
Discourse Processing for Explanatory Essays in Tutorial Applications

Pamela W. Jordan and Kurt VanLehn
Learning Research and Development Center

University of Pittsburgh
Pittsburgh PA 15260

[pjordan,vanlehn]@pitt.edu

Abstract

The Why-Atlas tutoring system presents
students with qualitative physics questions
and encourages them to explain their an-
swers via natural language. Although
there are inexpensive techniques for ana-
lyzing explanations, we claim that better
understanding is necessary for use within
tutoring systems. In this paper we de-
scribe how Why-Atlas creates and utilizes
a proof-based representation of student es-
says. We describe how it creates the proof
given the output of sentence-level under-
standing, how it uses the proofs to give
students feedback, some preliminary run-
time measures, and the work we are cur-
rently doing to derive additional benefits
from a proof-based approach for tutoring
applications.

1 Introduction

Whereas most explanations are produced and
adapted to benefit or inform a hearer, a self-
explanation is produced for the benefit of the
speaker. If there is a hearer he often already knows
all about the topic as in a tutoring context. Self-
explanation is a cognitively valuable pedagogical ac-
tivity because it leads students to construct knowl-
edge (Chi et al., 1994), and it can expose deep mis-
conceptions (Slotta et al., 1995). But it is diffi-
cult to encourage self-explanation without giving the
student substantive feedback on what they generate

(Aleven and Koedinger, 2000; Chi et al., 2001). To
give substantive feedback the system has to be able
to understand student explanations to some degree.

The Why-Atlas system presents students with
qualitative physics problems and encourage them to
write their answers along with detailed explanations
for their answers. While physics misconceptions
have proven to be particularly resistant to repair,
practice with qualitative physics questions helps in
overcoming some of these misconceptions (Hake,
1998).

The student explanation shown in (1), which
is from our corpus of human-human computer-
mediated tutoring sessions, illustrates how challeng-
ing these explanations are for a system to under-
stand. The problems we have examined require a
short essay with an average of 6.9 sentences to fully
explain to the satisfaction of experienced physics in-
structors.

(1) Question: Suppose you are running in a straight line
at constant speed. You throw a pumpkin straight up.
Where will it land? Explain.

Explanation: Once the pumpkin leaves my hand,
the horizontal force that I am exerting on it no longer
exists, only a vertical force (caused by my throwing
it). As it reaches it’s maximum height, gravity (exerted
vertically downward) will cause the pumpkin to fall.
Since no horizontal force acted on the pumpkin from
the time it left my hand, it will fall at the same place
where it left my hands.

Statistical text classification approaches, such as
latent semantic analysis (Landauer et al., 1998),
have shown promise for classifying a student expla-
nation into medium-grained good and bad categories
(Graesser et al., 2000). For instance, a medium-

 Philadelphia, July 2002, pp. 74-83. Association for Computational Linguistics.
 Proceedings of the Third SIGdial Workshop on Discourse and Dialogue,

grained category that should match (1) is the often-
observed impetus misconception:

If there is no force on a moving object, it
slows down.

Such medium-grained categories typically have
multiple propositions and contain multiple content
words. While successful with medium-grained
classes, statistical approaches are not yet able to dis-
tinguish subtle but important differences between
good and bad explanations. Statistical classification
is insensitive to negations1 , anaphoric references2 ,
and argument ordering variations3 and its inferenc-
ing is weak4. To capture these subtle differences
and to allow us to respond more directly to what the
student actually said5, we need the precision possi-
ble so far only with symbolic approaches. So Why-
Atlas parses each sentence into a propositional rep-
resentation.

The PACT Geometry Tutor is an operational pro-
totype that does a finer-grained symbolic classifi-
cation (Aleven et al., 2001). PACT also parses a
student explanation into a propositional representa-
tion but then uses LOOM to classify these into fine-
grained categories that typically express one propo-
sition. This approach looks promising (Aleven et
al., 2001), but the system’s goal is to elicit a justifi-
cation for a step in a geometry proof and generally
these can be expressed with a single sentence that
succinctly translates into a small number of proposi-
tions. It isn’t clear that this approach will work well
for the longer, more complex explanations that the
Why-Atlas system elicits.

Instead of classifying propositions, the Why-
Atlas system constructs abductive proofs of them.

1A good explanation followed by “But I don’t think that will
happen.” would be classified as good.

