
Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), pages 245–255
New Orleans, Louisiana, June 5–6, 2018. ©2018 Association for Computational Linguistics

NTUA-SLP at SemEval-2018 Task 1: Predicting Affective Content in
Tweets with Deep Attentive RNNs and Transfer Learning

Christos Baziotis1,3, Nikos Athanasiou1, Alexandra Chronopoulou1,
Athanasia Kolovou1,2, Georgios Paraskevopoulos1,4, Nikolaos Ellinas1

Shrikanth Narayanan4,5, Alexandros Potamianos1,4,5

1School of ECE, National Technical University of Athens, Athens, Greece
2 Department of Informatics, University of Athens, Athens, Greece

3 Department of Informatics, Athens University of Economics and Business, Athens, Greece
4 Behavioral Signal Technologies, Los Angeles, CA

5 Signal Analysis and Interpretation Laboratory (SAIL), USC, Los Angeles, USA
cbaziotis@mail.ntua.gr, el12074@central.ntua.gr
el12068@central.ntua.gr, akolovou@di.uoa.gr

geopar@central.ntua.gr, nellinas@central.ntua.gr
shri@sipi.usc.edu, potam@central.ntua.gr

Abstract

In this paper we present deep-learning mod-
els that submitted to the SemEval-2018 Task 1
competition: “Affect in Tweets”. We par-
ticipated in all subtasks for English tweets.
We propose a Bi-LSTM architecture equipped
with a multi-layer self attention mechanism.
The attention mechanism improves the model
performance and allows us to identify salient
words in tweets, as well as gain insight into
the models making them more interpretable.
Our model utilizes a set of word2vec word em-
beddings trained on a large collection of 550
million Twitter messages, augmented by a set
of word affective features. Due to the limited
amount of task-specific training data, we opted
for a transfer learning approach by pretrain-
ing the Bi-LSTMs on the dataset of Semeval
2017, Task 4A. The proposed approach ranked
1st in Subtask E “Multi-Label Emotion Classi-
fication”, 2nd in Subtask A “Emotion Intensity
Regression” and achieved competitive results
in other subtasks.

1 Introduction

Social media content has dominated online com-
munication, enriching and changing language with
new syntactic and semantic constructs that allow
users to express facts, opinions and emotions in
short amount of text. The analysis of such con-
tent has received great attention in NLP research
due to the wide availability of data and the inter-
esting language novelties. Specifically the study
of affective content in Twitter has resulted in a va-
riety of novel applications, such as tracking prod-
uct perception (Chamlertwat et al., 2012), public
opinion detection about political tendencies (Pla

<user> has forever changed my life

<hashtag> blessed </hashtag>

Emotions: joy, love, optimism

seriously about to smack someone in the

face <hashtag> arsehole </hashtag>

Emotions: anger, disgust

Figure 1: Attention heat-map visualization. The
color intensity corresponds to the weight given to
each word by the self-attention mechanism.

and Hurtado, 2014; Tumasjan et al., 2010), stock
market monitoring (Si et al., 2013; Bollen et al.,
2011b) etc. The wide usage of figurative language,
such as emojis and special language forms like ab-
breviations, hashtags, slang and other social me-
dia markers, which do not align with the conven-
tional language structure, make natural language
processing in Twitter even more challenging.

In the past, sentiment analysis was tackled by
extracting hand-crafted features or features from
sentiment lexicons (Nielsen, 2011; Mohammad
and Turney, 2010, 2013; Go et al., 2009) that were
fed to classifiers such as Naive Bayes or Sup-
port Vector Machines (SVM) (Bollen et al., 2011a;
Mohammad et al., 2013; Kiritchenko et al., 2014).
The downside of such approaches is that they re-
quire extensive feature engineering from experts
and thus they cannot keep up with rapid language
evolution (Mudinas et al., 2012), especially in
social media/micro-blogging context. However,

245

Unlabeled
Dataset Ta

sk
Fi

n
al

 L
ay

er

Embeddings
Pre-training

Word
Embeddings

Em
b

ed
d

in
g

La
ye

r

Subtask X
Dataset

Processed
Input Data

Transfer Weights

Su
b

ta
sk

 X
Fi

n
al

 L
ay

er

Pretraining
Dataset

Processed
Input Data

P
re

tr
ai

n
in

g
Ta

sk
Su

b
ta

sk
 X

Text
Preprocessing

(ekphrasis)

Figure 2: High-level overview of our approach

recent advances in artificial neural networks for
text classification have shown to outperform con-
ventional approaches (Deriu et al., 2016; Rouvier
and Favre, 2016; Rosenthal et al., 2017a). This
can be attributed to their ability to learn features
directly from data and also utilize hand-crafted
features where needed. Most of aforementioned
works focus on sentiment analysis, but similar ap-
proaches have been applied to emotion detection
(Canales and Martínez-Barco, 2014) leading to
similar conclusions. SemEval 2018 Task 1: “Af-
fect in Tweets” (Mohammad et al., 2018) focuses
on exploring emotional content of tweets for both
classification and regression tasks concerning the
four basic emotions (joy, sadness, anger, fear) and
the presence of more fine-grained emotions such
as disgust or optimism.

In this paper, we present a deep-learning sys-
tem that competed in SemEval 2018 Task 1: “Af-
fect in Tweets”. We explore a transfer learning
approach to compensate for limited training data
that uses the sentiment analysis dataset of Semeval
Task 4A (Rosenthal et al., 2017b) for pretraining a
model and then further fine-tune it on data for each
subtask. Our model operates at the word-level
and uses a Bidirectional LSTM equipped with a
deep self-attention mechanism (Pavlopoulos et al.,
2017). Moreover, to help interpret the inner work-
ings of our model, we provide visualizations of
tweets with annotations of the salient tokens as
predicted by the attention layer.

