
Synchronization in an Asynchronous Agent-based Architecture
for Dialogue Systems

Nate Blaylock and James Allen and George Ferguson

Department of Computer Science

University of Rochester

Rochester, New York 14627

USA

{blaylock,james,ferguson}@cs.rochester.edu

Abstract

Most dialogue architectures are ei-
ther pipelined or, if agent-based,
are restricted to a pipelined flow-
of-information. The TRIPS di-
alogue architecture is agent-based
and asynchronous, with several lay-
ers of information flow. We present
this architecture and the synchro-
nization issues we encountered in
building a truly distributed, agent-
based dialogue architecture.

1 Introduction

More and more people are building dia-
logue systems. Architecturally, these sys-
tems tend to fall into two camps: those with
pipelined architectures (e.g., (Lamel et al.,
1998; Nakano et al., 1999)), and those with
agent-based architectures (e.g., (Seneff et al.,
1999; Stent et al., 1999; Rudnicky et al.,
1999)). Agent-based architectures are advan-
tageous because they free up system com-
ponents to potentially act in a more asyn-
chronous manner. However, in practice, most
dialogue systems built on an agent-based ar-
chitecture pass messages such that they are
basically functioning in terms of a pipelined
flow-of-information.
Our original implementation of the TRIPS

spoken dialogue system (Ferguson and Allen,
1998) was such an agent-based, pipelined
flow-of-information system. Recently, how-
ever, we made changes to the system (Allen
et al., 2001a) which allow it to take advan-
tage of the distributed nature of an agent-
based system. Instead of system components

passing information in a pipelined manner
(interpretation → discourse management →
generation), we allow the subsystems of in-
terpretation, behavior (reasoning and acting)
and generation to work asynchronously. This
makes the TRIPS system truly distributed
and agent-based.

The driving forces behind these changes are
to provide a framework for incremental and
asynchronous language processing, and to al-
low for a mixed-initiative system at the task
level. We describe these motivations briefly
here.

Incremental Language Processing In a
pipelined (or pipelined flow-of-information)
system, generation does not occur until af-
ter both the interpretation and reasoning pro-
cesses have completed. This constraint is
not present in human-human dialogue as ev-
idenced by the presence of grounding, ut-
terance acknowledgment, and interruptions.
Making interpretation, behavior, and gener-
ation asynchronous allows, for example, the
system to acknowledge a question while it is
still working on finding the answer.

Mixed-initiative Interaction Although
pipelined systems allow the system to take
discourse-level initiative (cf. (Chu-Caroll and
Brown, 1997)), it is difficult to see how they
could allow the system to take task-level ini-
tiative in a principled way. In most systems,
reasoning and action are driven mostly by in-
terpreted input (i.e., they are reactive to the
user’s utterances). In a mixed-initiative sys-
tem, the system’s response should be deter-
mined not only by user input, but also system
goals and obligations, as well as exogenous

 Philadelphia, July 2002, pp. 1-10. Association for Computational Linguistics.
 Proceedings of the Third SIGdial Workshop on Discourse and Dialogue,

events. For example, a system with an asyn-
chronous behavior subsystem can inform the
user of a new, important event, regardless of
whether it is tied to the user’s last utterance.
On the other hand, in the extreme version of
pipelined flow-of-control, behavior cannot do
anything until the user says something, which
is the only way to get the pipeline flowing.

The reasons for our changes are described
in further detail in (Allen et al., 2001a). In
this paper, we focus on the issues we encoun-
tered in developing an asynchronous agent-
based dialogue system and their respective so-
lutions, which turn out to be highly related to
the process of grounding.

We first describe the general TRIPS archi-
tecture and information flow and then discuss
the various points of synchronization within
the system. We then discuss what these is-
sues mean in general for the implementation
of an asynchronous agent-based system.

