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Abstract

This paper describes our GIST team sys-
tem that participated in SemEval-2018 Argu-
ment Reasoning Comprehension task (Task
12). Here, we address two challenging fac-
tors: unstated common senses and two lexi-
cally close warrants that lead to contradicting
claims. A key idea for our system is full use
of transfer learning from the Natural Language
Inference (NLI) task to this task. We used En-
hanced Sequential Inference Model (ESIM) to
learn the NLI dataset. We describe how to
use ESIM for transfer learning to choose cor-
rect warrant through a proposed system. We
show comparable results through ablation ex-
periments. Our system ranked 1st among 22
systems, outperforming all the systems more
than 10%.

1 Introduction

Argument Reasoning Comprehension is a task that
choose correct warrant from two options given a
claim and a reason. The Argument Reasoning
Comprehension is a very important task because
“argument comprehension requires not only lan-
guage understanding and logic skills, but it also
heavily depends on common sense”, as mentioned
by Habernal et al. (2018). There are two challeng-
ing factors. One is a certain part of an argument
is left unstated (Habernal et al., 2018). Because
of the unstated part, humans or machines need
reasoning ability about that part. Human can re-
construct the unstated part depending on common
knowledge. However, it has still remained diffi-
cult to machines. Another is that “both options are
plausible and lexically very close while leading to
contradicting claims”, as mentioned by Habernal
et al. (2018). To address these factors, we have two
assumptions. One is that similar and large datasets
may help to address the unstated common sense
by learning various cases. Another is that an in-

ferrence model to distinguish semantic differences
between two sentences may help to choose one of
two lexically close warrants that lead to contra-
dicting claims. There are two suitable datasets in
the Natural Language Inference (NLI) task, Stan-
ford NLI (SNLI) (Bowman et al., 2015) and Multi
NLI (MNLI) (Williams et al., 2017) datasets. NLI
is a task choosing one of relationships (Entail-
ment, Contradiction, Neutral) between two sen-
tences. Both SNLI and MNLI are very large cor-
pus (each 0.5M sentence pairs). In addition, there
is a good performance model for the task, En-
hanced Sequential Inference Model (ESIM) (Chen
et al., 2017). To make use of other datasets for
our task, we use transfer learning. About trans-
fer learning, Conneau et al. (2017) showed a good
precedent, using SNLI dataset. By learning the
NLI task, the model can obtain inference knowl-
edge. Therefore, we propose a network transfer-
ring inference knowledge to argument reasoning
comprehension task. We summarize our system
with 5 main components.

1. ESIM is trained on SNLI and MNLI datasets.
Then, parameters are frozen and used to
transfer the inference knowledge.

2. As inputs of the ESIM, we make sentence
pairs such as (claim, warrant), (warrant, rea-
son) and (warrant, other warrant).

3. To add flexibility, we added biLSTM module
encoding claim, reason and warrant.

4. To make a fixed length vector from variable
one, we used average and max pooling.

5. Finally, all the fixed length vectors from
ESIM and biLSTM are concatenated and fed
into a fully-connected neural network to de-
termine whether the warrant is correct or not.

The detail process is described in Section 2.
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Figure 1: Overview of our system

2 System Description

Figure 1 shows an overview of our system.
The preprocessing is described in subsection 2.1.
ESIM is described in subsection 2.2. Then, to
apply transfer learning, we describe how to com-
pose the inputs of the ESIM in subsection 2.3. In
the subsection 2.4, we describe a simple biLSTM
module added to our model. Pooling is described
in subsection 2.5. Finally, the fully-connected
neural network is described in subsection 2.6 to
determine whether the warrant is correct or not.
We introduce our notations for following sections.
A sentence is notated as S = (wS

1 , ..., w
S
len(S)).

len(S) denotes the length of the sentence S. The
wS
i ∈ Rd is a d-dimensional word embeddings.

Also C , R, W0 and W1 denote the sentence of
Claim, Reason, Warrant0 and Warrant1 respec-
tively. Our goal is to predict which warrant (W0
or W1 ) is more correct given a claim (C ) and a
reason (R).

2.1 Preprocessing

First, we initialize all words that exist in the vocab-
ulary with pre-trained 300 dimension word2vec
(Mikolov et al., 2013). When the word does not
exist in the vocabulary, we use following several
preprocessing rules.

