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Abstract

In theoretical linguistics, logical
metonymy is defined as the combina-
tion of an event-subcategorizing verb
with an entity-denoting direct object
(e.g., The author began the book), so
that the interpretation of the VP requires
the retrieval of a covert event (e.g.,
writing). Psycholinguistic studies have
revealed extra processing costs for logical
metonymy, a phenomenon generally
explained with the introduction of new
semantic structure. In this paper, we
present a general distributional model for
sentence comprehension inspired by the
Memory, Unification and Control model
by Hagoort (2013, 2016). We show that
our distributional framework can account
for the extra processing costs of logical
metonymy and can identify the covert
event in a classification task.

1 Logical Metonymy: Psycholinguistic
Evidence and Computational Modeling

The interpretation of so-called logical metonymy
(e.g, The student begins the book) has received
an extensive attention in both psycholinguistic
and linguistic research. The phenomenon is ex-
tremely problematic for traditional theories of
compositionality (Asher, 2015) and is generally
explained as a type clash between an event-
selecting metonymic verb (e.g., begin) and an
entity-denoting nominal object (e.g., the book),
which triggers the recovery of a hidden event
(e.g., reading). Past research work brought ex-
tensive evidence that such metonymic construc-
tions also determine extra processing costs during
online sentence comprehension (McElree et al.,

2001; Traxler et al., 2002), although such evidence
is not uncontroversial (Falkum, 2011). According
to Frisson and McElree (2008), event recovery is
triggered by the type clash, and the extra process-
ing load is due to ”the deployment of operations to
construct a semantic representation of the event”.
Thus, logical metonymy raises two major ques-
tions: i.) How is the hidden event recovered? ii.)
What is the relationship between such mechanism
and the increase in processing difficulty?

One of the first accounts of the phenomenon
dates back to the works of Pustejovsky (1995) and
Jackendoff (1997), which assume that the covert
event is retrieved from complex lexical entries
consisting of rich knowledge structures (Puste-
jovsky’s qualia roles). For example, the repre-
sentation of a noun like book includes telic prop-
erties (the purpose of the entity, e.g. read) and
agentive properties (the mode of creation of the
entity, e.g. write). The predicate-argument type
mismatch triggers the retrieval of a covert event
from the object noun qualia roles, thereby pro-
ducing a semantic representation equivalent to be-
gin to write the paper (see also the discussion in
Traxler et al. (2002)).

On the one hand, the lexicalist explanation is
very appealing, since it accounts for the existence
of default interpretations of logical metonymies
(e.g. begin the book is typically interpreted as
begin reading/writing the book). On the other
hand, Lascarides and Copestake (1998) and more
recently Zarcone et al. (2014) show that qualia
roles are simply not flexible enough to account for
the wide variety of interpretations that can be re-
trieved. These are in fact affected by the subject
choice, the general syntactic and discourse con-
text, and by our world knowledge. 1

1Consider the classical example from Lascarides and
Copestake (1998): My goat eats anything. He really enjoys
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An alternative view on logical metonymy has
been proposed in the field of relevance-theoretic
pragmatics (Sperber and Wilson, 1986; Carston,
2002). According to studies such as de Almeida
(2004), de Almeida and Dwivedi (2008) and
Falkum (2011), the metonymy resolution process
is driven by post-lexical pragmatic inferences, re-
lying on both general world knowledge and dis-
course context. The ‘pragmatic hypothesis’ allows
for the necessary flexibility in the interpretation of
logical metonymies, since the range of the poten-
tial covert events is not constrained by the lexical
entry, but only by the hearer’s expectations of the
optimal relevance of the utterance. However, as
pointed out by Zarcone and Padó (2011), the prag-
matic account is not precise with respect to the
mechanism and to the type of knowledge involved
in the process of metonymy resolution. Moreover,
it tends to disregard the fact that there are default
interpretations that are activated in neutral, less in-
formative contexts.