2In (1) above, it would tend to misclassify the last clause as
the correct answer “the pumpkin will land in my hands” because
it does not understand the temporal anaphora.

3The difference between x accelerates faster than y and y
accelerates faster than x would not be detected.

4In (1), the student has the extreme belief that the pumpkin
has no horizontal velocity. This would probably not be recog-
nized as a case of “slowing down” by statistical classification.

5When a true statement lacks precision, the tutor should ac-
knowledge the correct statement and elicit more precision rather
than continuing as if it were wrong. For example, if a student
makes a correct statement about the velocity of an object but did
not report it in terms of the horizontal and vertical components
of the velocity, the tutor should ask which was intended.

A proof-based approach gives more insight into
the line of reasoning the student may be follow-
ing across multiple sentences because proofs of the
propositions share subproofs. Indeed, one propo-
sition’s entire proof may be a subproof of the next
proposition. Moreover, subtle misconceptions such
as impetus are revealed when they must be used to
prove a proposition.

Abductive inference has a long history in plan
recognition, text understanding and discourse pro-
cessing (Appelt and Pollack, 1992; Charniak, 1986;
Hobbs et al., 1993; McRoy and Hirst, 1995; Las-
carides and Asher, 1991; Rayner and Alshawi,
1992). We are using an extended version of SRI’s
Tacitus-lite weighted abductive inference engine
(Hobbs et al., 1993) as our main tool for building
abductive proofs. We had to extend it in order to use
it for domain as well as language reasoning. As ad-
vised in (Appelt and Pollack, 1992), abductive infer-
ence requires some application specific engineering
to become a practical technique.

In this paper we describe how the system creates
and utilizes a proof-based representation of student
essays. We describe how it creates the proof given
the output of sentence-level understanding, how it
uses the proofs to give students feedback, some pre-
liminary run-time measures, and the work we are
currently doing to derive additional benefits from a
proof-based approach for tutoring applications.

First we give an overview of the Why-Atlas tutor-
ing system architecture. Next we give some back-
ground on weighted abduction and Tacitus-lite+ and
describe how it builds an abductive proof. Next we
describe how the system uses the proofs to give stu-
dents feedback on their essays. Finally, we discuss
efficiency issues and our future evaluation plans.

2 Overview of the Why-Atlas Tutoring
System

The architecture for the Why-Atlas qualitative
physics tutoring system is shown in Figure 1. The
user interface for the system is a screen area in which
the physics question is displayed along with an essay
entry window and a dialogue window. As the stu-
dent enters an answer and explanation for a qualita-
tive physics question the sentence-level understand-
ing module builds sets of propositions and passes

(APE)

Dialogue
Engine

Interface

Tutorial
Strategist

propositions

Discourse−level

Understanding

Inference Engine

(Tacitus−lite+)

proofs

proofs

ordered

Sentence−level
Realization

(RealPro)

Discourse Manager

ordered search
queue

student
strings

Sentence−level
Understanding

(Carmel/Rainbow)

History

Language and

goals

goal or

class

Domain axioms

and
axioms

queue
search

response

KCD

propositions or
response classes directive goal

and propositions

tutor
strings

tutor string

tutor string

Figure 1: Why-Atlas Tutoring System Architecture

them, via the discourse manager, to the discourse-
level understanding module. Each set of proposi-
tions represents one interpretation of a sentence. The
user interface and the sentence-level understanding
components are described in detail in (Rosé, 2000;
Freedman et al., 2000).

The discourse-level understanding module uses
language and domain reasoning axioms and the
Tacitus-lite+ abductive inference engine to create a
set of proofs that offer an explanation for the stu-
dent’s essay and give some insight into what the
student may believe about physics and how to ap-
ply that knowledge. The discourse-level under-
standing module updates the propositions and the
search queue for proofs in the history with the results
from Tacitus-lite+. This part of the history supports
anaphora resolution and processing of revisions a
student may make to his essay. The discourse man-
ager module selects and sends the best proofs to the
tutorial strategist.