2 TRIPS Architecture

As mentioned above, the TRIPS system1

(Allen et al., 2000; Allen et al., 2001a; Allen
et al., 2001b) is built on an agent-based ar-
chitecture. Unlike many systems, however,
the flow of information within TRIPS is not
pipelined. The architecture and information
flow between components is shown in Fig-
ure 1. In TRIPS, information flows between
the three general areas of interpretation, be-
havior, and generation.

Each TRIPS component is implemented as
a separate process. Information is shared by
passing KQML (Finin et al., 1997) messages
through a central hub, the Facilitator, which
supports message logging and syntax checking
as well as broadcast and selective broadcast
between components.

We first discuss the individual system com-
ponents and their functions. We then de-
scribe the flow of information through the sys-
tem and illustrate it with an example.

1Further details of the TRIPS dia-
logue system can be found at our website:
http://www.cs.rochester.edu/research/cisd/

Behavioral
Agent

Interpretation
Manager

Generation
Manager

Parser

Speech

Planner Scheduler Monitors Events

Task- and Domain-specific
Knowledge Sources

Exogenous Event Sources

Response
Planner

GraphicsSpeech

Task
Manager

Reference

Discourse
Context

Interpretation

Generation

Behavior

Task
Interpretation

Requests

Problem-Solving
Acts recognized

from user

Problem-Solving
Acts

to perform

Task
Execution
Requests

Figure 1: The TRIPS Architecture (Allen et
al., 2001a)

2.1 System Components

Figure 1 shows the various components in
the TRIPS system. Components are divided
among three main categories: Interpretation,
Behavior, and Generation. As shown in the
figure, some components straddle categories,
meaning they represent state and provide
services necessary for both sorts of process-
ing. The Interpretation Manager (IM) in-
terprets user input coming from the various
modality processors as it arises. It inter-
acts with Reference to resolve referring ex-
pressions and with the Task Manager (TM)
to perform plan and intention recognition, as
part of the interpretation process. It broad-
casts recognized speech acts and their inter-
pretation as collaborative problem solving ac-
tions (see below), and incrementally updates
the Discourse Context (DC). The Behavioral
Agent (BA) is in some sense the autonomous
“heart” of the agent. It plans system be-
havior based on its own goals and obliga-
tions, the user’s utterances and actions, and
changes in the world state. Actions that re-
quire task- and domain-dependent processing
are performed by the Task Manager. Ac-
tions that involve communication and collab-
oration with the user are sent to the Gener-
ation Manager (GM) in the form of commu-
nicative acts. The GM coordinates planning

the specific content of utterances and display
updates and producing the results. Its behav-
ior is driven by discourse obligations (from the
DC), and the directives it receives from the
BA.

2.1.1 Collaborative Problem Solving

Model

The three main components (IM, BA, GM)
communicate using messages based on a col-
laborative problem solving model of dia-
logue (Allen et al., 2002; Blaylock, 2002).
We model dialogue as collaboration between
agents which are planning and acting. To-
gether, collaborating agents (i.e., dialogue
partners) build and execute plans, deciding on
such things as objectives, recipes, resources,
situations (facts about the world), and so
forth. These are called collaborative problem
solving objects, and are operated on by col-
laborative problem solving acts such as iden-
tity (present as a possibility), evaluate, adopt,
and others. Thus, together, two agents may
decide to adopt a certain objective, or iden-
tify a recipe to use for an objective. The
agreed-upon beliefs, objectives, recipes, and
so forth constitute the collaborative problem
solving state.

Of course, because the agents are au-
tonomous, no agent can single-handedly
change the collaborative problem solving
(CPS) state. Interaction acts are actions that
a single agent performs to attempt to change
the CPS state. The interaction acts are ini-
tiate, continue, complete, and reject. Initi-
ate proposes a new change to the CPS state.
Continue adds new information to the pro-
posal, and complete simply accepts the pro-
posal (bringing about the change), without
adding additional information. Of course,
proposals can be rejected at any time, causing
them to fail.

As an example, the utterance “Let’s
save the heart-attack victim in Pitts-
ford” in an emergency planning domain
would be interpreted as two interaction
acts: (initiate (identify objective

(rescue person1))) and (initiate

(adopt objective (rescue person1))).