More recently, Zarcone and Padó (2011) and
Zarcone et al. (2014) brought experimental evi-
dence for the role of Generalized Event Knowl-
edge (GEK) (McRae and Matsuki, 2009) in the
interpretation of logical metonymies. The au-
thors refer to a long trend of psycholinguistic stud-
ies (McRae et al., 1998; Altmann, 1999; Kamide
et al., 2003; McRae et al., 2005; Hare et al., 2009;
Bicknell et al., 2010), which show that speakers
quickly make use of their rich event knowledge
during online sentence processing to build expec-
tations about the upcoming input.2 The experi-
ments on German by Zarcone et al. (2014) show
that the subjects combine the linguistic cues in the
input to activate typical events the sentences could
refer to. Given an agent-patient pair, if the covert
event is typical for that specific argument combi-
nation, it is read faster and it is more difficult to
inhibit in a probe recognition task. The authors
explained their results in the light of the words-as-
cues paradigm (Elman, 2009, 2014), which claims
that the words in the mental lexicon are cues to
event knowledge modulating language compre-
hension in an incremental fashion.

Research in computational semantics has fo-

your book (= eating). The event retrieval cannot be explained
in terms of qualia structures, as it is unlikely that the lexical
entry for book includes something related to eating-events.

2It should be pointed out that, unlike relevance theory
which conceives world knowledge and linguistic knowledge
as separate modules, GEK includes both linguistic and ex-
tralinguistic information.

cused on two different aspects of the phenomenon:
the first one is the retrieval of the covert event,
which has been approached by means of ei-
ther probabilistic methods (Lapata and Lascarides,
2003; Lapata et al., 2003; Shutova, 2009) or of
distributional similarity-based thematic fit estima-
tions (Zarcone et al., 2012), whereas the second
aspect concerns modeling the experimental data
about processing costs. Zarcone et al. (2013)
showed that a distributional model of verb-object
thematic fit can reproduce the reading times dif-
ferences in the experimental conditions found by
McElree et al. (2001) and Traxler et al. (2002).
Their merits notwithstanding, a limit of the for-
mer studies is that they did not try to build a single
model to account for both aspects involved in log-
ical metonymy.

The goal of this paper is twofold. First of
all, we present a general distributional model
of sentence comprehension inspired by recent
proposals in neurocognitive sciences (Section 2).
Secondly, we introduce a semantic composition
weight that is used to model the reading times of
metonymic sentences reported in previous experi-
mental studies and to predict the covert event in a
binary classification task (Section 3).

2 A Distributional Model of Sentence
Comprehension

The model we present includes a Memory com-
ponent, containing distributional information ac-
tivated by lexical items, and a Unification com-
ponent, which combines the items in Memory
to form a coherent semantic representation of the
sentence.3 This architecture is directly inspired
by Memory, Unification and Control (MUC), pro-
posed by Peter Hagoort as a general model for the
neurobiology of language (Hagoort, 2013, 2016).
MUC incorporates three main functional compo-
nents: i.) Memory corresponds to linguistic knowl-
edge stored in long-term memory; ii.) Unifica-
tion refers to the assembly in working memory
of the constructions stored in Memory into larger
structures, with contributions from the context;
iii.) Control is responsible for relating language
to joint action and social interaction. Similarly to

3A previous version of this model has already been intro-
duced in Chersoni et al. (2016a), the main difference being
the way the complexity score component based on Memory
was computed (see section 5 and 6 of the 2016 paper). More-
over, the model was applied to a different task (i.e., the com-
putation of context-sensitive argument typicality).
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MUC, we argue that the comprehension of a sen-
tence is an incremental process driven by the goal
of constructing a coherent semantic representation
of the event the speaker intends to communicate.
Our model rests on the following assumptions:

• the Memory component contains information
about events and their typical participants,
which is derived from both first-hand ex-
perience and linguistic experience. Follow-
ing McRae and Matsuki (2009), we call this
information Generalized Event Knowledge
(GEK). In this paper we restrict ourselves
to the ‘linguistic’ subset of GEK (henceforth
GEKL), which we model with distributional
information extracted from corpora;

• during sentence processing, lexical items ac-
tivate portions ofGEKL, and the Unification
component composes them into a coherent
representation of the event expressed by the
sentence;

• the event representation is assigned a seman-
tic composition weight on the basis of i)
the availability and salience of information
stored inGEKL and activated by the linguis-
tic input; ii) the semantic coherence of the
unified event, depending in turn on the mu-
tual typicality of the event participants;

• a sentence interpretation is the event with the
highest semantic composition weight, that is
the event that best satisfies the semantic con-
straints coming from lexical items and the
contextual information stored in GEKL.