The tutorial strategist identifies relevant commu-
nicative goals. Currently there are four categories of
communicative goals. Two of these, disambiguating
terminology and clarifying the essay, are addressed

via directives to modify the essay. The other two,
remediating misconceptions and eliciting more com-
plete explanations, are addressed via dialogue. Mis-
conceptions are detected when the proof includes
an axiom that is incorrect or inapplicable. Incom-
pleteness is detected under two conditions. First,
there may be multiple proofs that are equally good.
This condition indicates that the student did not say
enough in his explanation for the system to decide
which proof best represents what the student’s rea-
soning may be. Each possible line of reasoning
could point to different underlying problems with
the student’s physics knowledge. The second con-
dition occurs when the student fails to explicitly
state a mandatory point, which is a proposition that
domain instructors require of any acceptably com-
plete essay. Once the tutorial strategist has identi-
fied communicative goals it prioritizes them accord-
ing to curriculum constraints and sends them to the
discourse manager, which selects the highest prior-
ity goal after taking dialogue coherency into account
and sends the goal to either the dialogue engine or
the sentence-level realization module.

The dialogue engine initiates and carries out a dia-

logue plan that will either help the student recognize
and repair a misconception or elicit a more com-
plete explanation from the student. The main mech-
anism for addressing these goals are what we call a
knowledge construction dialogue (KCD) specifica-
tion. A KCD specification is a hand-authored push-
down network. Nodes in the network are either the
system’s questions to students or pushes and pops
to other networks. The links exiting a node corre-
spond to anticipated responses to the question. Each
question is a canned string, ready for presentation
to a student. The last state of the network is saved
in the history and the sentence-level understanding
module accesses this in order to get information for
analysis of student responses. The sentence-level
understanding module uses a classification approach
for dialogue responses from the student since cur-
rently the dialogue plans are limited to ones that ex-
pect short, direct responses. During a dialogue, re-
sponse class information is delivered directly to the
dialogue engine via the discourse manager. The di-
alogue engine is described further in (Rosé et al.,
2001).

The other communicative goals, disambiguating
terminology and clarifying the essay, are addressed
by the discourse manager as directives for the stu-
dent to modify the essay. It passes propositions and a
goal to the sentence-level realization module which
uses templates to build the deep syntactic structures
required by the RealPro realizer (Lavoie and Ram-
bow, 1997) for generating a string that communi-
cates the goal.

When the discourse manager is ready to end its
turn in the dialogue, it passes the accumulated natu-
ral language strings to the user interface. This out-
put may also include transitions between the goals
selected for the turn.

While a dialogue is in progress, the discourse-
level understanding and tutorial strategist modules
are bypassed until the essay is revised. Once the stu-
dent revises his essay, it is reanalyzed and the cy-
cle repeats until no additional communicative goals
arise from the system’s analysis of the essay.

Although the overall architecture of the system is
a pipeline, there is feedback to earlier modules via
the history. Only the discourse-level understand-
ing and discourse manager modules are internally
pipelines, the rest are rule-based.

3 Background on Weighted Abduction and
Tacitus-lite+

Abduction is a process of reasoning from an obser-
vation to possible explanations for that observation.
In the case of the Why-Atlas system the observations
are what the student said and the possible explana-
tions for why the student said this are the physics
qualitative axioms (both good and bad) and order-
ings of those axioms that support what the student
said. To arrive at the explanation, some assump-
tions have to be made along the way since all the
inferences that underly an explanation will not be
expressed.

Weighted abduction is one of several possible for-
malisms for realizing abductive reasoning. With
weighted abduction there is a cost associated with
making an assumption during the inference process.
Following the weighted abductive inference algo-
rithm described in (Stickel, 1988), Tacitus-lite is a
collection of axioms where each axiom is expressed
as a Horn clause. Further, each conjunct pi has a
weight wi associated with it, as in (2). The weight is
used to calculate the cost of assuming pi instead of
proving it where cost(pi) = cost(r) ∗ wi.

(2) p1w1 ∧ · · · ∧ pnwn ⇒ r

Given a goal or observation to be proven, Tacitus-
lite takes one of four actions; 1) assumes the obser-
vation at the cost associated with it 2) unifies with a
fact for zero cost 3) unifies with a literal that has al-
ready been assumed or proven at no additional cost
4) attempts to prove it with an axiom.

All possible proofs could be generated. How-
ever, Tacitus-lite allows the applications builder to
set depth bounds on the number of axioms applied
in proving an observation and on the global num-
ber of proofs generated during search. Tacitus-lite
maintains a queue of proofs where the initial proof
reflects assuming all the observations and each of
the four above actions adds a new proof to the queue.
The proof generation can be stopped at any point and
the proofs with the lowest cost can be selected as the
most plausible proofs for the observations.