Here the user is proposing that they consider
rescuing person1 as a possible objective to
pursue. He is also proposing that they adopt
it as an objective to plan for.2

Interaction acts are recognized (via inten-
tion recognition) from speech acts. Inter-
action acts and speech acts differ in several
ways. First, speech acts describe a linguistic
level of interaction (ask, tell, etc.), whereas
interaction acts deal with a problem solving
level (adopting objectives, evaluating recipes
and so forth). Also, as shown above, a single
speech act may correspond to many interac-
tion acts.

2.2 Information Flow in the System

There are several paths along which informa-
tion asynchronously flows through the sys-
tem. We discuss information flow at the levels
of problem solving, discourse, and grounding.
The section that follows then gives an exam-
ple of how this proceeds.

2.2.1 Problem Solving Level

The problem solving level describes the ac-
tual underlying task or purposes of the di-
alogue and is based on interaction acts. We
first describe the problem solving information
flow when the user makes an utterance. We
then discuss the case where the system takes
initiative and how this results in an utterance
by the system.

User Utterance Following the diagram in
Figure 1, when a user makes an utterance,
it goes through the Speech Recognizer to the
Parser, which then outputs a list of speech
acts (which cover the input) to the Interpre-
tation Manager (IM). The IM then sends the
speech acts to Reference for resolution.

2Here two interaction acts are posited because of
the ability of the system to react to each separately,
for example completing the first, but rejecting the sec-
ond. Consider the possible response “No, not right
now.” (accept this as a possible objective, but re-
ject adopting it right now), versus “The 911 center
in Pittsford is handling that, we don’t have to worry
about it.” (reject this as even a possible objective and
reject adopting it). The scope of this paper precludes
us from giving more detail about multiple interaction
acts.

The IM then sends these speech act hy-
potheses to the Task Manager (TM), which
computes the corresponding interaction acts
for each as well as a confidence score that each
hypothesis is the correct interpretation.

Based on this, the IM then chooses the
best interpretation and broadcasts3 the cho-
sen CPS act(s) in a “system understood” mes-
sage. The TM receives this message and
updates to the new collaborative problem
solving state which this interpretation en-
tails. The Behavioral Agent (BA) receives the
broadcast and decides if it wants to form any
intentions for action based on the interaction
act.

Assuming the BA decides to act on the
user’s utterance, it sends execution and rea-
soning requests to the TM, which passes them
on to the appropriate back-end components
and returns the result to the BA.

The BA then forms an interaction act based
on this result and sends it to the GM to be
communicated to the user. The GM then gen-
erates text and/or graphical updates based on
the interaction act and utters/presents them
to the user.

In most pipelined and pipelined flow-of-
information systems, the only flow of infor-
mation is at this problem solving level. In
TRIPS, however, there are other paths of in-
formation flow.

System Initiative TRIPS is also capable
of taking initiative. As we stated above, this
initiative originates in the BA and can come
from one of three areas: user utterances, pri-
vate system objectives, or exogenous events.
If the system, say because of an exogenous
event, decides to take initiative and commu-
nicate with the user, it sends an interaction
act to the GM. The GM then, following the
same path as above, outputs content to the
user.

3This is a selective broadcasts to the components
which have registered for such messages.

2.2.2 Discourse Level

The discourse level4 describes information
which is not directly related to the task at
hand, but rather is linguistic in nature. This
information is represented as salience infor-
mation (for Reference) and discourse obliga-
tions (Traum and Allen, 1994).

When the user makes an utterance, the in-
put passes (as detailed above) through the
Speech Recognizer, to the Parser, and then to
the IM, which calls Reference to do resolution.
Based on this reference resolved form, the IM
computes any discourse obligations which the
utterance entails (e.g., if the utterance was
a question, to address or answer it, also, to
acknowledge that it heard the question).

At this point, the IM broadcasts an “sys-
tem heard” message, which includes incurred
discourse obligations and changes in salience.
Upon receipt of this message, Discourse Con-
text updates its discourse obligations and Ref-
erence updates its salience information.