Sentence comprehension therefore results from a
“balance between storage and computation” (Bag-
gio and Hagoort, 2011; Baggio et al., 2012) that
simultaneously accounts for the unlimited possi-
bility to understand new sentences, which are con-
structed by means of Unification, and for the pro-
cessing advantage guaranteed by the retrieval from
Memory of “ready-to-use” information about typ-
ical events and situations.

Crucially, we argue that logical metonymy in-
terpretation shares this same mechanism of on-line
sentence processing and that the covert event is
i.) an event retrieved from GEKL that is strongly
activated by the lexical items, ii.) and with a
high degree of mutual semantic congruence with
the other arguments in the sentence. Therefore,
there is no formal difference between simple and

enriched forms of compositionality (Jackendoff,
1997), both being instances of the same general
model of sentence processing.

2.1 The Memory Component: A
Distributional Model of GEKL

In our framework, we assume that each
lexical item wi activates a set of events
〈e1, σ1〉, . . . , 〈en, σn〉 such that ei is an event
in GEKL, and σi is an activation score computed
as the conditional probability P (e|wi), which
quantifies the ‘strength’ with which the event is
activated by wi.

We represent events in GEKL as feature struc-
tures specifying participants and roles, and we
extract this information from parsed sentences in
corpora: the attributes are syntactic dependencies,
which we use as a surface approximation of
semantic roles, and the values are distributional
vectors of dependent lexemes.4 For example,
from the sentence The student reads a book we
extract the following event representation:

[EV ENT NSUBJ:
−−−−−→
student HEAD:

−−→
read DOBJ:

−−→
book]

Events in GEKL can be cued by several lexical
items, with a strength depending on the salience
of the event given the item. For example, the event
above is cued by student, read and book. Besides
complete events, we assume GEKL to contain
schematic (i.e., underspecified) events too. For
instance, from the sentence The student reads a
book we also generate schematic events such as
[EV ENT NSUBJ:

−−−−−→
student DOBJ:

−−→
book], obtained by ab-

stracting over one or more of the instantiated at-
tribute values. Such representation describes an
underspecified event schema involving a student
and a book, which can be instantiated by different
activities (e.g., reading, borrowing, etc.). Accord-
ing to this view, GEKL is not a flat list of events,
but a structured repository of prototypical knowl-
edge about event contingencies.

It is worth remarking that the events in GEKL

are complex symbolic structures including distri-
butional representations of the event head and its
participants. Events in GEKL are therefore mod-
eled like a sort of semantic frames whose ele-
ments are distributional vectors.5

4We represent dependencies according to
the Universal Dependencies annotation scheme:
http://universaldependencies.org/.

5Unlike traditional semantic frames, our events are satu-
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2.2 The Unification Component: Building
Semantic Representations

Language can be seen as a set of instructions that
the comprehender uses to create a representation
of the situation that is being described by the
speaker. In our framework, we make use of situ-
ation models (henceforth SMs),6 defined as data
structures that contain a representation of the event
currently being processed (Zwaan and Radvansky,
1998). Comprehension always occurs within the
context of an existing SM : during online sentence
processing, lexical items cue portions of GEKL

and the SM is dynamically updated by unify-
ing its current content with the new information.
In this perspective, the goal of sentence compre-
hension consists in recovering (reconstructing) the
event e that the sentence is most likely to describe
(Kuperberg, 2016). The event e is the event that
best satisfies all the constraints set by the lexical
items in the sentence and by the active SM .7

Let w1, w2, . . . , wn be an input linguistic se-
quence (e.g., a sentence or a discourse) that is cur-
rently being processed. Let SMi be the seman-
tic representation built for the linguistic input until
w1, . . . , wi, and let ei be the event representation
in SMi. When we process wi+1:

1. the GEKL associated with wi+1 in the lexi-
con, GEKL[wi+1], is activated;

2. GEKL[wi+1] is integrated with SMi to pro-
duce SMi+1, containing the new event ei+1.

We model semantic composition as an event
construction and update function F , whose aim
is to build a coherent SM by integrating theGEKL

cued by the linguistic elements that are composed:

F (SMi, GEKL[wi+1]) = SMi+1 (1)

The composition function is responsible for two
distinct processes:

• F unifies two event feature structures into a
new event, provided that the attribute-value
features of the input events are compatible.

rated structures, with participants specified for each role.
6SMs are akin to Discourse Representation Structures in

DRT (Kamp, 2013).
7The idea also bears some similarities with the inferen-

tial model of communication proposed by Relevance The-
ory, where the interpretation of a given utterance is the one
that maximizes the hearer’s expectations of relevance (Sper-
ber and Wilson, 1986).