Tacitus-lite uses a best-first search guided by
heuristics that select which proof to expand, which
observation or goal in that proof to act upon, which
action to apply and which axiom to use when that is

the selected action. Most of the heuristics in Why-
Atlas are specific to the domain and application.

SRI’s release of Tacitus-lite was subsequently ex-
tended by the first author of this paper for the re-
search project described in (Thomason et al., 1996).
It was named Tacitus-lite+ at that time. Two main
extensions from that work that we are making use
of are: 1) proofs falling below a user defined cost
threshold halt the search 2) a simple variable typing
system reduces the number of axioms written and
the size of the search space (Hobbs et al., 1988, pg
102).

Unlike the earlier applications of Tacitus-lite+,
Why-Atlas uses it for both shallow qualitative
physics reasoning and discourse-level language rea-
soning. To support qualitative physics reasoning
we’ve made a number of general inference engine
extensions, such as improved consistency checking,
detecting and avoiding reasoning loops and allowing
the axiom author to express both good and bad ax-
ioms in the same axiom set. These recent extensions
are described further in (Jordan et al., 2002).

4 Building an Abductive Proof

The discourse-level understanding module uses lan-
guage axioms and the Tacitus-lite+ abductive in-
ference engine to resolve pronominal and temporal
anaphora and make other discourse-level language
related inferences. It transforms the sentence-level
propositions into more complete propositions given
the context of the problem the student is solving
(represented as facts) and the context of the preced-
ing sentences of the essay.

From these discourse-level propositions, proofs
are built and analyzed to determine appropriate com-
municative actions. To build these proofs, the
discourse-level understanding module uses domain
axioms, the above resulting propositions and again
the Tacitus-lite+ abductive inference engine.

We’ve separated the discourse-level language ax-
ioms from the domain axioms both for efficiency
and modularity because there is generally only a
small amount of interaction between the language
and domain axioms. Separating them reduces the
search space. In cases where interaction within a
single axiom is necessary, we’ve place these axioms
in the set of language axioms. The system currently

has 90 language axioms and 95 domain axioms. The
domain axioms fully cover 5 problems as well as
parts of many other problems.

We will describe in more detail each of these
stages of building the proof in the sections that fol-
low.

4.1 Applying Discourse-level Language Axioms
to Sentence-level Propositions

The discourse-level language axioms are currently
addressing the local resolution of pronominal and
temporal anaphora, flattening out embedded rela-
tionships and canonicalizing some lexical choices
that can only be resolved given the context of the
problem. We are still developing and testing ax-
ioms that will better address pronominal and tempo-
ral anaphora inter-sententially and axioms that will
generate additional propositions for quantifiers and
plurals.

Pronominal Anaphora. It is generally easy to re-
solve pronominal anaphora in the context of a qual-
itative physics problem because there are a small
number of candidates to consider. For example, in
the case of the pumpkin problem in (1), there are
only four physics bodies that are likely to be dis-
cussed in a student essay; the pumpkin, the runner,
the earth and air.

The system is able to resolve simple intra-
sentential pronominal references using language ax-
ioms. The objects described in a single sentence
are the candidate set and argument restrictions rule
out many of these candidates. But to resolve inter-
sentential anaphora, as in (3), the system currently
relies on the domain axioms. The domain axioms
will bind the body variables to their most likely
referents during unification with facts, and previ-
ously assumed and proven propositions similarly to
(Hobbs et al., 1988).

(3) The man is exerting a force on it.

But in the case of anaphoric references to physical
quantities such as velocity, acceleration and force,
as in (4), we need to extend the language axioms to
handle these cases because it involves too much un-
constrained search for the domain axioms to resolve
these. This is because the physical quantities are the

predicates that most strongly influence the domain
reasoning.

(4) The velocity is constant before the pumpkin is
thrown. But after the release, it will decrease
because there is no force.

To extend the language axioms to address inter-
sentential anaphora we need to implement and test
a recency ordering of the physics bodies and quan-
tities that have already been discussed in the essay.
But we expect this to be simple to do since the essays
generally only involve one discourse segment.

Temporal Anaphora. As with pronominal
anaphora, temporal anaphora is usually clear be-
cause the student often explicitly indicates when
an event or state occurs relative to another event or
state as with the first sentence of the explanation
presented in (1). In these cases, the domain-level
reasoning will be able to unify the anchor event or
state with an already known event or state in the
proof it is constructing.