The GM learns of new discourse obligations
from the Discourse Context and begins to try
to fulfill them, regardless of whether or not
it has heard from the BA about the prob-
lem solving side of things. However, there
are some obligations it will be unable to ful-
fill without knowledge of what is happening
at the problem solving level — answering or
addressing the question, for example. How-
ever, other obligations can be fulfilled without
problem solving knowledge — an acknowledg-
ment, for example — in which case, the GM
produces content to fulfill the discourse obli-
gation.

If the GM receives interaction acts and
discourse obligations simultaneously, it must
produce content which fulfills both problem
solving and discourse needs. Usually, these
interaction acts and discourse obligations are
towards the same objective — an obligation
to address or answer a question, and an inter-
action act of identifying a situation (commu-

4Although it works in a conceptually similar way,
the current system does not handle discourse level in-
formation flow quite so cleanly as is presented here.
We intend to clean things up and move to this exact
model in the near future.

nicating the answer to the user), for example.
However, because the system has the ability
to take initiative, these interaction acts and
discourse obligations may be disparate — an
obligation to address or answer a question and
an interaction act to identify and adopt a new
pressing objective, for example. In this case,
the GM must plan content to fulfill the acts
and obligations the best it can — apologize
for not answering the question and then in-
forming the user, for example. Through this
method, the GM maintains dialogue coher-
ence even though the BA is autonomous.

2.2.3 Grounding Level

The last level of information flow is at the
level that we loosely call grounding (Clark
and Schaefer, 1989; Traum, 1994).5 In
TRIPS, acts and obligations are not accom-
plished and contexts are not updated unless
the user has heard and/or understood the sys-
tem’s utterance.6

Upon receiving a new utterance, the IM
first determines if it contains evidence of the
user having heard and understood the utter-
ance.7 If the user heard and understood, the
IM broadcasts a “user heard” message which
contains both salience information from the
previous system utterance as well as what dis-
course obligations the system utterance ful-
filled. This message can be used by Reference
to update salience information and by Dis-
course Context to discharge fulfilled discourse
obligations.

It is important that these contexts not be
updated until the system know that the user
heard its last utterance. If the user for ex-
ample, walks away as the system speaks, the
system’s discourse obligations will still not
fulfilled, and salience information will not

5TRIPS only uses a small subset of Traum’s
grounding model. In practice, however, this has not
presented problems thus far.

6The acceptance or rejection of the actual content
of an utterance is handled by our collaborative prob-
lem solving model (Allen et al., 2002; Blaylock, 2002)
and is not further discussed here.

7Hearing and understanding are not currently rec-
ognized separately in the system. For future work, we
would like to extend the system to handle them sepa-
rately (e.g., the case of the user having heard but not
understood).

change.

The GM receives the “user heard” mes-
sage and also knows which interaction act(s)
the system utterance was presenting. It
then broadcasts a “user understood” message,
which causes the TM to update the collabo-
rative problem solving state, and the BA to
release any goals and intentions fulfilled by
the interaction act(s).

Again, it is important that these context
updates do not occur until the system has ev-
idence that the user understood its last utter-
ance (for reasons similar to those discussed
above).

This handling of grounding frees the sys-
tem from the assumptions that the user al-
ways hears and understands each utterance.

2.3 An Example

We use here an example from our TRIPS
Medication Advisor domain ((Ferguson et al.,
2002)). The Medication Advisor is a project
carried out in conjunction with the Cen-
ter for Future Health at the University of
Rochester.8 The system is designed to help
people (especially the elderly) understand and
manage their prescription medications.

With the huge growth in the number of
pharmaceutical therapies, patients tend to
end up taking a combination of several differ-
ent drugs, each of which has its own charac-
teristics and requirements. For example, each
drug needs to be taken at a certain rate: once
a day, every four hours, as needed, and so on.
Some drugs need to be taken on an empty
stomach, others with milk, others before or
after meals, and so on. Overwhelmed with
this large set of complex interactions many
patients simply do not (or cannot) comply
with their prescribed drug regimen (Claxton
et al., 2001).