2 Overview

Figure 2 provides a high-level overview of our
approach, which consists of three main steps:

(1) the word embeddings pretraining, where we
train word2vec and affective word embeddings
on our unlabeled Twitter dataset, (2) the trans-
fer learning step, where we pretrain a deep-learn-
ing model on a sentiment analysis task, (3) the
fine-tuning step, where we fine-tune the pretrained
model on each subtask.
Task definitions. Given a tweet we are asked to:
Subtask EI-reg: determine the intensity of a cer-
tain emotion (joy, fear, sadness, anger), as a real-
valued number between in the [0, 1] interval.
Subtask EI-oc: classify its intensity towards a cer-
tain emotion (joy, fear, sadness, anger) across a
4-point scale.
Subtask V-oc: classify its valence intensity (i.e
sentiment intensity) across a 7-point scale [−3, 3].
Subtask V-reg: determine its valence intensity as a
real-valued number between in the [0, 1] interval.
Subtask E-c: determine the existence of none, one
or more out of eleven emotions: anger, anticipa-
tion, disgust, fear, joy, love, optimism, pessimism,
sadness, surprise, trust.

2.1 Data

Unlabeled Dataset. We collected a big dataset
of 550 million English tweets, from April 2014 to
June 2017. This dataset is used for (1) calculating
word statistics needed in our text preprocessing
pipeline (Section 2.3) and (2) training word2vec
and affective word embeddings (Section 2.2).
Pretraining Dataset. For transfer learning, we
utilized the dataset of Semeval-2017 Task4A.
The dataset consists of 61, 854 tweets with
{positive, neutral, negative} sentiment (va-
lence) annotations. To our knowledge, this is the
largest Twitter dataset with affective annotations.

2.2 Word Embeddings

Word embeddings are dense vector representa-
tions of words (Collobert and Weston, 2008;
Mikolov et al., 2013), capturing their semantic
and syntactic information. To this end, we train
word2vec word embeddings, to which we add 10
affective dimensions. We use our pretrained em-
beddings, to initialize the first layer (embedding
layer) of our neural networks.
Word2vec Embeddings. We leverage our unla-
beled dataset to train Twitter-specific word em-
beddings. We use the word2vec (Mikolov et al.,
2013) algorithm, with the skip-gram model, nega-
tive sampling of 5 and minimum word count of 20,

246

utilizing Gensim’s (Řehůřek and Sojka, 2010) im-
plementation. The resulting vocabulary contains
800, 000 words.
Affective Embeddings. Starting from small man-
ually annotated lexica, continuous norms (within
the [−1, 1] interval) for new words are estimated
using semantic similarity and a linear model along
ten affect-related dimensions, namely: valence,
dominance, arousal, pleasantness, anger, sad-
ness, fear, disgust, concreteness, familiarity. The
method of generating word level norms is detailed
in (Malandrakis et al., 2013) and relies on the as-
sumption that given a similarity metric between
two words, one may derive the similarity between
their affective ratings. This approach uses a set
of N words with known affective ratings (seed
words), as a starting point. Concretely, we cal-
culate the affective rating of a word w as follows:

υ̂(w) = α0 +

N∑

i=1

αiυ(ti)S(ti, w), (1)

where t1...tN are the seed words, υ(ti) is the af-
fective rating for seed word ti, αi is a trainable
weight corresponding to seed ti and S()̇ stands for
the semantic similarity metric between ti and w.
The seed words ti are selected separately for each
dimension, from the words available in the orig-
inal manual annotations (see 2.2). The S()̇ met-
ric is estimated as shown in (Palogiannidi et al.,
2015) using word-level contextual feature vectors
and adopting a scheme based on mutual informa-
tion for feature weighting.
Manually annotated norms. To generate affec-
tive norms, we need to start from some manual
annotations, so we use ten dimensions from four
sources. From the Affective Norms for English
Words (Bradley and Lang, 1999) we use norms for
valence, arousal and dominance. From the MRC
Psycholinguistic database (Coltheart, 1981), we
use norms for concreteness and familiarity. From
the Paivio norms (Clark and Paivio, 2004) we use
norms for pleasantness. Finally from (Stevenson
et al., 2007) we use norms for anger, sadness, fear
and disgust.

2.3 Preprocessing1

We utilized the ekphrasis2 (Baziotis et al., 2017)
tool as a tweet preprocessor. The preprocessing
steps included in ekphrasis are: Twitter-specific
tokenization, spell correction, word normaliza-
tion, word segmentation (for splitting hashtags)
and word annotation.
Tokenization. Tokenization is the first fundamen-
tal preprocessing step and since it is the basis for
the other steps, it immediately affects the qual-
ity of the features learned by the network. Tok-
enization on Twitter is challenging, since there is
large variation in the vocabulary and the expres-
sions which are used. There are certain expres-
sions which are better kept as one token (e.g. anti-
american) and others that should be split into sepa-
rate tokens. Ekphrasis recognizes Twitter markup,
emoticons, emojis, dates (e.g. 07/11/2011, April
23rd), times (e.g. 4:30pm, 11:00 am), currencies
(e.g. $10, 25mil, 50e), acronyms, censored words
(e.g. s**t), words with emphasis (e.g. *very*) and
more using an extensive list of regular expressions.
Normalization. After tokenization, we apply a se-
ries of modifications on the extracted tokens, such
as spell correction, word normalization and seg-
mentation. Specifically for word normalization
we use lowercase words, normalize URLs, emails,
numbers, dates, times and user handles (@user).
This helps reducing the vocabulary size without
losing information. For spell correction (Jurafsky
and James, 2000) and word segmentation (Segaran
and Hammerbacher, 2009) we use the Viterbi al-
gorithm. The prior probabilities are obtained from
word statistics from the unlabeled dataset.