When there is no temporal anchor the domain-
level search is too under-constrained so the language
axioms resolve the temporal orderings. In some
cases world knowledge is used to infer the temporal
relationships as in (5). Here we know that to catch
an object it must have been thrown or dropped be-
forehand and so the event in (5a) must occur after
the event in (5b).

(5) a. The man catches the pumpkin.

b. This is because they had the same velocity
when he threw it.

Otherwise, the language axioms use information
about tense and aspect and default orderings rela-
tive to these to guide inferences about temporal rela-
tionships ((Kamp, 1993; Dowty, 1986; Partee, 1984;
Webber, 1988) inter alia).

Embedded Relationships. In the physics essays
we are addressing, there is a tendency to express
multiple relations within a single sentence as in (6).
Here the “equal” and “opposite” relations are em-
bedded in a temporal “when” relation. In this case
the sentence-level understanding module is not in
the best position to indicate the specific constraints

that each of these relations imposes so this is han-
dled by discourse-level understanding. It would
also impose a greater burden on the domain-level
proof building if these relationships were not re-
solved beforehand. For example, in the case of the
last clause in (6) there is an elliptical reference that
could cause the domain-level a great deal of uncon-
strained search.

(6) When the magnitude of the pumpkin’s veloc-
ity equals the man’s, the pumpkin’s velocity
is in the opposite direction.

Canonicalizing Lexical Usage. One simple case
in which the language axioms canonicalize lexical
items has to do with direction. For example, saying
“move up the inclined plane” should be interpreted
as a positive direction for the horizontal component
even though the phrase contains “up”. The axioms
are able to canonicalize references such as up, down,
left, right, north, south into a positive or negative di-
rection relative to an axis in a coordinate system that
may be tilted slightly to align with planes. This is an
example of the kinds of axioms in which language
and domain knowledge are interacting within a sin-
gle axiom.

Quantifiers and Plurals In our target essays,
there is frequent usage of quantifiers and plurals
with respect to physics bodies and frequent use of
quantifiers with respect to parameters of physical
quantities (e.g. “at all times” “all the magnitudes
of the velocities”).

We have recently completed our specification for
a sentence-level representation of quantifiers and
plurals. From this representation the language ax-
ioms will generate an appropriate number of new
propositions to use in the proof building stage, given
the context of the problem and the expression recog-
nized from sentence-level processing.

Although we have not yet implemented and tested
this set of language axioms, we have successfully
hand-encoded sentences such as (7) into both their
sentence-level and discourse-level representations
and have used the latter successfully in the final
proof building process. For example, for (7), the
system creates two equivalent propositions about ac-
celeration, each referring to different balls. In ad-
dition, both of these propositions are related to two

horizontal component of velocity of pumpkin is decreasing

horizontal component of force of air on pumpkin is 0

Student said: velocity of the pumpkin is decreasing

horizontal component of the total force on pumpkin is 0
(assume)

(assume)(given)
horizontal component of force of man on pumpkin is 0

man applies a force of 0 to the pumpkin

have impetus bug

Figure 2: Example of Simplified Abductive Proof for “The pumpkin moves slower because the man is not
exerting a force on it.”

additional propositions about the force of gravity ap-
plying to the same ball as in its related acceleration
proposition.

(7) The acceleration of both balls is increasing
due to the force of earth’s gravity.

4.2 Applying Domain-level Axioms to Build an
Explanatory Proof

The propositions produced by applying the language
axioms are the goals that are to be proven using
domain-level axioms. Figure 2 is an example of a
simplified abductive proof for sentence (8).

(8) The pumpkin moves slower because the man
is not exerting a force on it.

Each level of downward arrows from the gloss of
a proposition in Figure 2 represents a domain ax-
iom that can be used to prove that proposition. One
way to prove that the velocity of the pumpkin is de-
creasing is to prove that just the horizontal compo-
nent of the velocity vector is the one that is decreas-
ing since the context of the question (see (1)) makes
this a likely interpretation. Alternatively, the sys-
tem could request that the student be more precise
by asking which components of the velocity vector
are decreasing.

In the case of trying to prove that the horizon-
tal component is decreasing, Tacitus-lite+ is apply-
ing a bad physics axiom that is one manifestation of
the impetus misconception; the student thinks that a
force is necessary to maintain a constant velocity. In
this case it assumes the student has this misconcep-
tion but alternatively the system could try to gather
more evidence that this is true by asking the student
diagnostic questions.