The TRIPS Medication Advisor is designed
to help alleviate this problem by giving pa-
tients easy and accessible prescription infor-
mation an management in their own home.

For our example, we assume that a dialogue
between the system and user is in progress,

8http://www.centerforfuturehealth.org

and a number of other topics have been ad-
dressed. At this certain point in the conver-
sation, the system has just uttered “Thanks,
I’ll try that” and now the user utters the fol-
lowing:

User: “Can I take an aspirin?”

We trace information flow first at the
grounding level, then at the discourse level,
and finally at the problem solving level. This
information flow is illustrated in Figure 2.

Grounding Level The utterance goes
through the Speech Recognizer and Parser to
the IM. As illustrated in Figure 2a, based on
the utterance, the IM recognizes that the user
heard and understood the system’s last ut-
terance, so it sends a “user heard” message,
which causes the Discourse Context to update
discourse obligations and Reference to update
salience based on the system’s last utterance.

The GM receives the “user heard” mes-
sage and sends the corresponding “user un-
derstood” message, containing the interaction
act(s) motivating the system’s last utterance.
Upon receiving this message, the TM updates
the collaborative problem solving state, and
the BA updates its intentions and goals.

Meanwhile ... things have been happening
at the discourse level.

Discourse Level After the IM sends the
“user heard” message, as shown in Figure 2b,
it sends Reference a request to resolve refer-
ences within the user’s utterance. It then rec-
ognizes that the user has asked a question,
which gives the system the discourse obliga-
tions of answering (or addressing) the ques-
tion, as well as acknowledging the question.

The IM then sends a “system heard”
message, which causes Reference to update
salience and Discourse Context to store the
newly-incurred discourse obligations.

The GM receives the new discourse obliga-
tions, but has not yet received anything from
the BA about problem solving (see below).
Without knowledge of what is happening in
problem solving, the GM is unable to ful-
fill the discourse obligation to answer (or ad-

dress) the question. However, it is able to ful-
fill the obligation of acknowledging the ques-
tion, so, after a certain delay of no response
from the BA, the GM plans content to pro-
duce an acknowledgment, which causes the
avatar9 to graphically show that it is think-
ing, and also causes the system to utter the
following:

System: “Hang on.”

Meanwhile ... things have been happening
at the problem solving level as well.

Problem Solving Level After it sends the
“system heard” message, as shown in Fig-
ure 2c, the IM computes possible speech acts
for the input. In this case, there are two: a
yes-no question about the ability to take as-
pirin and a request to evaluate the action of
taking aspirin.
These are sent to the TM for intention

recognition. The first case (the yes-no ques-
tion) does not seem to fit the task model well
and receives a low score. (The system prefers
interpretations in which the user wants infor-
mation for a reason and not just for the sake
of knowing something.) The second speech
act is recognized as an initiate of an evalua-
tion of the action of taking aspirin (i.e., the
user wants to evaluate this action with the
system). This hypothesis receives a higher
score.
The IM chooses the second interpretation

and broadcasts a “system understood” mes-
sage that announces this interpretation. The
TM receives this message and updates its
collaborative problem solving state to reflect
that the user did this interaction act. The
BA receives the message and, as shown in
Figure 2d, decides to adopt the intention of
doing the evaluation and reporting it to the
user. It sends an evaluation request for the ac-
tion of the user taking an aspirin to the TM,
which queries the back-end components (user
knowledge-base and medication knowledge-
base) about what prescriptions the user has
and if any of them interact with aspirin.

9The TRIPSMedication Advisor avatar is a talking
capsule whose top half rotates when it is thinking.