Here is an example of unification:

[EV ENT NSUBJ:
−−−−−−→
mechanic DOBJ:

−−−−→
engine] t

[EV ENT NSUBJ:
−−−−−−→
mechanic HEAD:

−−−→
check] = [EV ENT

NSUBJ:
−−−−−−→
mechanic HEAD:

−−−→
check DOBJ:

−−−−→
engine]

The event of a mechanic performing an ac-
tion on an engine and the event of a mechanic
checking something are unified into a new
event of a mechanic checking an engine;

• F weights the unified event ek with a pair of
scores 〈θek

, σek
〉, weighting ek with respect

to its semantic coherence and its salience
given the lexical cues activating it.

The score θek
quantifies the degree of seman-

tic coherence of the unified event ek. We assume
that the semantic coherence (or internal unity) of
an event depends on the mutual typicality of its
components. Consider the following sentences:

(1) a. The student writes a thesis.
b. The mechanic writes a sonnet.

The event represented in (1-a) has a high degree
of semantic coherence because all its components
are mutually typical: student is a typical subject
for the verb write and thesis has a strong typical-
ity both as an object of write and as an object oc-
curring in student-related events. Conversely, the
components in the event expressed by (1-b) have
a low level of mutual typicality, thereby resulting
into an event with much lower semantic coher-
ence. Although the sentence is perfectly under-
standable, it sounds a little weird because it depicts
an unusual situation.

We measure the mutual typicality of the com-
ponents by extending the notion of thematic fit,
which is normally used to measure the congruence
of a predicate with an argument (McRae et al.,
1998). In our case, instead, thematic fit is a general
measure of the semantic typicality or congruence
among event participants. Extending the approach
by Erk et al. (2010), thematic fit is measured with
vector cosine in the following way:

θ(−→a |si,
−→
b ) (the thematic fit of−→a given−→

b and the role si) is the cosine between−→a and the prototype vector built out of
the k top values −→c1 , . . . ,−→ck , such that
si:−→cz , for 1 ≤ z ≤ k, co-occurs with−→
b in the same event structures
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For instance, the thematic fit of student as a subject
of write is given by the cosine between the vector
of student and the centroid vector built out of the
k most salient subjects of write. Similarly, we as-
sess the typicality of thesis as an object related to
student (i.e., as an object of events involving stu-
dent as subject) by measuring the cosine between
the vector of thesis and the centoid vector built out
of the k most salient objects related to student. Fi-
nally, we measure in the same way the typicality
of thesis as an object of write.

Formally, the global score θek
of an event ek is

defined as:

θek
=

∏
a,b,si∈e

θ(−→a |si,
−→
b ) (2)

meaning that the degree of semantic coherence of
an event is given by the product of the partial the-
matic fit scores between all its components.8

On the other hand, the σek
score weights the

salience of the unified event ek by combining the
weights of ei and ej into a new weight assigned
to ek. In this work, we compute activation of an
event e simply by summing the activation scores
of the single lexical items cuing it (i.e., the condi-
tional probabilities of the event given each lexical
item in the input sentence):

σi = P (e|i) =
P (e, i)
P (i)

(3)

F (σi, σj) = σek
= σi + σj (4)

Thus, the score σek
measures the degree to which

the unified event is activated by the linguistic ex-
pressions composing it. Consequently, events that
are cued by many constructions in the sentence
should incrementally increase their salience.