The benefits of the aforementioned procedure
are the reduction of the vocabulary size, without
removing any words, and the preservation of in-
formation that is usually lost during tokenization.
Table 1 shows an example text snippet and the re-
sulting preprocessed tokens.

1Significant portions of the systems submitted to SemEval
2018 in Tasks 1, 2 and 3, by the NTUA-SLP team are shared,
specifically the preprocessing and portions of the DNN archi-
tecture. Their description is repeated here for completeness.

2github.com/cbaziotis/ekphrasis

original The *new* season of #TwinPeaks is coming on May 21, 2017. CANT WAIT \o/ !!! #tvseries #davidlynch :D
processed the new <emphasis> season of <hashtag> twin peaks </hashtag> is coming on <date> . cant <allcaps> wait

<allcaps> <happy> ! <repeated> <hashtag> tv series </hashtag> <hashtag> david lynch </hashtag> <laugh>

Table 1: Example of our text processor

247

2.4 Neural Transfer Learning for NLP

Transfer learning aims to make use of the knowl-
edge from a source domain, to improve the perfor-
mance of a model in a different, but related, tar-
get domain. It has been applied with great success
in computer vision (CV) (Razavian et al., 2014;
Long et al., 2014). Deep neural networks in CV
are rarely trained from scratch and instead are ini-
tialized with pretrained models. Notable examples
include face recognition (Taigman et al., 2014)
and visual QA (Agrawal et al., 2017), where im-
age features trained on ImageNet (Deng et al.,
2009) and word embeddings estimated on large
corpora via unsupervised training are combined.
Although model transfer has seen widespread suc-
cess in computer vision, transfer learning beyond
pretrained word vectors is less pervasive in NLP.

In our system, we explore the approach of pre-
training a network in a sentiment analysis task in
Twitter and use it to initialize the weights of the
models of each subtask. We chose the dataset of
Semeval 2017 Task4A (SA2017) (Rosenthal et al.,
2017b), which is a semantically similar dataset to
the emotion datasets of this task. By pretraining
on a dataset in a similar domain, it is more likely
that the source and target dataset will have similar
distributions.

To build our pretrained model, we initialize
the weights of the embedding layer with the
word2vec Twitter embeddings and train a bidirec-
tional LSTM (BiLSTM) with a deep self-attention
mechanism (Pavlopoulos et al., 2017) on SA2017,
similar to (Baziotis et al., 2017). Afterwards, we
utilize the encoding part of the network, which
is the BiLSTM and the attention layer, throwing
away the last layer. This pretrained model is used
for all subtasks, with the addition of a subtask-
specific final layer for classification/regression.

2.5 Recurrent Neural Networks

We model the Twitter messages using Recurrent
Neural Networks (RNN). RNNs process their in-
puts sequentially, performing the same operation,
ht = fW (xt, ht−1), on every element in a se-
quence, where ht is the hidden state t the time
step, and W the network weights. We can see that
the hidden state at each time step depends on the
previous hidden states, thus the order of elements
(words) is important. This process also enables
RNNs to handle inputs of variable length.

RNNs are difficult to train (Pascanu et al.,

𝑥1

ℎ1

𝑥2

ℎ2

𝑥3

ℎ3

𝑥𝑁

𝒉𝑵

…𝑅𝑁𝑁 𝑅𝑁𝑁 𝑅𝑁𝑁 𝑅𝑁𝑁

(a) Regular RNN

𝑥1

𝑎1

ℎ1

𝑥2

ℎ2

𝑥3

ℎ3

𝑥𝑁

ℎ𝑁

…𝑅𝑁𝑁 𝑅𝑁𝑁 𝑅𝑁𝑁 𝑅𝑁𝑁

𝑎2 𝑎3 𝑎𝑁

(b) Attention RNN

Figure 3: Comparison between regular RNN and
attentive RNN.

2013), because gradients may grow or decay ex-
ponentially over long sequences (Bengio et al.,
1994; Hochreiter et al., 2001). A way to overcome
these problems is to use more sophisticated vari-
ants of regular RNNs, like Long Short-Term Mem-
ory (LSTM) networks (Hochreiter and Schmidhu-
ber, 1997) or Gated Recurrent Units (GRU) (Cho
et al., 2014), introducing a gating mechanism to
ensure proper gradient flow through the network.

2.6 Self-Attention Mechanism

RNNs update their hidden state hi as they process
a sequence and the final hidden state holds a sum-
mary of the information in the sequence. In or-
der to amplify the contribution of important words
in the final representation, a self-attention mecha-
nism (Bahdanau et al., 2014) is used as shown in
Fig. 3. By employing an attention mechanism, the
representation of the input sequence r is no longer
limited to just the final state hN , but rather it is
a combination of all the hidden states hi. This is
done by computing the sequence representation,
as the convex combination of all hi. The weights
ai are learned by the network and their magnitude
signifies the importance of each hi in the final rep-
resentation. Formally:

r =

N∑

i=1

aihi where

N∑

i=1

ai = 1, ai > 0

3 Model Description

Next, we present in detail the submitted models.
For all subtasks, we adopted a transfer learning
approach, by pretraining a BiLSTM network with
a deep attention mechanism on SA2017 dataset.
Afterwards, we replaced the last layer of the pre-
trained model with a task-specific layer and fine-
tuned the whole network for each subtask.

