
Incremental Chart Parsing with Predictive Hints

Abstract

This paper describes an incremental chart
parser that generates look-ahead catego-
ries on the fly for a controlled natural lan-
guage. These predictive hints tell the au-
thor what kind of syntactic (or semantic)
structure can follow the current input
string and thereby aim at helping the au-
thor to reduce the cognitive burden to
learn and remember the rules of the con-
trolled language. The parser can handle
modifications (insertion, deletion, and re-
placement) to the input string without the
need to reparse the entire string. These
modifications are a function of the size of
the tokens changed rather than the size of
the entire input.

1 Introduction

Over the last decade two types of controlled natu-
ral languages have been developed: human-ori-
ented controlled languages and machine-oriented
controlled languages (Huijsen, 1998; O’Brien,
2003).

The main goal of human-oriented controlled
natural languages is to improve the readability and
understandability of technical documents for hu-
man readers, especially non-native speakers
(AECMA, 2001). Machine-oriented controlled nat-
ural languages, on the other hand, try to ease the
translation process (Kamprath, 1998) and to facili-
tate the subsequent inference processes (Fuchs and
Schwertel, 2003; Schwitter et al., 2003; Sukkarie,
2003).

In general, a controlled natural language can be
defined as a subset of a natural language that has
been restricted with respect to its grammar and its
lexicon. Grammatical restrictions usually result in
less complex and less ambiguous texts. Lexical re-
strictions reduce the size of the vocabulary and the
meaning of the lexical entries for a particular ap-
plication domain.

To allow writing unambiguous and precise spe-
cifications, we have developed a machine-oriented
controlled natural language (PENG – Processable
ENGlish) for knowledge representation (Schwitter,
2002). Specifications written in PENG can be
translated unambiguously into first-order predicate
logic via discourse representation structures and
can be automatically checked for consistency and
informativeness with the help of third-party reas-
oning services (McCune, 2001; Bos, 2001;
McCune, 2003; Bos, 2003).

It is well known that writing documents in a
controlled natural language is hard and time-con-
suming without the support of intelligent writing
assistance (Goyvaerts, 1996; Power et al., 2003).
To ease the writing process and to guarantee well-
formed syntactic structures, PENG uses a look-
ahead editor that displays after each word form a
set of syntactic categories that inform the author
how the input string can be continued (Schwitter et
al., 2003).

The look-ahead editor of PENG communicates
with a chart parser that processes a unification-
based grammar. The chart parser generates these
predictive hints dynamically while the text is writ-
ten and thereby enforces the restrictions placed
upon the language. Apart from these hints, the
chart parser also generates for each input string a
discourse representation structure (Kamp and
Reyle, 1993) as well as a paraphrase (Schwitter

Rolf Schwitter
Centre for Language Technology

Macquarie University
Sydney, NSW 2109, Australia
schwitt@ics.mq.edu.au

and Ljungberg, 2002) that reflects the interpreta-
tion of the machine in controlled natural language.

So far, it has not been possible to modify a sub-
string of the text without having to reparse the en-
tire text and regenerate the output (discourse re-
presentation structure and paraphrase) from
scratch. This is unsatisfactory and demands for a
more sophisticated approach to deal with modifica-
tions. It would be desirable to be able to edit the
text during the writing process without the need for
extensive reparsing. The chart parser should be
able to handle modifications (insertion, deletion,
and replacement) as efficiently as possible and to
do its job in a piecemeal fashion constructing the
representation of the text word by word and pro-
viding, at the same time, look-ahead categories that
are contingent on the current input.

We will call such a chart parser that is capable
of constructing a representation bit by bit and han-
dling modifications without the need for exhaus-
tive reparsing and reconstructing of the underlying
representation an incremental chart parser.

Ideally, the time that the incremental parser
spends to process a modification of arbitrary length
(without violating the approved rules of the con-
trolled language) should be proportional to the
complexity of the change.