To sum up, we weight unified events along two
dimensions: internal semantic coherence (θ), and
degree of activation by linguistic expressions (σ).
The latter is used to estimate the importance of
“ready-to-use” event structures stored in GEKL

and retrieved during sentence processing. On the
the other hand, the θ score allows us to weight
events not available in the Memory component. In
fact, the Unification component can construct new
event never observed before, thereby accounting

8For the present study, we discarded the modifiers. How-
ever, θ scores could also be computed for measuring the co-
herence of modified arguments (e.g. the angry child smiled).
We thank one of our reviewers for pointing this out.

for the ability to comprehend novel sentences rep-
resenting atypical and yet possible events. For in-
stance, the event expressed by (1-a) might be ex-
pected to be already stored in GEKL because of
its high typicality, thereby having a high σ score.
Suppose instead that the sentence (1-b) expresses a
brand new event, and that its components never co-
occurred together before. In this case, its weight
will only depend on the θ score, that is on how
similar are its participants to other events stored in
the event repository (e.g., how mechanic is similar
to the prototypical subjects of write). Therefore,
the joint effect of the σ and θ scores captures the
“balance between storage and computation” driv-
ing sentence processing (cf. above).

Given an input sentence s, its interpretation
INT(s) is the event ek with the highest semantic
composition weight (SCW), defined as follows:

INT(s) = argmax
e

(SCW(e)) (5)

SCW(e) = θe + σe (6)

We model the semantic complexity (Semp-
Comp) of a sentence s as inversely related to the
SCW of the event representing its interpretation:

SemComp(s) =
1

SCW(INT(s))
(7)

The less internally coherent is the event repre-
sented by the sentence and the less strong is its
activation by the lexical items, the more the uni-
fication is cognitively expensive and the sentence
semantically complex.

3 Modeling Logical Metonymy

We apply the distributional model of sentence
comprehension presented in the previous sec-
tion to account for psycholinguistic data about
metonymic sentences. In particular, we predict
that metonymic sentences will have higher Sem-
Comp scores than non-coercion sentences, be-
cause they do not comply with the semantic pref-
erences of the event-selecting verb. According to
Zarcone et al. (2013), it is exactly the low thematic
fit between verb and object that triggers comple-
ment coercion and that, at the same time, causes
the extra processing load.

Additionally, we predict that the covert event in
metonymic sentence is i.) strongly activated by
the lexical items in the context, and is ii.) semanti-
cally coherent with respect to the participants that
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are overtly realized. In other words, the inferred
covert event is the event that maximizes the SCW
of the global event structure representing the inter-
pretation of the sentence.

3.1 Datasets

We used two datasets created for previous psy-
cholinguistic studies: the McElree dataset (McEl-
ree et al., 2001) and the Traxler dataset (Traxler
et al., 2002). Each dataset compared three differ-
ent experimental conditions, by contrasting con-
structions requiring a type-shift with constructions
requiring normal composition:

(2) a. The author was starting the book.
b. The author was writing the book.
c. The author was reading the book.

Sentence (2-a) corresponds to the metonymic con-
dition (MET), while sentences (2-b) and (2-c) cor-
respond to non-metonymic constructions, with the
difference that (2-b) represents a typical event
given the subject and the object (HIGH TYP),
whereas (2-c) expresses a plausible but less typ-
ical event (LOW TYP). The McElree dataset was
created for the self-paced reading study by McEl-
ree et al. (2001), and includes 99 sentences (33
triplets), while the Traxler dataset was used in the
eye-tracking experiment by Traxler et al. (2002)
and contains 108 sentences (36 triplets).9

3.2 Extracting GEKL

In order to populate the repository of events
in GEKL, we followed the procedure proposed
by Chersoni et al. (2016b) to extract syntac-
tic joint contexts from a concatenation of four
different corpora: the Reuters Corpus Vol.1
(Lewis et al., 2004); the Ukwac and the Wack-
ypedia Corpus (Baroni et al., 2009) and the
British National Corpus (Leech, 2013). For
each sentence, we generated an event (as de-
scribed in Section 2.1) by extracting the verb
and its direct dependencies. In the present case,
the dependency relations of interest are subject
(SUBJ), direct (DOBJ) and indirect object (IOBJ),
infinitive and gerund complements (XCOMP),
and a generic prepositional complement rela-
tion (PREPCOMP), on which we mapped all
the complements introduced by a preposition.
We discarded the adjectival/adverbial modifiers

9The sentences in the same triple have the same syntactic
complexity, as they differ only for the verb.

and we just keep their heads. For instance,
from the joint context director-n-subj write-
v-head article-n-dobj we generated the event
[EV ENT NSUBJ:

−−−−−→
student HEAD:

−−→
read DOBJ:

−−→
book]. For

each joint context, we also generated schematic
events from its dependency subsets. We totally ex-
tracted 1,043,766 events that include at least one
of the words of the evaluation datasets.