1. All [’s] are removed. (ex. He’ s, something’s)

2. All words with number are split into number
and word. (ex. 17th→ 17, th)

3. All abbreviations are replaced with
<abbreviation> token.

Figure 2: A high-level view of ESIM with prediction
part. The prediction part is used when training on the
NLI task, and two sentence vectors generated after in-
ference composition are used in our system. This pic-
ture is taken from the author (Chen et al., 2017) with a
few modifications.

4. All number is replaced with <number> to-
ken.

After this preprocessing, if the preprocessed word
exists in the vocabulary, we initialized it with the
word2vec again. Otherwise, we replaced it with
<unknown> token. Each token is randomly ini-
tialized.

2.2 Pre-trained ESIM on NLI dataset
Because of page limit, we briefly explain this part.
Chen et al. (2017) described that ESIM is com-
posed of the following major components: input
encoding, local inference modeling, and inference
composition. Figure 2 shows a high-level view of
the architecture. For more details, refer to the pa-
per (Chen et al., 2017). ESIM generates two sen-
tence vectors after comparing two input sentences
with each other. We notate it as follows.

sv
(S1,S2)
S1

, sv
(S1,S2)
S2

= ESIM(S1, S2) (1)

The sv consists of vectors of l dimension, the
number of which correspond to the length of each
sentence. The sv is the output of the inference
composition part. We implemented it as 300 di-
mensions. The ESIM was trained on SNLI and
MNLI datasets. The training was stopped when
the average of development set accuracies was
maximum. Then, the parameters were frozen so
as to be not updated.

2.3 Input sentence pair for transfer learning
To exploit transfer learning, the sentence pairs are
composed of (C , W0 ), (W0 , R) and (W0 , W1 )
for Warrant0. In the case of Warrant1, the pairs are
composed of (C , W1 ), (W1 , R) and (W1 , W0 ).
Then, these sentence pairs are fed into the ESIM.
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2.4 BiLSTM for Flexibility

LSTM (Hochreiter and Schmidhuber, 1997) is a
building block well-suited to learn long and short
information in a sequence. We employed bidirec-
tional LSTM, where forward and backward direc-
tional LSTMs are concatenated. For more detailes,
refer to the paper (Hochreiter and Schmidhuber,
1997).

svS = biLSTM(S) (2)

We add 100 dimension biLSTMs to our model.
Since the ESIM is only trained on NLI dataset, it
may be over-fitted to the NLI task. By adding a
new module that is not trained on the NLI task, our
system may have a chance to learn new knowledge
about the target task. We feed Claim, Warrants
and Reason into the biLSTM. The biLSTMs for
Warrant0 and Warrant1 share the parameters.

2.5 Pooling Layer

To generate a fixed length sentence vector, we use
both average and max pooling per one sentence.
The equations are as follow:

svS,ave =
1

len(S)

len(S)∑

i=1

svS,i (3)

svS,max =
len(S)
max
i=1

(svS,i) (4)

After pooling, the vector of average pooling and
max pooling are concatenated. We notate it as
svS,pool = [svS,ave; svS,max].

2.6 Fully-connected neural network

To determine whether the warrant is correct or not,
a fully-connected neural network (FCNN) is used.
Finally, all the vectors from ESIM and biLSTM
are concatenated. For Warrant0, the vectors are
concatenated as follow: [sv

(C,W0)
C,pool ; sv

(C,W0)
W0,pool;

sv
(W0,R)
W0,pool; sv

(W0,R)
R,pool ; sv

(W0,W1)
W0,pool ; sv

(W0,W1)
W1,pool ;

svC,pool; svW0,pool; svR,pool]. The Warrant1 is
also composed as the same way. The concatenated
vector is fed into FCNN. We build two layers of
FCNN. The first layer has 600 dimension with
the ReLu function. The second layer has only 1
dimension without any activation function. Then,
the 1 dimension value for Warrant0 and Warrant1
are concatenated with the softmax function.