The reminder of this paper is organised in the
following way: In Section 2, I will set up the re-
quirements for an incremental chart parser. In Sec-
tion 3, I will discuss the properties and short-
comings of a naïve chart parser for the task at
hand. In Section 4, I will present the benefits of an
incremental chart parser and show that the in-
tended solution fulfills the requirements that have
been specified in Section 2. In Section 5, I will
present update handling algorithms for generating
look-ahead categories and for dealing with modifi-
cations. In Section 6, I will evaluate the introduced
algorithms and compare them with naïve reparsing.
Finally, in Section 7, I will summarize the advan-
tages of the presented approach and give some in-
dicators for further research.

2 Requirements to an Incremental Chart
Parser for PENG

PENG is a machine-oriented controlled natural
language designed to write precise specifications
and aims at supporting the knowledge acquisition
process for various tasks (Schwitter, 2002). PENG

consists of a strict subset of standard English. The
restrictions of the language are defined with the
help of a controlled grammar and a controlled lexi-
con, and enforced by a look-ahead editor (Schwit-
ter et al., 2003).
 As shown in the dataflow diagram for the
PENG system in Figure 1, sentences written in
PENG are first sent to the controlled language
(CL) processor and then translated into first-order
predicate logic via discourse representation struc-
tures. This logical representation is subsequently
checked for consistency and informativeness with
the help of a theorem prover and a model builder.

Figure 1: Dataflow diagram for the PENG system

The look-ahead editor of PENG communicates
with the CL processor (chart parser and unifica-
tion-based grammar) via a socket interface. The
CL processor is running as a client process and is
connected via a server with a theorem prover (OT-
TER; McCune, 2003) and a model builder
(MACE; McCune 2001). The theorem prover and
the model builder are both running separate client
processes.

One of the deciding factors for the acceptability
of a controlled language is the availability of auto-
matic writing assistance. Texts in controlled natu-
ral language should not only be easy to write but
also easy to modify without the need for time-con-
suming reprocessing.

This is why we need a processing strategy that
informs the author about the permissible structure
of the text and that supports basic editing opera-
tions in an efficient way.

Look-ahead Editor

CL Processor

Server

Theorem Prover Model Builder

2.1 Look-ahead categories

Given a set of grammar rules that define a con-
trolled natural language such as PENG, the incre-
mental chart parser should be able to generate a set
of look-ahead categories after each word form that
the author enters. For example, for the sentence

1. The customer inserts a credit card.

the following look-ahead categories should be gen-
erated (simplified here):

The [adjective | noun]

… customer [relpron | negation | verb]

… inserts [determiner]

… the [adjective | noun]

… credit ['card' | relpron | prep | conj | '. ']

… card [relpron | prep | conj | '. ']

In this example, all the look-ahead categories
are either lexical categories or word forms. How-
ever, the algorithm should be easily parameteriz-
able so that predictive categories for various syn-
tactic strata as well as for semantic information can
be generated.

2.2 Insertion

The insertion operation should allow the addition
of an arbitrary number of words into the input
string as long as this modification does not violate
the rules of the controlled language. For example,
the insertion of the relative pronoun who into sen-
tence 1 should lead to the noun phrase:

2. The customer who inserts the credit card …

that is part of the controlled natural language
PENG.

Note that the insertion results here in a cate-
gorial change; instead of a complete sentence we
have now to deal with a complex noun phrase.
This means that the punctuation mark introduced
by the sentence needs to be removed automatically
and a new set of look-ahead categories has to be
generated and displayed for the last word form of
the input string:

… card [relpron | prep | verb | conj]

As this example shows, the noun phrase in 2
could now be continued with a relative clause (3),

a prepositional phrase (4), a verb phrase (5), or a
coordinated nominal structure (6):

3. … that is valid owns a password.

4. … into the slot owns a password.

5. … owns a password.

6. … and enters the PIN owns a password.

Each of these sentences constitutes a well-
formed structure in the controlled natural language.