IM Ref

TM BA

GM

User understood (0)

User heard (0)

IM Ref

TM BA

GM

IM Ref

TM BA

GM
Resolve
Reply

System heard (1);
Obligation to Ack
Obligation to Answer

“Hang on” (2)

Address oblig
to Ack

System understood (1);
CPS Act: evaluate-action

Interpret
Reply

IM Ref

TM BA

GM

“No, you are taking… (3)

Address oblig
to Answer

Perform PS Act
Result

Inform user
of result

S: Thanks, I’ll try that. (0)
U: Can I take an aspirin? (1)

(a) (b)

(c) (d)

Figure 2: Flow of Information for the Utterance “Can I take an aspirin?” (a) Grounding Level,
(b) Discourse Level, (c) and (d) Problem-Solving Level

The back-end components report that the
user has a prescription for Celebrex, and that
Celebrex interacts with aspirin. The TM then
reports to the BA that the action is a bad
idea.

The BA then formulates an interaction act
reflecting these facts and sends it to the GM.
The GM then produces the following utter-
ance, which performs the interaction act as
well as fulfills the discourse obligation of re-
sponding to the question.

System: “No, you are taking Celebrex
and Celebrex interacts with
aspirin.”

3 Synchronization

The architecture above is somewhat idealized
in that we have not yet given the details of
how the components know which context to
interpret messages in and how to ensure that
messages get to components in the right or-
der.

We first illustrate these problems by giving

a few examples. We then discuss the solution
we have implemented.

3.1 Examples of Synchronization

Problems

One of the problems that faces most dis-
tributed systems is that there is no shared
state between the agents. The first problem
with the architecture described in Section 2 is
the lack of context in which to interpret mes-
sages. This is well illustrated by the interpret
request from the IM to the TM.

As discussed above, the IM sends its candi-
date speech acts to the TM, which performs
intention recognition and assigns a score. The
problem is, in which context should the TM
interpret utterances? It cannot simply change
its collaborative problem solving state each
time it performs intention recognition, since it
may get multiple requests from the IM, only
one of which gets chosen to be the official “in-
terpretation” of the system.

We have stated that the TM updates its
context each time it receives a “system under-
stood” or “user understood” message. This

brings up, however, the second problem of
our distributed system. Because all compo-
nents are operating asynchronously (includ-
ing the user, we may add), it is impossible
to guarantee that messages will arrive at a
component in the desired order. This is be-
cause “desired order” is a purely pragmatic
assessment. Even with a centralized Facili-
tator through which all messages must pass,
the only guarantee is that messages from a
particular component to a particular compo-
nent will arrive in order; i.e., if component A
sends component B three messages, they will
get there in the order that component A sent
them. However, if components A and C each
send component B a message, we cannot say
which will arrive at component B first.

What this means is that the “current” con-
text of the IM may be very different from that
of the TM. Consider the case where the sys-
tem has just made an utterance and the user
is responding. As we describe above, the first
thing the IM does is check for hearing and un-
derstanding and sends off a “user heard” mes-
sage. The GM, when it receives this message,
sends the corresponding “user understood”
message, which causes the TM to update to a
context containing the system’s utterance.

In the meantime, the IM is assuming the
context of the systems last utterance, as it
does interpretation. It then sends off inter-
pret requests to the TM. Now, if the TM re-
ceives an interpret request from the IM be-
fore it receives the “user understood” message
from the GM, it will try to interpret the in-
put in the context of the user’s last utterance
(as if the user had made two utterance in a
row, without the system saying anything in
between). This situation will give erroneous
results and must be avoided.

3.2 Synchronization Solution

The solution to these problems is, of course,
synchronization: causing components to wait
at certain stages to make sure they are in
the same context. It is interesting to note
that these synchronization points are highly
related to a theory of grounding and common
ground.

To solve the first problem listed above (lack
of context), we have components append con-
text assumptions to the end of each message.
Thus, instead of the IM sending the TM a
request to interpret B, it sends the TM a re-
quest to interpret B in the context of hav-
ing understood A. Likewise, instead of the
IM requesting that Reference resolve D, it re-
quests that Reference resolve D having heard
C. Having messages explicitly contain con-
text assumptions allows components to inter-
pret messages in the correct context.

