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Abstract 

This paper describes an incremental chart 
parser that generates look-ahead catego-
ries on the fly for a controlled natural lan-
guage. These predictive hints tell the au-
thor what kind of syntactic (or semantic) 
structure can follow the current input 
string and thereby aim at helping the au-
thor to reduce the cognitive burden to 
learn and remember the rules of the con-
trolled language. The parser can handle 
modifications (insertion, deletion, and re-
placement) to the input string without the 
need to reparse the entire string. These 
modifications are a function of the size of 
the tokens changed rather than the size of 
the entire input. 

1 Introduction 

Over the last decade two types of controlled natu-
ral languages have been developed: human-ori-
ented controlled languages and machine-oriented 
controlled languages (Huijsen, 1998; O’Brien, 
2003). 

The main goal of human-oriented controlled 
natural languages is to improve the readability and 
understandability of technical documents for hu-
man readers, especially non-native speakers 
(AECMA, 2001). Machine-oriented controlled nat-
ural languages, on the other hand, try to ease the 
translation process (Kamprath, 1998) and to facili-
tate the subsequent inference processes (Fuchs and 
Schwertel, 2003; Schwitter et al., 2003; Sukkarie, 
2003). 

In general, a controlled natural language can be 
defined as a subset of a natural language that has 
been restricted with respect to its grammar and its 
lexicon. Grammatical restrictions usually result in 
less complex and less ambiguous texts. Lexical re-
strictions reduce the size of the vocabulary and the 
meaning of the lexical entries for a particular ap-
plication domain. 

To allow writing unambiguous and precise spe-
cifications, we have developed a machine-oriented 
controlled natural language (PENG – Processable 
ENGlish) for knowledge representation (Schwitter, 
2002). Specifications written in PENG can be 
translated unambiguously into first-order predicate 
logic via discourse representation structures and 
can be automatically checked for consistency and 
informativeness with the help of third-party reas-
oning services (McCune, 2001; Bos, 2001; 
McCune, 2003; Bos, 2003). 

It is well known that writing documents in a 
controlled natural language is hard and time-con-
suming without the support of intelligent writing 
assistance (Goyvaerts, 1996; Power et al., 2003). 
To ease the writing process and to guarantee well-
formed syntactic structures, PENG uses a look-
ahead editor that displays after each word form a 
set of syntactic categories that inform the author 
how the input string can be continued (Schwitter et 
al., 2003). 

The look-ahead editor of PENG communicates 
with a chart parser that processes a unification-
based grammar. The chart parser generates these 
predictive hints dynamically while the text is writ-
ten and thereby enforces the restrictions placed 
upon the language. Apart from these hints, the 
chart parser also generates for each input string a 
discourse representation structure (Kamp and 
Reyle, 1993) as well as a paraphrase (Schwitter 
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and Ljungberg, 2002) that reflects the interpreta-
tion of the machine in controlled natural language. 

So far, it has not been possible to modify a sub-
string of the text without having to reparse the en-
tire text and regenerate the output (discourse re-
presentation structure and paraphrase) from 
scratch. This is unsatisfactory and demands for a 
more sophisticated approach to deal with modifica-
tions. It would be desirable to be able to edit the 
text during the writing process without the need for 
extensive reparsing. The chart parser should be 
able to handle modifications (insertion, deletion, 
and replacement) as efficiently as possible and to 
do its job in a piecemeal fashion constructing the 
representation of the text word by word and pro-
viding, at the same time, look-ahead categories that 
are contingent on the current input.  

We will call such a chart parser that is capable 
of constructing a representation bit by bit and han-
dling modifications without the need for exhaus-
tive reparsing and reconstructing of the underlying 
representation an incremental chart parser. 

Ideally, the time that the incremental parser 
spends to process a modification of arbitrary length 
(without violating the approved rules of the con-
trolled language) should be proportional to the 
complexity of the change. 