Next Tacitus-lite+ proves that the total force on
the pumpkin is zero by proving that the possible ad-
dend forces are zero. In the context of this problem,
it is a given that air resistance is negligible and so it
unifies with a fact for zero cost. Next it assumes that
the student believes the man is applying a horizontal
force of 0 to the pumpkin.

Finally, it still needs to prove another proposition
that was explicitly asserted by the student; that the
force of the man on the pumpkin is 0. As with the
velocity, it will try to prove this by proving that the
horizontal component of that force is zero. Since it
has already assumed that this is true, the abductive
proof is finished and ready to be further analyzed
by the tutorial strategist module to give additional
feedback to the student.

4.3 Incrementally Processing an Essay

We have also extended Tacitus-lite+ to run incre-
mentally so that it can start processing before the
student completes his essay. In this way it can take
advantage of the processing lull as the student com-
poses his essay. In simulations of various typing
speeds, (Rosé et al., 2002) estimated that there is a
60 second processing lull during the completion of a
sentence after subtracting out a 5 second average in-
cremental parsing cost. During this lull it can build
proofs using the previous sentences in the essay.

To run Tacitus-lite+ incrementally, we added a
function that takes as input a proof queue and the
new goals that are to be proven and returns a new
proof queue. The discourse-level understanding
module builds the input proof queue by finding the
proofs in the most recent queue with which the new
goals are consistent and adding the new goals to a
copy of each of those proofs. We then modified

Tacitus-lite+ to take an arbitrary proof queue as in-
put.

The discourse-level understanding module stores
and selects proof queues, which are returned by
Tacitus-lite+ after it attempts to prove a sentence.
Suppose for example that each sentential input is
treated as a separate input to Tacitus-lite+ and that
sentence Sk has already been processed and yielded
proof queue Qk. As the next sentence Sk+1 arrives,
a copy of Qk is updated with proofs that include
Sk+1 as new information to be proven. But if Sk+1

conflicts with every proof in the copy of Qk, then an
earlier proof queue is tried. Similarly, if a student
modifies a previously processed sentence, the origi-
nal sentence is regarded as having been deleted. The
inference process backs up to the point just before
the deleted sentence was processed and reprocesses
the substituted sentence and all that follows it. This
mechanism for backing-up allows the inference pro-
cess to be incremental.

At the end of composing an essay, the student will
in the best case have to wait the length of time that
it takes to finish parsing the last sentence of the es-
say plus the length of time that it takes to extend the
proof by one sentence. In the worst case, which is
when he modifies the first sentence or inserts a new
first sentence, he will have to wait the same amount
of time as he would for non-incremental discourse-
level understanding.

5 Deriving Feedback for Students From
Plausible Proofs

To identify communicative goals the tutorial strate-
gist next analyzes the best proofs. Currently it exam-
ines just one of the best proofs by applying a set of
test patterns to parts of the proof. It can test for com-
binations of patterns for givens (mainly to get bind-
ings for variables in a pattern), for assumed proposi-
tions, for propositions asserted in the student’s essay,
and for inferred propositions. In addition it can also
test for missing patterns in the proof and for particu-
lar domain axioms to have been used. Each goal that
the system is capable of addressing is linked to sets
of patterns that are expected to be indicative of it.
In the case of the proof for (8), the tutorial strategist
identifies a dialogue goal that addresses the impe-
tus misconception as being relevant since an impetus

axiom is part of the proof.
In addition to engaging students in a dialogue, the

system can also give direct, constructive feedback on
the essays they are composing. When there are mul-
tiple interpretations, it is better to ask the student to
make certain things in the essay clearer. The tutorial
strategist includes test patterns that target important
details that students often leave out. For example,
suppose the student says that the velocity is increas-
ing but this is only true for the vertical component
of the velocity vector. It may then be important to
clarify which component of the velocity the student
has in mind since thinking that the horizontal com-
ponent is increasing indicates a misconception.

It is also possible that two propositions in an essay
will be contradictory. In this case the system points
out that there is a conflict, describes the conflict and
directs the student to repair it.

We expect to extend the tutorial strategist module
so that if there are multiple best proofs, it will ask
the student questions that will help it disambiguate
which proof is most representative of the student’s
intended meaning for the essay.