2.3 Deletion

The deletion operation should allow the cutting of
an arbitrary sequence of words in the input string.
For example, the deletion of the prepositional
phrase into the slot in

6. The customer who inserts the credit card
into the slot owns a password.

should result in a well-formed sentence in con-
trolled language:

7. The customer who inserts the credit card
owns a password.

The author should be able to delete a substring
first by highlighting it and then by cutting it:

8. The customer who inserts the credit card
into the slot owns a password.

This design decision reduces the complexity of
the algorithm, since it results in one single cutting
event that tells the parser when recomputation
should be resumed.

2.4 Replacement

If the insertion and deletion operation are in place,
then the infrastructure for the replacement opera-
tion exists. In essence, the replacement operation is
a deletion followed by an insertion operation. For
example, the replacement of the compound noun
credit card with MasterCard in sentence 1 results
in

9. The customer inserts the MasterCard.

It seems that a replacement operation is more
complex than a deletion or an insertion operation,
since these two operations need to be applied in
sequence. However, as we will discuss in detail in
Section 5, this is not the case, since the replace-
ment operation can be implemented in a way that
does not demand for extensive reprocessing.

3 Chart Parsing

Parsing is the process of analyzing the syntactic
structure of an input string and has traditionally
been understood as a batch-mode process.

The problem with any naïve parsing algorithm
– independent of the parsing strategy – is the un-
necessary repetition of work that will occur for
processing any non-trivial grammar.

Suppose a top-down parser is attempting to
parse the sentence:

10. The password is valid.

Given the following simple (context-free)
phrase structure grammar

s → np, vp.
np → det, noun, rc.
np → det, noun.
rc → relpro, vp.
vp → verb, adj.

the parser will first attempt using the rule

np → det, noun, rc.

and then after failing with that rule, it will try the
alternative rule

np → det, noun.

That means the parser will repeat the work of
analyzing the determiner (det) and the noun
(noun) once for each rule.

An active chart parser (Kay, 1980; Gazdar and
Mellish, 1989; Ferro and Pardo, 1995) avoids this
repetition of work by storing information about
well-formed substrings as well as information
about substring hypotheses that it has partially ex-
plored in a table (chart). The chart parser can then
look up these substrings in the chart and expand
them – if necessary – instead of recomputing them.

Given an input string I and a grammar G, we
can define a chart as a set of edges where an edge
is a triple of the form <vi, vt, R> . The first two
elements vi and vt are integers and represent start-
ing and ending vertices of I or of a substring of I
and R represents a dotted rule. A dotted rule is a
rule of the form X → α • β and corresponds to an
X edge containing an analysis of confirmed con-
stituents α that are seeking for constituents β.

For example, if s → np, vp. is a rule of the
grammar and sentence 10 is an input string, then

the first two dotted rules below represent uncon-
firmed hypotheses while the third rule represents a
fully confirmed hypothesis:

<0,0,s → � np vp>

<0,2,s → np � vp>

<0,4,s → np vp � >

Edges that correspond to unconfirmed hypothe-
ses are known as active edges and those that corre-
spond to confirmed hypotheses as inactive edges.

The basic operation of a chart parser involves
combining an active edge with a completed inac-
tive edge. The result is either a new inactive edge
or a new active edge that spans both the active and
inactive edges. This fundamental rule cannot be
applied to a chart that contains no edges. Before
anything can happen, an initialization process
needs to set the chart up with inactive word edges
and a rule invocation strategy needs to be defined
that creates new active edges as a result of the ap-
plication of the fundamental rule.

A chart parser usually uses an agenda to keep
track of the edges that need to be processed. Such
an agenda can be thought of as a list of edges.
Adding new edges to the front of the agenda leads
to a depth-first search strategy and adding them to
the end would lead to breath-first search.