The reminder of this paper is organised in the 
following way: In Section 2, I will set up the re-
quirements for an incremental chart parser. In Sec-
tion 3, I will discuss the properties and short-
comings of a naïve chart parser for the task at 
hand. In Section 4, I will present the benefits of an 
incremental chart parser and show that the in-
tended solution fulfills the requirements that have 
been specified in Section 2. In Section 5, I will 
present update handling algorithms for generating 
look-ahead categories and for dealing with modifi-
cations. In Section 6, I will evaluate the introduced 
algorithms and compare them with naïve reparsing. 
Finally, in Section 7, I will summarize the advan-
tages of the presented approach and give some in-
dicators for further research. 

2 Requirements to an Incremental Chart 
Parser for PENG 

PENG is a machine-oriented controlled natural 
language designed to write precise specifications 
and aims at supporting the knowledge acquisition 
process for various tasks (Schwitter, 2002). PENG 

consists of a strict subset of standard English. The 
restrictions of the language are defined with the 
help of a controlled grammar and a controlled lexi-
con, and enforced by a look-ahead editor (Schwit-
ter et al., 2003).  
 As shown in the dataflow diagram for the 
PENG system in Figure 1, sentences written in 
PENG are first sent to the controlled language 
(CL) processor and then translated into first-order 
predicate logic via discourse representation struc-
tures. This logical representation is subsequently 
checked for consistency and informativeness with 
the help of a theorem prover and a model builder.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1: Dataflow diagram for the PENG system  
 

The look-ahead editor of PENG communicates 
with the CL processor (chart parser and unifica-
tion-based grammar) via a socket interface. The 
CL processor is running as a client process and is 
connected via a server with a theorem prover (OT-
TER; McCune, 2003) and a model builder 
(MACE; McCune 2001). The theorem prover and 
the model builder are both running separate client 
processes.  

One of the deciding factors for the acceptability 
of a controlled language is the availability of auto-
matic writing assistance. Texts in controlled natu-
ral language should not only be easy to write but 
also easy to modify without the need for time-con-
suming reprocessing.  

This is why we need a processing strategy that 
informs the author about the permissible structure 
of the text and that supports basic editing opera-
tions in an efficient way. 

Look-ahead Editor 

CL Processor 

Server 

Theorem Prover Model Builder 



2.1 Look-ahead categories 

Given a set of grammar rules that define a con-
trolled natural language such as PENG, the incre-
mental chart parser should be able to generate a set 
of look-ahead categories after each word form that 
the author enters. For example, for the sentence 

1. The customer inserts a credit card. 

the following look-ahead categories should be gen-
erated (simplified here): 

The  [ adjective | noun ] 

…  customer [ relpron | negation | verb ] 

…  inserts [ determiner ] 

… the [ adjective | noun ] 

… credit [ 'card' | relpron |  prep | conj | '. ' ] 

… card [ relpron |  prep | conj | '. ' ] 

In this example, all the look-ahead categories 
are either lexical categories or word forms. How-
ever, the algorithm should be easily parameteriz-
able so that predictive categories for various syn-
tactic strata as well as for semantic information can 
be generated. 

2.2 Insertion 

The insertion operation should allow the addition 
of an arbitrary number of words into the input 
string as long as this modification does not violate 
the rules of the controlled language. For example, 
the insertion of the relative pronoun who into sen-
tence 1 should lead to the noun phrase: 

2. The customer who inserts the credit card …  

that is part of the controlled natural language 
PENG. 

Note that the insertion results here in a cate-
gorial change; instead of a complete sentence we 
have now to deal with a complex noun phrase.  
This means that the punctuation mark introduced 
by the sentence needs to be removed automatically 
and a new set of look-ahead categories has to be 
generated and displayed for the last word form of 
the input string: 

… card [ relpron | prep | verb | conj ] 

As this example shows, the noun phrase in 2 
could now be continued with a relative clause (3), 

a prepositional phrase (4), a verb phrase (5), or a 
coordinated nominal structure (6): 

3. … that is valid owns a password. 