All the lexemes in the events are represented
as distributional vectors. We built a syntax-based
distributional semantic model by using as targets
the 20K most frequent nouns and verbs in our
concatenated corpus, plus any other word occur-
ring in the events in the GEKL. Words with
frequency below 100 were excluded. The total
number of targets is 20,560 (cf. Table 1 for the
dataset coverage). As vector dimensions, we used
the same target words, while the dependency rela-
tions are the same used to build the joint contexts
(SUBJ:author-n and DOBJ:book-n are examples
of dimensions for the target write-v). Syntactic
co-occurrences were weighted with Local Mutual
Information (Evert, 2004):

LMI(t, r, f) = log

(
Otrf

Etrf

)
∗Otrf (8)

with Otrf the co-occurrence frequency of the tar-
get t, the syntactic relation r and the filler f , and
Etrf their expected co-occurrence frequency.

Dataset Coverage
McElree et al. (2001) 30/33
Traxler et al. (2002) 36/36

Table 1: GEKL coverage for the evaluation triplets

3.3 Modeling the Processing Cost of
Metonymic Sentences

The sentences in the original datasets were repre-
sented as S(subject)-V(verb)-O(object) tuples. For
each sentence s, SemComp(s) was measured as in
equation (7), by computing θe and σe as follows:

• θe is the product of the thematic fit of O given
V, θO,V , the thematic fit of S given V, θS,V ,
and the thematic fit of O given S, θO,S (see
Equation 2). θO,V is the cosine between the
vector of O and the centroid vector built out
of the k most salient direct objects of V (e.g.,
the cosine between the vector of book and the
centroid vector of the most salient objects of
write); θS,V is the cosine between the vector
of S and the centroid vector built out of the
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Figure 1: SemComp scores for McElree (left) and Traxler (right)

k most salient subjects of V (e.g., the cosine
between the vector of author and the centroid
vector of the most salient objects of write);
finally, θO,S is the cosine between the vector
of O and the centroid vector built out of the k
most salient direct objects occurring in events
whose subject is S (e.g., the cosine between
the vector of book and the prototype vector of
the most salient objects of events whose sub-
ject is author). Following Baroni and Lenci
(2010), we used LMI scores to identify the
most salient fillers of each target-specific syn-
tactic slot and we fixed k = 20.

• σe is the salience score of the triple s, and
it corresponds to the sum of the activation
scores of i.) the full event represented by the
triple and of ii.) the sub-events correspond-
ing to all the partial combinations of the verb
and its arguments. Each activation score is
the conditional probability of the event given
a lexical item in the test tuple.

Given the verb-argument triple s, the set E
is the set of i events containing i.) the en-
tire event e; ii.) all the schematic events
e1, . . . , ei generated by abstracting over one
of the lexemes of the triples (e.g., for s =
{author − write − book}), E = {<
author, write, book >,< author, write >
,< author, book >,< write, book >}. σe

is computed with the following equation:

σe =
∑

ei∈E

σei (9)

Figure 1 shows the boxplots of the log Sem-
Comp scores for three types of sentences (MET,

HIGH TYP, and LOW TYP) in the datasets. The
Kruskal-Wallis rank sum test reveals a main effect
of the sentence types on the SemComp scores as-
signed by our GEKL-based distributional model
for the McElree dataset (χ2 = 17.18, p < 0.001).
Post-hoc tests (cf. Table 2) show that SemComp
scores for the HIGH TYP conditions are signif-
icantly lower than those in the LOW TYP (p <
0.05) and MET conditions (p < 0.001). These re-
sults mirror exactly those of McElree et al. (2001)
for the reading times at the type-shifted noun (both
conditions engendered significantly longer read-
ing times than the preferred condition).

p-values HIGH TYP LOW TYP
LOW TYP 0.04* -
MET 0.00046* 0.31

Table 2: Results of the pairwise post-hoc comparisons for
the three conditions on the McElree dataset (Wilcoxon rank
sum test with Bonferroni correction).

p-values HIGH TYP LOW TYP
LOW TYP 0.31 -
MET 9.7e-06* 0.01*

Table 3: Results of the pairwise post-hoc comparisons for the
three conditions on the Traxler dataset (Wilcoxon rank sum
test with Bonferroni correction).