In our implementation, edges are stored in the
following modified format:

edge(ID,vs,vt,LHS,RHSL)

 ID is an integer that stands for a sentence iden-
tifier. LHS represents the category on the left hand
side of a dotted rule and RHSL represents a list of
unconfirmed daughter categories on the right hand
side of the rule. If RHSL is empty ([]), then the
edge is inactive, otherwise active.

For example, a top-down chart parser will pro-
duce the following edges1 for sentence 10 using
our simplified grammar rules introduced above:

edge(0,0,s,[np,vp])

edge(0,0,np,[det,noun])

edge(0,1,np,[noun])

1 The sentence identifier is not displayed in the edges. The
categories of the grammar are atomic and do not contain any
additional syntactic or semantic arguments. The grammar is
not complete, since preterminal rules such as det → [the]
are missing. As a consequence inactive edges such as
edge(0,1,det,[]) do not appear in the simplified chart.

edge(0,2,np,[])

edge(0,2,s,[vp])

edge(2,2,vp,[verb,adj])

edge(2,3,vp,[adj])

edge(2,4,vp,[])

edge(0,4,s,[])

edge(0,0,np,[det,noun,rc])

edge(0,1,np,[noun,rc])

edge(0,2,np,[rc])

edge(2,2,rc,[relpro,vp])

 Although such a batch-mode chart parser
avoids repeating work and keeps active and pas-
sive edges in the chart, it cannot deal with modifi-
cations to the current input string without repro-
cessing the entire string.

4 Incremental Chart Parsing

An incremental chart parser, by contrast, can
handle modifications to an input string that it has
already parsed without having to reprocess the en-
tire string from scratch. The key idea of incre-
mental chart parsing is to use information about
edge dependencies for keeping track of edges that
have to be updated (Wirén, 1989; Wirén 1994).

Let us explore this idea by an example and then
refine it. Suppose we modify sentence 10 by insert-
ing the relative pronoun that between the noun
phrase and the verb phrase, then we get a complex
noun phrase as result:

11. The password that is valid …

In comparison to the chart for sentence 10 in
Section 3, the processing of this noun phrase re-
sults in 4 new edges

edge(2,3,rc,[vp])

edge(2,5,rc,[])

edge(0,5,np,[])

edge(5,5,vp,[verb,adj])

and in 4 modified edges (with modifications in
bold face)

edge(3,3,vp,[verb,adj])

edge(3,4,vp,[adj])

edge(3,5,vp,[])

edge(0,5,s,[vp])

 We can make the following observations when
we compare the charts for sentence 10 and for the
noun phrase 11 in more detail:

• The active edge edge(0,2,np,[rc]) for
sentence 10 hypothesizing that the password
was the beginning of a noun phrase followed by
a relative clause has been expanded to an inac-
tive edge edge(0,5,np,[]) to cover the
relative clause in 11.

• All the edges that make up the noun phrase the
password in sentence 10 remain unaffected by
the modification.

• All the edges that make up the verb phrase is
valid in sentence 10 remain unaffected apart
from the indices of the vertices (displayed in
bold face) that have been updated.

• The passive edge edge(0,4,s,[]) repre-
senting sentence 10 has been replaced by an
active edge edge(0,5,s,[vp]), because 11
is a noun phrase and not a complete sentence.

In summary, we can state that there is no need
to recompute an edge, if that edge does not in any
way depend upon the vertices that have been
changed or on any edges that were based on those
edges.

A closer look into the chart for sentence 10 re-
veals that the edge edge(0,4,s,[]) is the only
one that spans the vertex (insertion point) where
the relative pronoun would be inserted. This sug-
gests the following informal solution to process the
modification:

1) Find all edges on the right hand side of the in-
sertion point, in our case all those edges whose
starting vertex is greater than or equal to the in-
sertion point, and create a new subchart CR for
them.

2) Renumber all starting and ending vertices of the
edges in CR to be vs+1 and vt+1.

3) Find all edges on the left hand side of the inser-
tion point, in our case all those edges whose
ending vertex is smaller than or equal to the in-
sertion point, and create a new subchart CL for
them.