4. … into the slot owns a password. 

5. … owns a password. 

6. … and enters the PIN owns a password. 

Each of these sentences constitutes a well-
formed structure in the controlled natural language. 

2.3 Deletion 

The deletion operation should allow the cutting of 
an arbitrary sequence of words in the input string. 
For example, the deletion of the prepositional 
phrase into the slot in  

6. The customer who inserts the credit card 
into the slot owns a password. 

should result in a well-formed sentence in con-
trolled language: 

7. The customer who inserts the credit card 
owns a password. 

The author should be able to delete a substring 
first by highlighting it and then by cutting it: 

8. The customer who inserts the credit card 
into the slot owns a password. 

This design decision reduces the complexity of 
the algorithm, since it results in one single cutting 
event that tells the parser when recomputation 
should be resumed.  

2.4 Replacement 

If the insertion and deletion operation are in place, 
then the infrastructure for the replacement opera-
tion exists. In essence, the replacement operation is 
a deletion followed by an insertion operation. For 
example, the replacement of the compound noun 
credit card with MasterCard in sentence 1 results 
in 

9. The customer inserts the MasterCard. 

It seems that a replacement operation is more 
complex than a deletion or an insertion operation, 
since these two operations need to be applied in 
sequence. However, as we will discuss in detail in 
Section 5, this is not the case, since the replace-
ment operation can be implemented in a way that 
does not demand for extensive reprocessing. 



3 Chart Parsing 

Parsing is the process of analyzing the syntactic 
structure of an input string and has traditionally 
been understood as a batch-mode process.  

The problem with any naïve parsing algorithm 
– independent of the parsing strategy – is the un-
necessary repetition of work that will occur for 
processing any non-trivial grammar.  

Suppose a top-down parser is attempting to 
parse the sentence: 

10. The password is valid. 

Given the following simple (context-free) 
phrase structure grammar 

s  → np, vp. 
np → det, noun, rc. 
np → det, noun. 
rc → relpro, vp. 
vp → verb, adj. 

the parser will first attempt using the rule 

np → det, noun, rc. 

and then after failing with that rule, it will try the 
alternative rule 

np → det, noun. 

That means the parser will repeat the work of 
analyzing the determiner (det) and the noun 
(noun) once for each rule.  

An active chart parser (Kay, 1980; Gazdar and 
Mellish, 1989; Ferro and Pardo, 1995) avoids this 
repetition of work by storing information about 
well-formed substrings as well as information 
about substring hypotheses that it has partially ex-
plored in a table (chart). The chart parser can then 
look up these substrings in the chart and expand 
them – if necessary – instead of recomputing them. 

Given an input string I and a grammar G, we 
can define a chart as a set of edges where an edge 
is a triple of the form <vi, vt, R> . The first two 
elements vi and vt are integers and represent start-
ing and ending vertices of I or of a substring of I 
and R represents a dotted rule. A dotted rule is a 
rule of the form X → α • β and corresponds to an 
X edge containing an analysis of confirmed con-
stituents α that are seeking for constituents β.  

For example, if s → np, vp. is a rule of the 
grammar and sentence 10 is an input string, then 

the first two dotted rules below represent uncon-
firmed hypotheses while the third rule represents a 
fully confirmed hypothesis: 

<0,0,s → �  np vp> 

<0,2,s → np �  vp> 

<0,4,s → np vp � > 

Edges that correspond to unconfirmed hypothe-
ses are known as active edges and those that corre-
spond to confirmed hypotheses as inactive edges. 

The basic operation of a chart parser involves 
combining an active edge with a completed inac-
tive edge. The result is either a new inactive edge 
or a new active edge that spans both the active and 
inactive edges. This fundamental rule cannot be 
applied to a chart that contains no edges. Before 
anything can happen, an initialization process 
needs to set the chart up with inactive word edges 
and a rule invocation strategy needs to be defined 
that creates new active edges as a result of the ap-
plication of the fundamental rule. 