248

𝑤1
𝑎1

𝑎𝑇

𝐿𝑆𝑇𝑀 𝐿𝑆𝑇𝑀

Bi-LSTM

𝑎2

Ԧ𝑥1

Embedding

𝑤2 𝐿𝑆𝑇𝑀 𝐿𝑆𝑇𝑀
Ԧ𝑥2

𝑤𝑁 𝐿𝑆𝑇𝑀 𝐿𝑆𝑇𝑀
Ԧ𝑥𝑁

……

Deep Self-Attention

Ԧ𝑟

ℎ1

ℎ1

ℎ2

ℎ2

ℎ𝑁

ℎ𝑁

…

𝑎1 ∗ ℎ1 + 𝑎2 ∗ ℎ2…

Figure 4: The proposed model, composed of a 2-layer BiLSTM with a deep self-attention mechanism.

3.1 Transfer Learning Model (TF)
Our transfer learning model is based on the sen-
timent analysis model in (Baziotis et al., 2017).
It consists of a 2-layer bidirectional LSTM (BiL-
STM) with a deep self-attention mechanism.
Embedding Layer. The input to the network is a
Twitter message, treated as a sequence of words.
We use an embedding layer to project the words
w1, w2, ..., wN to a low-dimensional vector space
RW , where W is the size of the embedding layer
and N the number of words in a tweet. We initial-
ize the weights of the embedding layer with our
pre-trained word embeddings (Section 2.2).
BiLSTM Layer. An LSTM takes as input a se-
quence of word embeddings and produces word
annotations h1, h2, ..., hN , where hi is the hid-
den state of the LSTM at time-step i, summariz-
ing all the information of the sentence up to wi.
We use bidirectional LSTMs (BiLSTM) in order
to get word annotations that summarize the infor-
mation from both directions. A BiLSTM consists
of 2 LSTMs, a forward LSTM

−→
f that parses the

sentence fromw1 towN and a backward LSTM
←−
f

that parses the sentence fromwN tow1. We obtain
the final annotation for each word hi, by concate-
nating the annotations from both directions,

hi =
−→
hi ‖
←−
hi , hi ∈ R2L (2)

where ‖ denotes the concatenation operation and
L the size of each LSTM.
Attention Layer. To amplify the contribution of
the most informative words, we augment our BiL-
STM with a self-attention mechanism. We use a

deep self-attention mechanism (Pavlopoulos et al.,
2017), to obtain a more accurate estimation of the
importance of each word. The attention weight in
the simple self-attention mechanism, is replaced
with a multilayer perceptron (MLP), composed
of l layers with a non-linear activation function
(tanh). The MLP learns the attention function g.
The attention weights ai are then computed as a
probability distribution over the hidden states hi.
The final representation r is the convex combina-
tion of hi with weights ai.

ei = g(hi) (3)

ai =
exp(ei)∑N
t=1 exp(et)

(4)

r =
N∑

i=1

aihi, r ∈ R2L (5)

Output Layer. We use vector r as the feature rep-
resentation, which we feed to a final task-specific
layer. For the regression tasks, we use a fully-
connected layer with one neuron and a sigmoid
activation function. For the ordinal classification
tasks, we use a fully-connected layer, followed by
a softmax operation, which outputs a probability
distribution over the classes. Finally, for the multi-
label classification task, we use a fully-connected
layer with 11 neurons (number of labels) and a sig-
moid activation function, performing binary clas-
sification for each label.

3.2 Fine-Tuning
After training a network on the pretraining dataset
(SA2017), we fine-tune it on each subtask, by re-

249

placing its final layer with a task-specific layer.
We experimented with two fine-tuning schemes.
The first approach is to fine-tune the whole net-
work, that is, both the pretrained encoder (BiL-
STM) and the task-specific layer. The second ap-
proach is to use the pretrained model only for
weight initialization, freeze its weights during
training and just fine-tune the final layer. Based
on the experimental results, the first approach ob-
tains significantly better results in all tasks.

3.3 Regularization

In both models, we add Gaussian noise to the
embedding layer, which can be interpreted as a
random data augmentation technique, that makes
models more robust to overfitting. In addition
to that, we use dropout (Srivastava et al., 2014)
and we stop training after the validation loss has
stopped decreasing (early-stopping).

Furthermore, we do not fine-tune the embed-
ding layers. Words occurring in the training set,
are projected in the embedding space and the clas-
sifier correlates certain regions of the embedding
space to certain emotions. However, words in-
cluded only in the test set, remain at their initial
position which may no longer reflect their “true”
emotion, leading to mis-classifications.

4 Experiments and Results

4.1 Experimental Setup

Training We use Adam algorithm (Kingma and
Ba, 2014) for optimizing our networks, with mini-
batches of size 32 and we clip the norm of the gra-
dients (Pascanu et al., 2013) at 1, as an extra safety
measure against exploding gradients. For devel-
oping our models we used PyTorch (Paszke et al.,
2017) and Scikit-learn (Pedregosa et al., 2011).
Class Weights. In subtasks EI-oc and V-oc, some
classes have more training examples than oth-
ers, introducing bias in our models. To deal
with this problem, we apply class weights to the
loss function, penalizing more the misclassifica-
tion of under-represented classes. These weights
are computed as the inverse frequencies of the
classes in the training set.
Hyper-parameters. In order to tune the hyper-
parameter of our model, we adopt a Bayesian op-
timization (Bergstra et al., 2013) approach, per-
forming a more time-efficient search in the high
dimensional space of all the possible values, com-
pared to grid or random search. We set size of the

embedding layer to 310 (300 word2vec + 10 affec-
tive dimensions), which we regularize by adding
Gaussian noise with σ = 0.2 and dropout of 0.1.
The sentence encoder is composed of 2 BiLSTM
layers, each of size 250 (per direction) with a 2-
layer self-attention mechanism. Finally, we apply
dropout of 0.3 to the encoded representation.