6 Preliminary Results and Future Plans

Although we’ve found that incremental understand-
ing is successful at taking advantage of the pro-
cessing lull during which the student composes his
essay, we still need to fine-tune it so as to mini-
mize both the need to back-up and how much under-
constrained searching it does (i.e. the more Tacitus-
lite+ has of the student’s explanation the more con-
strained the search is). Currently, Tacitus-lite+ runs
after every new sentence that is recognized by the
sentence-level understanding module. During each
of these runs Tacitus-lite+ continues until one of its
run-time thresholds is exceeded.

We plan to also experiment with other ways of
bounding the run-time for Tacitus-lite+ during incre-
mental processing. For example, we might impose a
specific time-limit that is based on the expected 60
second processing lull while the student composes
his next sentence.

In initial timing tests, using a set of 5 correct es-
says that involved no backing up, the average incre-
mental processing time per sentence when we set the
search bound to 50 proofs and the assumption cost

threshold to .056, is 21.22 seconds. The worst case
time for extending a proof by one sentence was 98
seconds and the best was 1 second. So in the best
case, which is when no previous sentences have been
modified, the student will wait on average 21.22 sec-
onds after he completes the last sentence in his essay
for a response from Why-Atlas.

In human-human computer-mediated tutoring, we
found that in the worst case the student waits 2 min-
utes for a reply from the tutor after completing the
essay. The wait time in the case of the human tu-
tor is a combination of the time it takes to read and
analyze the student’s response and then compose a
reply.7 Although the timings are inconclusive and
not directly comparable, it gives us an order of mag-
nitude for tolerable wait times.

We will complete a 5 week formative evaluation
of the Why-Atlas system in which we will compare
the learning gains of 24 students to other sets of
students in three other conditions; 1) a text control
2) human tutoring 3) another tutoring system that
uses statistical classification only. During these tri-
als, we will log decisions and processing times for
each module of the system. From these detailed logs
we will be able to better evaluate the speed and cor-
rectness of each system module.

Acknowledgments

This research was supported by MURI grant
N00014-00-1-0600 from ONR Cognitive Science
and by NSF grant 9720359. We thank the entire
NLT team for their many contributions in creating
and building the Why-Atlas system. In particular
we thank Michael Ringenberg, Maxim Makatchev,
Uma Pappswamy and Michael Böttner for their
work with Tacitus-lite+ and the domain axioms and
Roy Wilson for his work with the sentence-level re-
alization module.

6An assumption cost of 1 means everything is assumed and
a cost of 0 means that nothing was assumed.

7In these timing studies, we also did not allow the tutor to
see the student input until the student had finished composing
it. This was because our previous experiences with computer-
mediated human tutoring have shown that some human tutors
have a propensity for referring to something the student had
started to write and then deleted. Our goal was to try to collect
interactions that would be closer to those we expected with an
intelligent tutoring system and was not primarily for comparing
efficiency of a computer tutor to a human one.

References

Vincent Aleven and Kenneth R. Koedinger. 2000. The
need for tutorial dialog to support self-explanation. In
Building Dialogue System for Tutorial Applications,
Papers of the 2000 AAAI Fall Symposium.

Vincent Aleven, Octav Popescu, and Kenneth R.
Koedinger. 2001. A tutorial dialogue system with
knowledge-based understanding and classification of
student explanations. In Working Notes of 2nd IJCAI
Workshop on Knowledge and Reasoning in Practical
Dialogue Systems.

Douglas Appelt and Martha Pollack. 1992. Weighted ab-
duction for plan ascription. User Modeling and User-
Adapted Interaction, 2(1 – 2):1 – 25.

Eugene Charniak. 1986. A neat theory of marker pass-
ing. In Proceedings of the 5th National Conference on
Artificial Intelligence (AAAI’86), pages 584 – 588.

Michelene T. H. Chi, Nicholas de Leeuw, Mei-Hung
Chiu, and Christian LaVancher. 1994. Eliciting self-
explanations improves understanding. Cognitive Sci-
ence, 18:439–477.

Michelene T. H. Chi, Stephanie A. Siler, Heisawn Jeong,
Takashi Yamauchi, and Robert G. Hausmann. 2001.
Learning from human tutoring. Cognitive Science,
25(4):471–533.

David Dowty. 1986. The effects of aspectual class on
the temporal structure of discourse: Semantics or prag-
matics? Linguistics and Philosophy, 9(1).