4) Create a new chart C by appending the subchart
CR to the end of the subchart CL.

5) Create new hypotheses beginning at the inser-
tion point for the word form that.

6) Reparse the string, using only the new edges in
the agenda and the new chart C.

 Note that this solution automatically excludes
edges such as edge(0,4,s,[]) from the new
chart C, since we considered only edges that do not
bridge the insertion point. At first glance, it seems
that an optimization should be possible, since not
all edges in the subcharts are affected by the edit-
ing operation. For example, only the modified edge
edge(3,5,vp,[]) in the subchart CR spanning
the verb phrase on the right hand side of the inser-
tion point takes part in reparsing. Similar observa-
tions can be made for the subchart CL where only
those edges that end at the insertion point are af-
fected by reparsing. However, it turns out that first
filtering the subchart CR and then reconstructing
the entire chart after parsing is costly and does not
result in a speed-up of parsing in comparison with
the unfiltered version of the chart.

5 Update Handling Algorithms

After this informal discussion of the problem, I
will give a more formal description of the update
handling algorithms for finding look-ahead catego-
ries and for dealing with modification (insertion,
deletion, and replacement).

5.1 Finding look-ahead categories

Look-ahead categories are generated after each
word form that the author enters or whenever an
approved modification results in a syntactic struc-
ture that needs to be completed by the author.

Formally, a set of look-ahead categories LC for
a word w ending at vertex vi can be calculated in
the following way:

1) Find all active edges ending at vi.

2) For each active edge:

a) Select the RHSL of remaining categories.

b) For the first category in RHSL, check if it
is a lexical category:

i) If yes, then store the solution in LC.

ii) If not, find a rule that rewrites the
category into further categories, then
select the first category and return to
2b.

Apart from lexical categories, it is also possible
to collect other categories, for example non-ter-

minal categories by extracting them from the
grammar rules, or semantic categories if they are
stored in the lexicon and accessible via lexical
categories. Collecting also look-ahead categories
for non-terminal symbols in Step 2ii results in a list
of hierarchically order categories and eases cus-
tomization of this functionality for the user inter-
face.

5.2 Editing operations

According to our definition, the incremental chart
parser should not only be able to handle piecemeal
additions to a string but also to handle arbitrary
modifications efficiently. Ideally, the time that the
incremental algorithm uses for processing a modi-
fication should be a function of the size of the
modification rather then the size of the entire input.
In simple words: a small modification should re-
quire less work than a big modification. Note that
the algorithms presented below for the editing op-
erations do not explicitly delete bridging edges but
rather exclude them by reconstructing the chart.

Insertion

Inserting a word w at a vertex vi in a string can be
calculated in the following way:

1) Find all edges for which the index of the start-
ing vertex vs is greater than or equal to vi, that
is s � i, and create a new subchart CR for them.

2) For all the edges in CR

a) renumber the starting vertex to be vs+1,

b) renumber the ending vertex to be vt+1.

3) Find all edges for which the index of the end-
ing vertex vt is smaller than or equal to vi and
the starting vertex vs is not equal to vi, that is t
� i ∧ s ≠ i, and create a new subchart CL.

4) Create a new chart C by appending the sub-
chart CR to the end of the subchart CL.

5) Create new hypotheses beginning at vi for each
category that the new word w belongs to.

6) Reparse the string, using only these new edges
as the agenda for the parser, and providing it
with the updated chart C.

Deletion

Deleting a word w at a vertex vi in a string is to
some extent similar to the reverse of inserting a
word. The algorithm looks as follows:

1) Find all edges for which the index of the start-
ing vertex vs is greater than or equal to vi, that
is s � i, and create a new subchart CR for them.

2) For all the edges in CR

a) renumber the starting vertex to be vs-1,

b) renumber the ending vertex to be vt-1.

3) Find all edges for which the index of the end-
ing vertex vt is smaller than vi and the starting
vertex vs is not equal to vi, that is t < i ∧ s ≠ i,
and create a new subchart CL1.