4.2 Experiments

In Table 2, we compare the proposed transfer
learning models against 3 strong baselines. Pear-
son correlation is the metric used for the first
four subtasks, whereas Jaccard index is used for
the E-c multi-label classification subtask. The
first baseline is a unigram Bag-of-Words (BOW)
model with TF-IDF weighting. The second base-
line is a Neural Bag-of-Words (N-BOW) model,
where we retrieve the word2vec embeddings of
the words in a tweet and compute the tweet rep-
resentation as the average (centroid) of the con-
stituent word2vec embeddings. Finally, the third
baseline is similar to the second one, but with
the addition of 10-dimensional affective embed-
dings that model affect-related dimensions (va-
lence, dominance, arousal, etc). Both BOW and
N-BOW features are then fed to a linear SVM
classifier, with tuned C = 0.6. In order to as-
sess the impact of transfer learning, we evalu-
ate the performance of each model in 3 different
settings: (1) random weight initialization (LST-
M-RD), (2) transfer learning with frozen weights
(LSTM-TL-FR), (3) transfer learning with fine-
tuning (LSTM-TL-FT). The results of our neural
models in Table 2 are computed by averaging the
results of 10 runs to account for model variability.
Baselines. Our first observation is that N-BOW
baselines significantly outperform BOW in sub-
tasks EI-reg, EI-oc, V-reg and V-oc, in which we
have to predict the intensity of an emotion, or the
tweet’s valence. However, BOW achieves slightly
better performance in subtask E-c, in which we
have to recognize the emotions expressed in each
tweet. This can be attributed to the fact that BOW
models perform well in tasks where we the occur-
rence of certain words is sufficient, to accurately
determine the classification result. This suggests
that in subtask E-c, certain words are highly in-
dicative of some emotions. Word embeddings,
though, that encode the correlation of each word
with different dimensions, enable NBOW to better
predict the intensity of various emotions. Further-

250

EI-reg (pearson) EI-oc (pearson) V-Reg
(pearson)

V-oc
(pearson)

E-c
(jaccard)anger fear joy sadness anger fear joy sadness

BOW 0.5249 0.5227 0.5716 0.4721 0.3996 0.3491 0.4456 0.3835 0.5963 0.4954 0.4572
NBOW 0.6539 0.6318 0.6355 0.6305 0.5573 0.3796 0.5044 0.5009 0.7501 0.6527 0.4541
NBOW+A* 0.656 0.6359 0.6384 0.6341 0.5367 0.3906 0.4803 0.5005 0.7457 0.6578 0.4478

LSTM-RD 0.7568 0.7357 0.7313 0.7479 0.6387 0.5874 0.6226 0.6343 0.8462 0.7722 0.5788
LSTM-TL-FR 0.7347 0.6509 0.7321 0.7269 0.5999 0.4666 0.6264 0.6030 0.8275 0.7331 0.5243
LSTM-TL-FT 0.7717 0.7273 0.7638 0.7665 0.6329 0.5702 0.6351 0.6400 0.8390 0.7652 0.5788

Table 2: Results of our experiments across all subtasks on the official evaluation metrics. For subtasks
EI-reg, EI-oc, V-reg, V-oc, the evaluation metric is Pearson correlation. For subtask E-c, the evaluation
metric is multi-label accuracy (Jaccard index). BOW stands for Bag-of-Words baseline, N-BOW stands
for Neural Bag-of-Words baseline and N-BOW+A indicates the inclusion of the affective word features.
As for the neural models, RD stands for random initialization, TL for Transfer Learning, FR for Frozen
pretrained layers (without fine-tuning) and FT for Fine-Tuning. For our deep-learning models, the results
are computed by averaging 10 runs to account for the variability in training performance.

Ave.diff. Overall Ave.diff. p-value
Anger 0.001 0 0.02223
Fear -0.003 -0.003 0
Joy 0.004 0.010 0
Sadness 0.002 -0.002 0
Valence 0.005 0.005 0

Table 3: Analysis for inappropriate biases

more, regarding the affective embeddings, we can
directly observe their impact by the performance
gain over the NBOW baseline.

Transfer Learning. We observe that our neural
models achieved better performance than all base-
lines by a large margin. Moreover, we can see that
our transfer learning model yielded higher perfor-
mance over the non-transfer model in most of the
Emotion Intensity (EI) subtasks. In the Emotion
multi-label classification subtask (E-c), transfer
learning did not outperform the random initializa-
tion model. This can be attributed to the fact that
our source dataset (SA17) was not diverse enough
to boost the model performance when classifying
the tweets into none, one or more of a set of 11
emotions. As for fine-tuning or freezing the pre-
trained layers, the overall results show that en-
abling the model to fine-tune always results in sig-
nificant gains. This is consistent with our intuition
that allowing the weights of the model to adapt to
the target dataset, thus encoding task-specific in-
formation, results in performance gains. Regard-
ing the emotion of joy, we observe that in EI-reg
and EI-oc subtasks, LSTM-RD matches the per-
formance of LSTM-TL-FR. We interpret this re-
sult as an indication of the semantic similarity be-
tween the source and the target task.