Reva Freedman, Carolyn Rosé, Michael Ringenberg, and
Kurt VanLehn. 2000. ITS tools for natural language
dialogue: A domain-independent parser and planner.
In Proceedings of the Intelligent Tutoring Systems
Conference.

Arthur C. Graesser, Peter Wiemer-Hastings, Katja
Wiemer-Hastings, Derek Harter, Natalie Person, and
the TRG. 2000. Using latent semantic analysis to
evaluate the contributions of students in autotutor. In-
teractive Learning Environments, 8:129–148.

Richard R. Hake. 1998. Interactive-engagement versus
traditional methods: A six-thousand student survey of
mechanics test data for introductory physics students.
American Journal of Physics, 66(4):64–74.

Jerry Hobbs, Mark Stickel, Paul Martin, and Douglas Ed-
wards. 1988. Interpretation as abduction. In Proc.
26th Annual Meeting of the ACL, Association of Com-
putational Linguistics, pages 95–103.

Jerry Hobbs, Mark Stickel, Douglas Appelt, and Paul
Martin. 1993. Interpretation as abduction. Artificial
Intelligence, 63(1–2):69–142.

Pamela W. Jordan, Maxim Makatchev, Michael Ringen-
berg, and Kurt VanLehn. 2002. Engineering the
Tacitus-lite weighted abductive inference engine for
use in the Why-Atlas qualitative physics tutoring sys-
tem. Manuscript, University of Pittsburgh.

Hans Kamp. 1993. From Discourse to Logic; Intro-
duction to Modeltheoretic Semantics of Natural Lan-
guage, Formal Logic and Discourse Representation
Theory. Kluwer Academic Publishers, Dordrecht Hol-
land.

Thomas K. Landauer, Peter W. Foltz, and Darrell La-
ham. 1998. An introduction to latent semantic analy-
sis. Discourse Processes, 25:259–284.

Alex Lascarides and Nicholas Asher. 1991. Discourse
relations and defeasible knowledge. In 29th Annual
Meeting of the Association for Computational Linguis-
tics, pages 55 – 62.

Benoit Lavoie and Owen Rambow. 1997. A fast and
portable realizer for text generation systems. In Pro-
ceedings of the Fifth Conference on Applied Natural
Language Processing Chapter of the Association for
Computational Linguistics, pages 265–268, Washing-
ton, D.C.

Susan McRoy and Graeme Hirst. 1995. The repair
of speech act misunderstandings by abductive infer-
ence. Computational Linguistics, 21(4):435–478, De-
cember.

Barbara Partee. 1984. Nominal and temporal anaphora.
Linguistics and Philosophy, 7:243 – 286.

Manny Rayner and Hiyan Alshawi. 1992. Deriving
database queries from logical forms by abductive defi-
nition expansion. In Proceedings of the Third Confer-
ence of Applied Natural Language Processing, pages
1 – 8, Trento, Italy.

Carolyn Rosé, Pamela Jordan, Michael Ringenberg,
Stephanie Siler, Kurt VanLehn, and Anders Weinstein.
2001. Interactive conceptual tutoring in atlas-andes.
In Proceedings of AI in Education 2001 Conference.

Carolyn P. Rosé, Antonio Roque, Dumisizwe Bhembe,
and Kurt VanLehn. 2002. An efficient incremental ar-
chitecture for robust interpretation. In Proceedings of
Human Language Technology Conference, San Diego,
CA.

Carolyn P. Rosé. 2000. A framework for robust seman-
tic interpretation. In Proceedings of the First Meeting
of the North American Chapter of the Association for
Computational Linguistics.

James D. Slotta, Michelene T.H. Chi, and Elana Jo-
ram. 1995. Assessing students’ misclassifications of
physics concepts: An ontological basis for conceptual
change. Cognition and Instruction, 13(3):373–400.

Mark Stickel. 1988. A prolog-like inference system
for computing minimum-cost abductive explanations
in natural-language interpretation. Technical Report
451, SRI International, 333 Ravenswood Ave., Menlo
Park, California.

Richmond H. Thomason, Jerry Hobbs, and Johanna D.
Moore. 1996. Communicative goals. In K. Jokinen,
M. Maybury, M. Zock, and I. Zukerman, editors, Pro-
ceedings of the ECAI 96 Workshop Gaps and Bridges:
New Directions in Planning and Natural Language
Generation.

Bonnie Webber. 1988. Tense as discourse anaphor.
Computational Linguistics, 14(2):61 – 71.