A chart parser usually uses an agenda to keep 
track of the edges that need to be processed. Such 
an agenda can be thought of as a list of edges. 
Adding new edges to the front of the agenda leads 
to a depth-first search strategy and adding them to 
the end would lead to breath-first search. 

In our implementation, edges are stored in the 
following modified format: 

edge(ID,vs,vt,LHS,RHSL) 

 ID is an integer that stands for a sentence iden-
tifier. LHS represents the category on the left hand 
side of a dotted rule and RHSL represents a list of 
unconfirmed daughter categories on the right hand 
side of the rule. If RHSL is empty ([]), then the 
edge is inactive, otherwise active.  

For example, a top-down chart parser will pro-
duce the following edges1 for sentence 10 using 
our simplified grammar rules introduced above: 

edge(0,0,s,[np,vp]) 

edge(0,0,np,[det,noun]) 

edge(0,1,np,[noun]) 

                                                           
1 The sentence identifier is not displayed in the edges. The 
categories of the grammar are atomic and do not contain any 
additional syntactic or semantic arguments. The grammar is 
not complete, since preterminal rules such as det → [the] 
are missing. As a consequence inactive edges such as 
edge(0,1,det,[]) do not appear in the simplified chart.  



edge(0,2,np,[]) 

edge(0,2,s,[vp]) 

edge(2,2,vp,[verb,adj]) 

edge(2,3,vp,[adj]) 

edge(2,4,vp,[]) 

edge(0,4,s,[]) 

edge(0,0,np,[det,noun,rc]) 

edge(0,1,np,[noun,rc]) 

edge(0,2,np,[rc]) 

edge(2,2,rc,[relpro,vp]) 

 Although such a batch-mode chart parser 
avoids repeating work and keeps active and pas-
sive edges in the chart, it cannot deal with modifi-
cations to the current input string without repro-
cessing the entire string.  

4 Incremental Chart Parsing 

An incremental chart parser, by contrast, can 
handle modifications to an input string that it has 
already parsed without having to reprocess the en-
tire string from scratch. The key idea of incre-
mental chart parsing is to use information about 
edge dependencies for keeping track of edges that 
have to be updated  (Wirén, 1989; Wirén 1994).  

Let us explore this idea by an example and then 
refine it. Suppose we modify sentence 10 by insert-
ing the relative pronoun that between the noun 
phrase and the verb phrase, then we get a complex 
noun phrase as result: 

11. The password that is valid … 

In comparison to the chart for sentence 10 in 
Section 3, the processing of this noun phrase re-
sults in 4 new edges 

edge(2,3,rc,[vp]) 

edge(2,5,rc,[]) 

edge(0,5,np,[]) 

edge(5,5,vp,[verb,adj]) 

and in 4 modified edges (with modifications in 
bold face) 

edge(3,3,vp,[verb,adj]) 

edge(3,4,vp,[adj]) 

edge(3,5,vp,[]) 

edge(0,5,s,[vp]) 

 We can make the following observations when 
we compare the charts for sentence 10 and for the 
noun phrase 11 in more detail: 

• The active edge edge(0,2,np,[rc]) for 
sentence 10 hypothesizing that the password 
was the beginning of a noun phrase followed by 
a relative clause has been expanded to an inac-
tive edge edge(0,5,np,[]) to cover the 
relative clause in 11. 

• All the edges that make up the noun phrase the 
password in sentence 10 remain unaffected by 
the modification. 

• All the edges that make up the verb phrase is 
valid in sentence 10 remain unaffected apart 
from the indices of the vertices (displayed in 
bold face) that have been updated. 

• The passive edge edge(0,4,s,[]) repre-
senting sentence 10 has been replaced by an  
active edge edge(0,5,s,[vp]), because 11 
is a noun phrase and not a complete sentence. 

In summary, we can state that there is no need 
to recompute an edge, if that edge does not in any 
way depend upon the vertices that have been 
changed or on any edges that were based on those 
edges. 