4) Find all edges for which the index of the end-
ing vertex vt is equal to vi, that is t = i, and cre-
ate a new subchart CL2.

5) Create a new chart C by appending the sub-
chart CR to the end of the subchart CL1.

6) Reparse the string, using the subchart CL2 as
the agenda for the parser, and providing it with
the subchart C as new chart.

Note that the agenda above consists of the sub-
chart CL2 in contrast to the insertion operation
where the agenda for reparsing consists only of the
new word hypothesis.

Replacement

Replacing a word w at a vertex vi in a string can be
described as a deletion followed by an insertion
operation. This is what authors do when they re-
place a word in an interactive text editor. They first
delete the word and then insert a new word.

However, simply executing these two opera-
tions in sequence would not be very efficient. For
example, if the word customer is replaced with
client in sentence 10, then all words lie between
the same vertices as they did before the replace-
ment operation. In this case, the chart does not
need to be partially recreated twice, since the first
recreation will renumber vertices and create edges
that will immediately be reset or deleted again.

This observation results in the following opti-
mized algorithm:

1) Create new hypotheses beginning at vi for each
category Cat that the new word w belongs to.

2) Replace the inactive word edge E in the chart
starting at vertex vi with the new word edge E’
so that the categories of E and E’ are identical.

This is a significant improvement over execut-
ing the two operations in sequence.

6 Evaluation

The presented algorithms that incrementally update
the chart result in a speed-up for all modification
operations compared with naïve reparsing of the
input string after an editing operation. The average
improvement for insertion is of a factor of 1.44, for
deletion 1.28, and for replacement 17.64. As the
results show, replacement can be implemented
very efficiently. As already mentioned, additional
filtering of the subchart CR does not result in any
speed-up. It seems that in our Prolog implementa-
tion renumbering of the vertices in the affected
edges is the biggest cost factor, since this involves
arithmetic operations and not pure unification.

7 Conclusion

In this paper, I discussed an incremental chart
parser that generates predictive hints and allows
for arbitrary editing operation as long as the result
is an approved structure in controlled natural lan-
guage. The generated look-ahead categories consist
of syntactic (or semantic) categories and aim at
supporting the writing process of the controlled
natural language. These predictive hints ensure that
the author follows the rules of the controlled natu-
ral language and guarantee unambiguous and pre-
cise texts (in our case “seemingly informal” spe-
cifications).

The editing operations (insertion, deletion, re-
placement) are bound to the affected part of the
string and require only minimal reparsing. This
means that the modifications are a function of the
size of the words changed rather than the size of
the entire text. The current solution deals only with
local updates. In the future, I would like to look
into the problem of updating anaphoric references
in the text and in the underlying discourse repre-
sentation structure after a nominal expression has
been modified. The goal is to find a solution that
does not require extensive reparsing of the input
text.

Acknowledgements

I would like to thank the students (Jason Barles,
James Cameron, Dennis Chan, Mary Gardiner,
Hogan Ho, and Simon Kissane) who were enrolled
in the honours class COMP448: Advanced Topics
in Natural Language Processing in the summer

semester 2003 at Macquarie University for their
enthusiasm in exploring various directions in incre-
mental chart parsing. I also thank two anonymous
reviewers of this paper for their constructive com-
ments.

References

AECMA. 2001. The European Association of Aero-
space Industries. AECMA Simplified English,
AECMA Document PSC-85-16598. A Guide for the
Preparation of Aircraft Maintenance Documentation
in the International Aerospace Maintenance Lan-
guage. Issue 1, Revision 2, 15 January.

J. Bos. 2001. DORIS 2001: Underspecification, Resolu-
tion and Inference for Discourse Representation
Structures, in: Blackburn and Kohlhase (eds.): IcoS-
3. Inference in Computational Semantics. Workshop
Proceedings, Siena, Italy, June.