Mystery dataset. The submitted models were
also evaluated against a mystery dataset, in order
to investigate if there is statistically significant so-
cial bias in them. This is a very important exper-
iment, especially when automated machine learn-
ing algorithms are interacting with social media
content and users in the wild. The mystery dataset
consists of pairs of sentences that differ only in
the social context (e.g. gender or race). Submitted
models are expected to predict the same affective
values for both sentences in the pair. The evalua-
tion metric is the average difference in prediction
scores per class, along with the p-value score indi-
cating if the difference is statistically significant.
Results are summarized in Table 3.

4.3 Attention visualizations
Fig. 10 shows a heat-map of the attention weights
on top of 8 example tweets (2 tweets per emo-
tion). The color intensity corresponds to the
weight given to each word by the self-attention
mechanism and signifies the importance of this
word for the final prediction. We can see that the
salient words correspond to the predicted emotion
(e.g. “irritated” for anger, “mourn” for sadness
etc.). An interesting observation is that when emo-
jis are present they are almost always selected as
important, which indicates their function as weak
annotations. Also note that the attention mecha-
nism can hint to dependencies between words even
if they far in a sentence, like the “why” and “mad”
in the sadness example.

4.4 Competition Results
Our official ranking was 2/48 in subtask 1A (EI-
reg), 5/39 in subtask 2A (EI-oc), 4/38 in subtask

251

<user>
0.114

such
0.177

an
0.133

amazing
0.192

pic
0.192 0.192

the
0.042

golden
0.110

temple
0.040

is
0.110

beautiful
0.233

!
0.233 0.233

Figure 5: Examples of intensity of joy

why
0.133

do
0.123

i
0.120

get
0.124

mad
0.133

so
0.114

easily
0.124 0.129

how
0.123

long
0.148

will
0.160

they
0.159

mourn
0.188

me
0.122

?
0.100

Figure 6: Examples of intensity of sadness

totally
0.157

scare
0.159

for
0.154

this
0.128

upcoming
0.103

results
0.155

.
0.143

fuckfuckfuck
0.239

my
0.166

hands
0.213

are
0.144

shaking
0.239

Figure 7: Examples of intensity of fear

i
0.162

am
0.165

actually
0.167

very
0.168

irritated
0.169 0.169

i
0.132

really
0.142

hate
0.146

the
0.143

morning
0.145

shift
0.146 0.146

Figure 8: Examples of intensity of anger

it
0.043

'
0.031

s
0.037

been
0.088

<number>
0.087

weeks
0.113

and
0.063

i
0.074

still
0.113

go
0.090

through
0.120

depression
0.123

smh
0.019

Emotions: pessimism, sadness

everything
0.093

i
0.028

order
0.035

online
0.050

just
0.043

comes
0.036

looking
0.029

like
0.068

a
0.082

piece
0.141

of
0.106

shit
0.145 0.145

Emotions: anger, disgust

i
0.031

have
0.031

never
0.032

been
0.031

so
0.031

excited
0.224

to
0.229

start
0.228

a
0.059

semester
0.038

!
0.065

Emotions: anticipation, joy, optimism

the
0.028

best
0.166

revenge
0.166

ever
0.099

.
0.023

<repeated>
0.023

is
0.024

success
0.165 0.089 0.141 0.075

Emotions: joy, optimism

Figure 9: Examples of emotion recognition

Figure 10: Attention heat-map visualization. The color intensity of each word corresponds to its weight
(importance), given by the self-attention mechanism (Section 2.6).

3A (V-reg), 8/37 (tie with 6 and 7 place) in sub-
task 4A (V-oc) and 1/35 in subtask 5A (E-c). All
of our models achieved competitive results. We
used the same transfer learning approach in all
subtasks (LSTM-TL-FT), utilizing the same pre-
trained model.

5 Conclusion

In this paper we present a deep-learning system
for short text emotion intensity, valence estimation
for both regression and classification and multi-
class emotion classification. We used Bidirec-
tional LSTMs, with a deep attention mechanism
and took advantage of transfer learning in order to
address the problem of limited training data.

Our models achieved excellent results in sin-
gle and multi-label classification tasks, but mixed
results in emotion and valence intensity tasks.
Future work can follow two directions. Firstly,
we aim to revisit the task with different transfer
learning approaches, such as (Felbo et al., 2017;
Howard and Ruder, 2018; Hashimoto et al., 2016).

Secondly, we would like to introduce character-
level information in our models, based on (Wiet-
ing et al., 2016; Labeau and Allauzen, 2017), in or-
der to overcome the problem of out-of-vocabulary
(OOV) words and learn syntactic and stylistic fea-
tures (Peters et al., 2018), which are highly indica-
tive of emotions and their intensity.

Finally, we make both our pretrained word
embeddings and the source code of our models
available to the community3, in order to make our
results easily reproducible and facilitate further
experimentation in the field.

Acknowledgements. This work has been partially
supported by the BabyRobot project supported by
EU H2020 (grant #687831). Also, the authors
would like to thank NVIDIA for supporting this
work by donating a TitanX GPU.

3github.com/cbaziotis/
ntua-slp-semeval2018-task1

252

References
Aishwarya Agrawal, Jiasen Lu, Stanislaw Antol, Mar-

garet Mitchell, C. Lawrence Zitnick, Devi Parikh,
and Dhruv Batra. 2017. Vqa: Visual question an-
swering. Int. J. Comput. Vision, 123(1):4–31.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua
Bengio. 2014. Neural machine translation by
jointly learning to align and translate. CoRR,
abs/1409.0473.

