvely in Florian and
Yarawsky (2002)). The improvementis significant
in both casesas measuredy a paired McNemar
test: 1.7 x 10~ 7 for SENSEVAL-1 data,1.8 x 107
for SENSEVAL-2 data.

| without | with || error
MMVC MMVC reduction

Senseall 82.26 83.06 4.5%

Senseal2 67.53 68.66 3.5%

Table5: The contritution of MMVC in arank-basedlassi-
fier combinationon SENSEVAL-1 andSENSEVAL-2 Englishas
computedby 5-fold crossvalidationover trainingdata

MMVC is alsothe top performerof the 5 sys-
temsmentionedabore on SENSEVAL-2 Englishtest



data,with anaccurag of 62.5%. Table6 contrasts
the performancebtainedoy the MMVC methodto
theaverageandbestsystemperformancen thetwo
SENSEVAL exercises.

SENSEVAL-1 (30targetwords,7446instances)
Average/ BestSENSEVAL-1 Competitor 73.1+ 2.9/ 77.1
MMVC alone 76.9
Classifiercombinatiorwith MMVC 80.0
SENSEVAL-2 (73 targetwords,4328instances)
Average/ BestSENSEVAL-2 Competitor 55.7+ 5.3/ 64.2
MMVC alone 62.5
Classifiercombinationrwith MMVC 66.5

Table 6: Accuray on SENSEVAL-1 and SENSEVAL-2 En-
glishtestdata(only the supervisedsystemswith a coverageof
atleast97%wereusedto computethe meanandvariance)

6 Conclusion

We investigatedhe propertiesand performanceof
mixture modelsandtwo augmentingnethodsn an
unified framework for Word SenseDisambiguation
andContet-Sensitve SpellingCorrection shaving
experimentallythat suchjoint modelscansuccess-
fully matchandexceedthe performancef feature-
enhancedBayesianmodels. The new classifica-
tion correction method (MVC) we proposesuc-
cessfullyaddressethe problemof underestimation
of lesslikely classesgonsistentlyandsignificantly
improving the performanceof the main mixture
modelacrossall tasksandlanguagesFinally, since
the mixture modelandits improvementsperformed
well on two major tasksand several multilingual
datasets,we believe that they canbe productvely
appliedto other related high-dimensionalitylexi-
cal classificationproblems,including named-entity
classificationtopicclassificationandlexical choice
in machinetranslation.
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