J. Bos. 2003. Exploring Model Building for Natural
Language Understanding. Proceedings of the Fourth
International Workshop on Inference in Computa-
tional Semantics (ICoS-4), September 25-26, INRIA
Lorraine, Nancy.

M. V. Ferro, M. A. A. Pardo. 1995. Exploring interac-
tive chart parsing. Procesamiento del Lenguaje Natu-
ral, Bilbalo, Spain, pp. 158-172.

N. E. Fuchs, U. Schwertel. 2003. Reasoning in At-
tempto Controlled English. Proceedings of the Work-
shop on Principles and Practice of Semantic Web
Reasoning (PPSWR 2003), Mumbai, India.

G. Gazdar, C. Mellish. 1989. Natural Language Process-
ing in Prolog. An Introduction to Computational Lin-
guistics. Addison-Wesley, Wokingham, England.

P. Goyvaerts. 1996. Controlled English, Curse or Bless-
ing? – A User’s Perspective. Proceedings of the First
International Workshop on Controlled Language Ap-
plications, March 26-27, Leuven.

W. O. Huijsen. 1998. Controlled Language – An Intro-
duction. Proceedings of CLAW 1998, Pittsburgh, pp.
1-15.

H. Kamp, U. Reyle. 1993. From Discourse to Logic.
Kluwer, Dordrecht.

C. Kamprath, T. Mitamura, E. Nyberg. 1998. Controlled
Language for Multilingual Document Production:
Experience with Caterpillar Technical English, Pro-
ceedings of the Second International Workshop on
Controlled Language Applications, Pittsburgh.

M. Kay 1980. Algorithm Schemata and Data Structures
in Syntactic Processing. Report CSL-80-12, Xerox
Parc, Palo Alto, California.

W. McCune. 2001. MACE 2.0 Reference Manual and
Guide. ANL/MCS-TM-249. Mathematics and Com-
puter Science Division, Technical Memorandum No.
249, Argonne National Laboratory, Argonne.

W. McCune. 2003. OTTER 3.3 Reference Manual.
ANL/MCS-TM-263, Mathematics and Computer
Science Division, Technical Memorandum No. 263,
Argonne National Laboratory, Argonne.

S. O’Brien. 2003. Controlling Controlled English, An
Analysis of Several Controlled Language Rule Sets.
Proceedings of EAMT-CLAW03, Controlled Lan-
guage Translation, May 15-17, Dublin City Univer-
sity, pp. 105-114.

R. Power, D. Scott, A. Hartley. Multilingual Generation
of Controlled Languages. Proceedings of EAMT-
CLAW03, Controlled Language Translation, May
15-17, Dublin City University, pp. 115-123.

R. Schwitter. 2002. English as a Formal Specification
Language. Proceedings of the Thirteenth Interna-
tional Workshop on Database and Expert System
Applications (DEXA 2002), Aix-en-Provence,
France, pp. 228-232.

R. Schwitter, A. Ljungberg. 2002. How to write a
document in controlled natural language. Proceed-
ings of the Seventh Australasian Document Comput-
ing Symposium, Sydney, Australia, December, pp.
133-136.

R. Schwitter, A. Ljungberg, D. Hood. 2003. ECOLE: A
Look-ahead Editor for a Controlled Language. Pro-
ceedings of EAMT-CLAW03, Controlled Language
Translation, May 15-17, Dublin City University, pp.
141-150.

J. Z. Sukkarieh. 2003. Mind your Language! Controlled
Language for Inference Purposes. Proceedings of
EAMT-CLAW03, Controlled Language Translation,
May 15-17, Dublin City University, pp. 160-169.

M. Wirén. 1989. Interactive incremental chart parsing.
Proceedings of the Fourth Conference of the Euro-
pean Chapter of the Association for Computational
Linguistics, Manchester, England, pp. 241-248.

M. Wirén. 1994. Bounded incremental chart parsing.
Clause Report 36. Universität des Saarlandes, Saar-
brücken, Germany.