Christos Baziotis, Nikos Pelekis, and Christos Doulk-
eridis. 2017. Datastories at semeval-2017 task
4: Deep lstm with attention for message-level and
topic-based sentiment analysis. In Proceedings of
the 11th International Workshop on Semantic Eval-
uation (SemEval-2017), pages 747–754.

Yoshua Bengio, Patrice Simard, and Paolo Frasconi.
1994. Learning long-term dependencies with gradi-
ent descent is difficult. IEEE transactions on neural
networks, 5(2):157–166.

James Bergstra, Daniel Yamins, and David D. Cox.
2013. Making a Science of Model Search: Hyper-
parameter Optimization in Hundreds of Dimensions
for Vision Architectures. ICML (1), 28:115–123.

Johan Bollen, Huina Mao, and Alberto Pepe. 2011a.
Modeling public mood and emotion: Twitter sen-
timent and socio-economic phenomena. Icwsm,
11:450–453.

Johan Bollen, Huina Mao, and Xiaojun Zeng. 2011b.
Twitter mood predicts the stock market. Journal of
computational science, 2(1):1–8.

M. Bradley and P. Lang. 1999. Affective norms for
English words (ANEW): Instruction Manual and Af-
fective Ratings. Technical report.

Lea Canales and Patricio Martínez-Barco. 2014. Emo-
tion detection from text: A survey. In Proceedings
of the Workshop on Natural Language Processing in
the 5th Information Systems Research Working Days
(JISIC), pages 37–43.

Wilas Chamlertwat, Pattarasinee Bhattarakosol, Tip-
pakorn Rungkasiri, and Choochart Haruechaiyasak.
2012. Discovering consumer insight from twitter
via sentiment analysis. J. UCS, 18(8):973–992.

Kyunghyun Cho, Bart Van Merriënboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using RNN encoder-decoder
for statistical machine translation. arXiv preprint
arXiv:1406.1078.

J.M. Clark and A. Paivio. 2004. Extensions of the
paivio, yuille, and madigan (1968) norms. Behav-
ior Research Methods, Instruments, & Computers,
36(3):371–383.

Ronan Collobert and Jason Weston. 2008. A unified
architecture for natural language processing: Deep
neural networks with multitask learning. In Pro-
ceedings of the 25th International Conference on
Machine Learning, pages 160–167. ACM.

M. Coltheart. 1981. The mrc psycholinguistic
database. The Quarterly Journal of Experimental
Psychology Section A, 33(4):497–505.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai
Li, and Fei-Fei Li. 2009. Imagenet: a large-scale
hierarchical image database.

Jan Deriu, Maurice Gonzenbach, Fatih Uzdilli, Au-
relien Lucchi, Valeria De Luca, and Martin Jaggi.
2016. SwissCheese at SemEval-2016 Task 4: Sen-
timent classification using an ensemble of convo-
lutional neural networks with distant supervision.
Proceedings of SemEval, pages 1124–1128.

Bjarke Felbo, Alan Mislove, Anders Søgaard, Iyad
Rahwan, and Sune Lehmann. 2017. Using millions
of emoji occurrences to learn any-domain represen-
tations for detecting sentiment, emotion and sar-
casm. arXiv preprint arXiv:1708.00524.

Alec Go, Richa Bhayani, and Lei Huang. 2009. Twit-
ter sentiment classification using distant supervision.
CS224N Project Report, Stanford, 1(12).

Kazuma Hashimoto, Caiming Xiong, Yoshimasa Tsu-
ruoka, and Richard Socher. 2016. A joint many-task
model: Growing a neural network for multiple nlp
tasks. arXiv preprint arXiv:1611.01587.

Sepp Hochreiter, Yoshua Bengio, Paolo Frasconi, and
Jürgen Schmidhuber. 2001. Gradient Flow in Re-
current Nets: The Difficulty of Learning Long-Term
Dependencies. A field guide to dynamical recurrent
neural networks. IEEE Press.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Jeremy Howard and Sebastian Ruder. 2018. Fine-
tuned language models for text classification. arXiv
preprint arXiv:1801.06146.

Daniel Jurafsky and H. James. 2000. Speech and lan-
guage processing an introduction to natural language
processing, computational linguistics, and speech.

Diederik Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Svetlana Kiritchenko, Xiaodan Zhu, and Saif M. Mo-
hammad. 2014. Sentiment analysis of short in-
formal texts. Journal of Artificial Intelligence Re-
search, 50:723–762.

Matthieu Labeau and Alexandre Allauzen. 2017. Char-
acter and subword-based word representation for
neural language modeling prediction. In Proceed-
ings of the First Workshop on Subword and Charac-
ter Level Models in NLP, pages 1–13.

253

Jonathan Long, Evan Shelhamer, and Trevor Darrell.
2014. Fully convolutional networks for semantic
segmentation. CoRR, abs/1411.4038.

N. Malandrakis, A. Potamianos, E. Iosif, and
S. Narayanan. 2013. Distributional semantic mod-
els for affective text analysis. IEEE Transac-
tions on Audio, Speech and Language Processing,
21(11):2379–2392.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S. Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in Neural Information Processing
Systems, pages 3111–3119.

Saif M. Mohammad, Felipe Bravo-Marquez, Mo-
hammad Salameh, and Svetlana Kiritchenko. 2018.
Semeval-2018 Task 1: Affect in tweets. In Proceed-
ings of International Workshop on Semantic Evalu-
ation (SemEval-2018), New Orleans, LA, USA.