With this model, context now becomes dis-
crete, incrementing with every “chunk” of
common ground.10 These common ground
updates correspond exactly to the “heard”
and “understood” messages we described
above. Thus, in order to perform a certain
task (reference resolution, intention recogni-
tion, etc.), a component must know in which
common ground context it must be done.

The solution to the second problem (mes-
sage ordering) follows from explicitly listing
context assumptions. If a component receives
a message that is appended with a context
about which the component hasn’t received
an update notice (the “heard” or “under-
stood” message), the component simply de-
fers processing of the message until it has re-
ceived the corresponding update message and
can update its context. This ensures that, al-
though messages may not be guaranteed to
arrive in the right order, they will be pro-
cessed in the right context. This provides
the necessary synchronization and allows the
asynchronous system components to work to-
gether in a coherent manner.

4 Discussion

We believe that, in general, this has sev-
eral ramifications for any agent-based, non-
pipelined flow-of-information architecture.

1. Agents which are queried about more
than one hypothesis must keep state for

10For now we treat each utterance as a single
“chunk”. We are interested, however, in moving to
more fine-grained models of dialogue. We believe that
our current architecture will still be useful as we move
to a finer-grained model.

all hypotheses until one is chosen.

2. Agents cannot assume shared context.
Because both the system components
and user are acting asynchronously, it
is impossible in general for any agent to
know what context another agent is cur-
rently in.

3. Agents must be able to defer working on
input. This feature allows them to wait
for synchronization if they receive a mes-
sage to be interpreted in a context they
have not yet reached.

Asynchronous agent-based architectures al-
low dialogue systems to interact with users in
a much richer and more natural way. Unfor-
tunately, the cost of moving to a truly dis-
tributed system is the need to deal with syn-
chronization. Fortunately, for dialogue sys-
tems, models of grounding provide a suitable
and intuitive basis for system synchroniza-
tion.

5 Conclusion and Future Work

In this paper we presented the TRIPS dia-
logue system architecture: an asynchronous,
agent-based architecture, with multiple lay-
ers of flow-of-information. We also discussed
the problems with building this distributed
system. As it turns out, models of ground-
ing provide a foundation for necessary system
synchronization.

For future work we plan to “clean up” the
model in the ways we have discussed above.
We are also interested in moving to a more in-
cremental model of grounding, where ground-
ing can take place and context can change
within sentence boundaries. Also, we are in-
terested in extending the model to handle
asynchronous issues at the turn-taking level.
For example, what happens to context when
a user barges in while the system is talking, or
if the user and system speak simultaneous for
a time. We believe we will be able to lever-
age our asynchronous model to handle these
cases.

6 Acknowledgments

We would like to thank Amanda Stent, who
was involved with the original formulation of
this architecture. We also wish to thank the
anonymous reviewers for their helpful com-
ments.
This material is based upon work supported

by Department of Education (GAANN) grant
no. P200A000306; ONR research grant no.
N00014-01-1-1015; DARPA research grant
no. F30602-98-2-0133; NSF grant no. EIA-
0080124; and a grant from the W. M. Keck
Foundation.
Any opinions, findings, and conclusions or

recommendations expressed in this material
are those of the authors and do not necessar-
ily reflect the views of the above-mentioned
organizations.

References

J. Allen, D. Byron, M. Dzikovska, G. Ferguson,
L. Galescu, and A. Stent. 2000. An archi-
tecture for a generic dialogue shell. Journal
of Natural Language Engineering special issue
on Best Practices in Spoken Language Dialogue
Systems Engineering, 6(3):1–16, December.

James Allen, George Ferguson, and Amanda
Stent. 2001a. An architecture for more real-
istic conversational systems. In Proceedings of
Intelligent User Interfaces 2001 (IUI-01), pages
1–8, Santa Fe, NM, January.

James F. Allen, Donna K. Byron, Myroslava
Dzikovska, George Ferguson, Lucian Galescu,
and Amanda Stent. 2001b. Towards conversa-
tional human-computer interaction. AI Maga-
zine, 22(4):27–37.