3 Experimental setup

Pre-training First, to learn the inference knowl-
edge, we implemented ESIM and trained on NLI
training dataset. Our implemented ESIM dimen-
sion is 300. Except for the ESIM dimension, we
used the same hyperparameter values as those in
Chen et al. (2017). The preprocessing process
is implemented in the same way with subsection
2.1. The word embeddings are not updated during
training. The training was stopped when the av-
erage of development set accuracies is maximum.
We got development accuracy of 86.58%, 74.09%,
74.67% on SNLI, MNLI match, MNLI mismatch
datasets, respectively.
Training We used the ADAM (Kingma and Ba,
2014) optimizer for updating weight parameters.
The parameters of ADAM set to be as follow:
β1 = 0.9, β2 = 0.999, ε = 10−8. The initial
learning rate is 0.0002 and is decayed with 0.9 rate
per one epoch. We did not use dropout but added
L2 regularization on the first FCNN layer. The
regularization parameter λ was set to be 5× 10−4.
The word embeddings were not updated during
training. We randomly shuffled training data dur-
ing training. The minibatch size was 25. We
trained 10 epochs and chose our model when the
development set reached the max accuracy. We
implemented our system by using lasagne (Diele-
man et al., 2015) and theano (Theano Develop-
ment Team, 2016) library. Our code is available
at here1.

4 Results and Discussion

To get more reliable results, all accuracies were
calculated by averaging after repeating ten exper-
iments. In this competition, the official accuracy
of our system recorded 0.712 on test set. Table 1
shows accuracies of other approaches and ours on
Argument Reasoning Comprehension task. Our
approach showed best performance except human,
outperforming all the systems more than 10%. Ta-
ble 2 shows the results of ablation experiments.
Model (a) is our proposed system. Model (d) indi-
cates a model that is same as the model (a), except
that the inference knowledge is not transferred.
This model is directly trained on our task. Mod-
els (b) and (e) indicate that the modules includ-
ing warrant pair inputs (W0,W1) and (W1,W0)
are removed from model (a) and (d), respectively.

1https://github.com/hongking9/SemEval-2018-task12
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Approach Dev Test
Human average - 0.798
Human w/ training in resoning - 0.909

Our system
0.716 0.711
± 0.006 ± 0.007

Random baseline 0.473 0.491
2nd ranked system - 0.606
Attention† 0.488 0.513
Attention w/ context † 0.502 0.512
Intra-warrant attention† 0.638 0.556
Intra-warrant attent. w/ context† 0.637 0.560

Table 1: Accuracy of each approch. The human and
baseline results are taken from Habernal et al. (2018).
Our approach ranked 1st among 22 systems, outper-
forming all the systems more than 10%. † indicates ap-
proaches implemented by Habernal et al. (2018). Read-
ers can check all system results at here2.

Model Dev Test
(a) Our system 0.716 0.711
(b) − warrants pair input 0.685 0.696
(c) − biLSTM 0.726 0.706
(d) No Transferring 0.652 0.599
(e) − warrants pair input 0.653 0.605
(f) − biLSTM 0.656 0.608

Table 2: Ablation experiments.

Models (c) and (f) indicate that the biLSTM mod-
ule is removed from model (a) and (d), respec-
tively.

As we mentioned above introduction section,
our proposed model addresses two challenging
factors. The one is about common sense and the
other is about the two lexically close warrants that
lead to contradicting claims.
Transfer learning First, by comparing models (a)
and (d), we can observe that the inference knowl-
edge of the NLI task is very helpful to the ar-
gument reasoning comprehension task. We may
assume that machine can accommodate common
sense by learning similar tasks and large corpus.
Warrants pair input Second, by comparing mod-
els (a) and (b), we can observe that the warrants
pair input result in improved performance. We
may infer that the model can distinguish fine dif-
ference of the two warrants well by directly feed-
ing the warrant pair. However, in the case of model
(d) and (e), there is no sufficient difference of the
performance. We think this is because the model

2https://github.com/habernal/semeval2018-task12-results

did not learn to infer the relationship between two
sentences.
Adding biLSTM Finally, by comparing (a) and
(c), we can observe that adding biLSTM results
in a little improved performance on the test set.
Also, the performance on the test set was nearly
similar with those in development set in model (a)
whereas there was 2% difference in model (c). We
carefully infer that the performance on the devel-
opment set was more reliable and the model be-
comes flexible to the target task when adding not-
trained module to pre-trained and frozen model.
However, since the data is not large enough to
prove it, we leave it as future work.

5 Conclusion

To address argument reasoning comprehension
task, we proposed a network transferring inference
knowledge to the Argument Reasoning Compre-
hension task. First, we implemented ESIM and
trained it on a large NLI task corpus. We took
full advantage of the model to transfer inference
knowledge of NLI task, appropriately building the
network. Our approach showed robustness on this
task. Through ablation experiment, we showed
the following effects: transfer learning, warrants
pair input, and adding biLSTM. Also, we showed
our system can address the factors about common
sense and two lexically close warrants that lead to
contradicting claims.
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