Saif M. Mohammad, Svetlana Kiritchenko, and Xiao-
dan Zhu. 2013. NRC-Canada: Building the state-
of-the-art in sentiment analysis of tweets. arXiv
preprint arXiv:1308.6242.

Saif M Mohammad and Peter D Turney. 2010. Emo-
tions evoked by common words and phrases: Us-
ing mechanical turk to create an emotion lexicon. In
Proceedings of the NAACL HLT 2010 workshop on
computational approaches to analysis and genera-
tion of emotion in text, pages 26–34. Association for
Computational Linguistics.

Saif M Mohammad and Peter D Turney. 2013. Crowd-
sourcing a word–emotion association lexicon. Com-
putational Intelligence, 29(3):436–465.

Andrius Mudinas, Dell Zhang, and Mark Levene. 2012.
Combining lexicon and learning based approaches
for concept-level sentiment analysis. In Proceedings
of the first international workshop on issues of sen-
timent discovery and opinion mining, page 5. ACM.

Finn Årup Nielsen. 2011. A new anew: Evaluation of a
word list for sentiment analysis in microblogs. arXiv
preprint arXiv:1103.2903.

E. Palogiannidi, E. Iosif, P. Koutsakis, and A. Potami-
anos. 2015. Valence, Arousal and Dominance Esti-
mation for English, German, Greek, Portuguese and
Spanish Lexica using Semantic Models. In Proc. of
Interspeech, pages 1527–1531.

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio.
2013. On the difficulty of training recurrent neural
networks. ICML (3), 28:1310–1318.

Adam Paszke, Sam Gross, Soumith Chintala, Gre-
gory Chanan, Edward Yang, Zachary DeVito, Zem-
ing Lin, Alban Desmaison, Luca Antiga, and Adam
Lerer. 2017. Automatic differentiation in pytorch.

John Pavlopoulos, Prodromos Malakasiotis, and
Ion Androutsopoulos. 2017. Deep learning
for user comment moderation. arXiv preprint
arXiv:1705.09993.

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gram-
fort, Vincent Michel, Bertrand Thirion, Olivier
Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, Vincent Dubourg, and others. 2011. Scikit-
learn: Machine learning in Python. Journal of Ma-
chine Learning Research, 12(Oct):2825–2830.

Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. arXiv preprint arXiv:1802.05365.

Ferran Pla and Lluís-F Hurtado. 2014. Political ten-
dency identification in twitter using sentiment anal-
ysis techniques. In Proceedings of COLING 2014,
the 25th international conference on computational
linguistics: Technical Papers, pages 183–192.

Ali Sharif Razavian, Hossein Azizpour, Josephine Sul-
livan, and Stefan Carlsson. 2014. CNN features off-
the-shelf: an astounding baseline for recognition.
CoRR, abs/1403.6382.

Radim Řehůřek and Petr Sojka. 2010. Software Frame-
work for Topic Modelling with Large Corpora. In
Proceedings of the LREC 2010 Workshop on New
Challenges for NLP Frameworks, pages 45–50, Val-
letta, Malta. ELRA. http://is.muni.cz/
publication/884893/en.

Sara Rosenthal, Noura Farra, and Preslav Nakov.
2017a. Semeval-2017 task 4: Sentiment analysis
in twitter. In Proceedings of the 11th International
Workshop on Semantic Evaluation (SemEval-2017),
pages 502–518.

Sara Rosenthal, Noura Farra, and Preslav Nakov.
2017b. SemEval-2017 Task 4: Sentiment Analy-
sis in Twitter. In Proceedings of the 11th Interna-
tional Workshop on Semantic Evaluation, SemEval
’17, Vancouver, Canada. Association for Computa-
tional Linguistics.

Mickael Rouvier and Benoit Favre. 2016. SENSEI-
LIF at SemEval-2016 Task 4: Polarity embedding
fusion for robust sentiment analysis. Proceedings of
SemEval, pages 202–208.

Toby Segaran and Jeff Hammerbacher. 2009. Beautiful
Data: The Stories Behind Elegant Data Solutions.
"O’Reilly Media, Inc.".

Jianfeng Si, Arjun Mukherjee, Bing Liu, Qing Li,
Huayi Li, and Xiaotie Deng. 2013. Exploiting topic
based twitter sentiment for stock prediction. In Pro-
ceedings of the 51st Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 2: Short
Papers), volume 2, pages 24–29.

254

Nitish Srivastava, Geoffrey E. Hinton, Alex
Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdi-
nov. 2014. Dropout: A simple way to prevent neural
networks from overfitting. Journal of Machine
Learning Research, 15(1):1929–1958.

R.A. Stevenson, J.A. Mikels, and T.W. James. 2007.
Characterization of the affective norms for english
words by discrete emotional categories. Behavior
research methods, 39(4):1020–1024.

Yaniv Taigman, Ming Yang, Marc’Aurelio Ranzato,
and Lior Wolf. 2014. Deepface: Closing the gap
to human-level performance in face verification.

Andranik Tumasjan, Timm Oliver Sprenger, Philipp G
Sandner, and Isabell M Welpe. 2010. Predicting
elections with twitter: What 140 characters reveal
about political sentiment. Icwsm, 10(1):178–185.

John Wieting, Mohit Bansal, Kevin Gimpel, and Karen
Livescu. 2016. Charagram: Embedding words and
sentences via character n-grams. arXiv preprint
arXiv:1607.02789.

255