A closer look into the chart for sentence 10 re-
veals that the edge edge(0,4,s,[]) is the only 
one that spans the vertex (insertion point) where 
the relative pronoun would be inserted. This sug-
gests the following informal solution to process the 
modification: 

1) Find all edges on the right hand side of the in-
sertion point, in our case all those edges whose 
starting vertex is greater than or equal to the in-
sertion point, and create a new subchart CR for 
them. 

2) Renumber all starting and ending vertices of the 
edges in CR to be vs+1 and vt+1. 

3) Find all edges on the left hand side of the inser-
tion point, in our case all those edges whose 
ending vertex is smaller than or equal to the in-
sertion point, and create a new subchart CL for 
them. 

4) Create a new chart C by appending the subchart 
CR to the end of the subchart CL. 

5) Create new hypotheses beginning at the inser-
tion point for the word form that. 



6) Reparse the string, using only the new edges in 
the agenda and the new chart C. 

 Note that this solution automatically excludes 
edges such as edge(0,4,s,[]) from the new 
chart C, since we considered only edges that do not 
bridge the insertion point. At first glance, it seems 
that an optimization should be possible, since not 
all edges in the subcharts are affected by the edit-
ing operation. For example, only the modified edge 
edge(3,5,vp,[]) in the subchart CR spanning 
the verb phrase on the right hand side of the inser-
tion point takes part in reparsing. Similar observa-
tions can be made for the subchart CL where only 
those edges that end at the insertion point are af-
fected by reparsing. However, it turns out that first 
filtering the subchart CR and then reconstructing 
the entire chart after parsing is costly and does not 
result in a speed-up of parsing in comparison with 
the unfiltered version of the chart. 

5 Update Handling Algorithms 

After this informal discussion of the problem, I 
will give a more formal description of the update 
handling algorithms for finding look-ahead catego-
ries and for dealing with modification (insertion, 
deletion, and replacement). 

5.1 Finding look-ahead categories 

Look-ahead categories are generated after each 
word form that the author enters or whenever an 
approved modification results in a syntactic struc-
ture that needs to be completed by the author. 

Formally, a set of look-ahead categories LC for 
a word w ending at vertex vi can be calculated in 
the following way: 

1) Find all active edges ending at vi. 

2) For each active edge: 

a) Select the RHSL of remaining categories. 

b) For the first category in RHSL, check if it 
is a lexical category: 

i) If yes, then store the solution in LC. 

ii) If not, find a rule that rewrites the 
category into further categories, then 
select the first category and return to 
2b. 

Apart from lexical categories, it is also possible 
to collect other categories, for example non-ter-

minal categories by extracting them from the 
grammar rules, or semantic categories if they are 
stored in the lexicon and accessible via lexical 
categories. Collecting also look-ahead categories 
for non-terminal symbols in Step 2ii results in a list 
of hierarchically order categories and eases cus-
tomization of this functionality for the user inter-
face. 

5.2 Editing operations 

According to our definition, the incremental chart 
parser should not only be able to handle piecemeal 
additions to a string but also to handle arbitrary 
modifications efficiently. Ideally, the time that the 
incremental algorithm uses for processing a modi-
fication should be a function of the size of the 
modification rather then the size of the entire input. 
In simple words: a small modification should re-
quire less work than a big modification. Note that 
the algorithms presented below for the editing op-
erations do not explicitly delete bridging edges but 
rather exclude them by reconstructing the chart. 

Insertion 

Inserting a word w at a vertex vi in a string can be 
calculated in the following way: 

1) Find all edges for which the index of the start-
ing vertex vs is greater than or equal to vi, that 
is s � i, and create a new subchart CR for them. 

2) For all the edges in CR 

a) renumber the starting vertex to be vs+1, 

b) renumber the ending vertex to be vt+1. 

3) Find all edges for which the index of the end-
ing vertex vt is smaller than or equal to vi and 
the starting vertex vs is not equal to vi, that is t 
�  i ∧ s ≠ i, and create a new subchart CL. 