James Allen, Nate Blaylock, and George Fergu-
son. 2002. A problem solving model for col-
laborative agents. In First International Joint
Conference on Autonomous Agents and Multi-
agent Systems, Bologna, Italy, July 15-19. To
appear.

Nate Blaylock. 2002. Managing communica-
tive intentions in dialogue using a collaborative
problem solving model. Technical Report 774,
University of Rochester, Department of Com-
puter Science, April.

Jennifer Chu-Caroll and Michael K. Brown. 1997.
Initiative in collaborative interactions — its
cues and effects. In S. Haller and S. McRoy,

editors, Working Notes of AAAI Spring 1997
Symposium on Computational Models of Mixed
Initiative Interaction, pages 16–22, Stanford,
CA.

Herbert H. Clark and Edward F. Schaefer. 1989.
Contributing to discourse. Cognitive Science,
13:259–294.

A. J. Claxton, J. Cramer, and C. Pierce. 2001.
A systematic review of the associations be-
tween dose regimens and medication compli-
ance. Clinincal Therapeutics, 23(8):1296–1310,
August.

George Ferguson and James F. Allen. 1998.
TRIPS: An intelligent integrated intelligent
problem-solving assistant. In Proceedings of the
Fifteenth National Conference on Artificial In-
telligence (AAAI-98), pages 567–573, Madison,
WI, July.

George Ferguson, James Allen, Nate Blaylock,
Donna Byron, Nate Chambers, Myroslava
Dzikovska, Lucian Galescu, Xipeng Shen,
Robert Swier, and Mary Swift. 2002. The Med-
ication Advisor project: Preliminary report.
Technical Report 776, University of Rochester,
Department of Computer Science, May.

Tim Finin, Yannis Labrou, and James Mayfield.
1997. KQML as an agent communication lan-
guage. In J. M. Bradshaw, editor, Software
Agents. AAAI Press, Menlo Park, CA.

L. Lamel, S. Rosset, J. L. Gauvain, S. Bennacef,
M. Garnier-Rizet, and B. Prouts. 1998. The
LIMSI ARISE system. In Proceedings of the 4th
IEEE Workshop on Interactive Voice Technol-
ogy for Telecommunications Applications, pages
209–214, Torino, Italy, September.

Mikio Nakano, Noboru Miyazaki, Jun ichi Hira-
sawa, Kohji Dohsaka, and Takeshi Kawabata.
1999. Understanding unsegmented user ut-
terances in real-time spoken dialogue systems.
In Proceedings of the 37th Annual Meeting of
the Association for Computational Linguistics
(ACL-99), pages 200–207.

A. I. Rudnicky, E. Thayer, P. Constantinides,
C. Tchou, R. Shern, K. Lenzo, W. Xu, and
A. Oh. 1999. Creating natural dialogs
in the carnegie mellon communicator system.
In Proceedings of the 6th European Confer-
ence on Speech Communication and Technology
(Eurospeech-99), pages 1531–1534, Budapest,
Hungary, September.

Stephanie Seneff, Raymond Lau, and Joseph Po-
lifroni. 1999. Organization, communication,

and control in the Galaxy-II conversational sys-
tem. In Proceedings of the 6th European Con-
ference on Speech Communication and Tech-
nology (Eurospeech-99), Budapest, Hungary,
September.

Amanda Stent, John Dowding, Jean Mark
Gawron, Elizabeth Owen Bratt, and Robert
Moore. 1999. The CommandTalk spoken dia-
logue system. In Proceedings of the 37th Annual
Meeting of the Association for Computational
Linguistics (ACL-99).

David R. Traum and James F. Allen. 1994.
Discourse obligations in dialogue processing.
In Proceedings of the 32nd Annual Meeting of
the Association for Computational linguistics
(ACL-94), pages 1–8, Las Cruces, New Mexico.

David R. Traum. 1994. A computational theory
of grounding in natural language conversation.
Technical Report 545, University of Rochester,
Department of Computer Science, December.
PhD Thesis.