4) Create a new chart C by appending the sub-
chart CR to the end of the subchart CL. 

5) Create new hypotheses beginning at vi for each 
category that the new word w belongs to. 

6) Reparse the string, using only these new edges 
as the agenda for the parser, and providing it 
with the updated chart C. 

Deletion 

Deleting a word w at a vertex vi in a string is to 
some extent similar to the reverse of inserting a 
word. The algorithm looks as follows: 



1) Find all edges for which the index of the start-
ing vertex vs is greater than or equal to vi, that 
is s � i, and create a new subchart CR for them. 

2) For all the edges in CR 

a) renumber the starting vertex to be vs-1, 

b) renumber the ending vertex to be vt-1. 

3) Find all edges for which the index of the end-
ing vertex vt is smaller than vi and the starting 
vertex vs is not equal to vi, that is t <  i ∧ s ≠ i, 
and create a new subchart CL1. 

4) Find all edges for which the index of the end-
ing vertex vt is equal to vi, that is t = i, and cre-
ate a new subchart CL2. 

5) Create a new chart C by appending the sub-
chart CR to the end of the subchart CL1. 

6) Reparse the string, using the subchart CL2 as 
the agenda for the parser, and providing it with 
the subchart C as new chart. 

Note that the agenda above consists of the sub-
chart CL2 in contrast to the insertion operation 
where the agenda for reparsing consists only of the 
new word hypothesis. 

Replacement 

Replacing a word w at a vertex vi in a string can be 
described as a deletion followed by an insertion 
operation. This is what authors do when they re-
place a word in an interactive text editor. They first 
delete the word and then insert a new word.  

However, simply executing these two opera-
tions in sequence would not be very efficient. For 
example, if the word customer is replaced with 
client in sentence 10, then all words lie between 
the same vertices as they did before the replace-
ment operation. In this case, the chart does not 
need to be partially recreated twice, since the first 
recreation will renumber vertices and create edges 
that will immediately be reset or deleted again.  

This observation results in the following opti-
mized algorithm: 

1) Create new hypotheses beginning at vi for each 
category Cat that the new word w belongs to. 

2) Replace the inactive word edge E in the chart 
starting at vertex vi with the new word edge E’  
so that the categories of E and E’  are identical. 

This is a significant improvement over execut-
ing the two operations in sequence. 

6 Evaluation 

The presented algorithms that incrementally update 
the chart result in a speed-up for all modification 
operations compared with naïve reparsing of the 
input string after an editing operation. The average 
improvement for insertion is of a factor of 1.44, for 
deletion 1.28, and for replacement 17.64. As the 
results show, replacement can be implemented 
very efficiently. As already mentioned, additional 
filtering of the subchart CR does not result in any 
speed-up. It seems that in our Prolog implementa-
tion renumbering of the vertices in the affected 
edges is the biggest cost factor, since this involves 
arithmetic operations and not pure unification. 

7 Conclusion 

In this paper, I discussed an incremental chart 
parser that generates predictive hints and allows 
for arbitrary editing operation as long as the result 
is an approved structure in controlled natural lan-
guage. The generated look-ahead categories consist 
of syntactic (or semantic) categories and aim at 
supporting the writing process of the controlled 
natural language. These predictive hints ensure that 
the author follows the rules of the controlled natu-
ral language and guarantee unambiguous and pre-
cise texts (in our case “seemingly informal”  spe-
cifications).  

The editing operations (insertion, deletion, re-
placement) are bound to the affected part of the 
string and require only minimal reparsing. This 
means that the modifications are a function of the 
size of the words changed rather than the size of 
the entire text. The current solution deals only with 
local updates. In the future, I would like to look 
into the problem of updating anaphoric references 
in the text and in the underlying discourse repre-
sentation structure after a nominal expression has 
been modified. The goal is to find a solution that 
does not require extensive reparsing of the input 
text. 
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