A main effect of sentence types on the SemComp
score also also exists for the Traxler dataset (χ2 =
15.39, p < 0.001). In their eye-tracking experi-
ment (Experiment 1), Traxler et al. (2002) found
no significant difference between HIGH TYP and
LOW TYP conditions, but they observed higher
values for second-pass and total time data in the
MET condition with respect to the other two. In-
terestingly, the distributional model produces sim-
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ilar results: post-hoc tests reveal no difference
between non-coerced conditions, but significantly
higher SemComp scores for metonymic sentences
with respect to both the HIGH TYP (p < 0.001)
and the LOW TYP condition (p < 0.05).

3.4 Identifying the Covert Event

We assume that the interpretation of a metonymic
sentence like The author starts the book is the fol-
lowing conjunction of events:

(3) [EV ENT NSUBJ:
−−−−→
author HEAD:

−−−→
start DOBJ:−→e ]

[EV ENT NSUBJ:
−−−−→
author HEAD:−→e DOBJ:

−−→
book]

where e is the covert event to be recovered (e.g.,
writing). We modeled covert event retrieval as
a binary classification task, as in Zarcone et al.
(2012), using the following procedure: i.) for
each metonymic sentence (e.g. The author starts
the book) in the McElree and Traxler datasets,
we selected as candidate covert events, Ecov, the
verbs in the non-coercion sentences, which we re-
fer to respectively as HIGH TYP EVENT (e.g.
write) and LOW TYP EVENT (e.g., read); ii.) for
each sentence SVmetO, we computed SCW(e) (cf.
equation 6) of the events composing its interpreta-
tion, that is [EV ENT S Vmet Ecov] and [EV ENT

S Ecov O];10 iii.) the model accuracy was com-
puted as the percentage of test items for which
SCW(Ecov = HIGH TYP EVENT) is higher than
SCW(Ecov = LOW TYP EVENT).

Model McElree Traxler
Random 50% 50%

σ 46.66% 30.55%
θ 73.3% 75%

σ + θ 80% 77.77%

Table 4: Accuracy of model components and random base-
line on the binary classification task for covert event retrieval.

The results for the covert event identification
are shown in Table 4. We tested both the full
model (SCW = σ + θ) and its σ and θ components
separately, to check their contribution to the task.
Overall, it can be observed that the full model is
the best performing one, classifying correctly just
a few items more than the thematic fit-based, θ-
only model. Both models are significantly bet-
ter than the random baseline at p < 0.05 on
the Traxler dataset, whereas only the full model
achieves a significant advantage over the baseline

10Importantly, the covert events do not contribute to the σ
scores, since they are not present in the linguistic input.

on McElree.11

The performance of the σ component, which
makes use only of the information stored in
GEKL, is pretty weak, especially on the Traxler
dataset. This is the same problem affecting purely
probabilistic approaches, given also the fact that
many of the words of the evaluation datasets have
low frequencies in corpora. The θ component
therefore plays a crucial role in the covert event
prediction. In fact, θ works like a generalization
component, and it serves to compute and weight
new event representations when the information
stored in memory is not sufficient. The strong per-
formance of a thematic fit-based method is also
consistent with the results obtained by Zarcone
et al. (2012) on German data.

Interestingly, a further study by Zarcone et al.
(2013) has proposed thematic fit estimation as the
mechanism which is responsible also for the trig-
gering of logical metonymy, hypothesizing that
the recovery of the implicit event could be a con-
sequence of the dispreference of the verb for the
entity-denoting argument. This means, in our per-
spective, that the low thematic fit between verb
and patient triggers a retrieval operation with the
aim of increasing the semantic coherence of the
event represented in the situation model. To
test this claim, we compared the θ scores of the
events containing the HIGH TYP covert event
(i.e., [EV ENT S Vmet Ecov] + [EV ENT S Ecov O])
and the corresponding MET event (i.e., [EV ENT

S Vmet O]), predicting that the former events are
more semantically coherent than the latter.12 This
hypothesis turned out to be correct: according to
the Wilcoxon rank sum test, both in the McElree
(W = 199, p < 0.01) and in the Traxler dataset
(W = 157, p < 0.01) the θ of the events contain-
ing the covert events are significantly higher.

4 Conclusions

In this paper, we have presented a distributional
model of sentence comprehension as an incremen-
tal process to build the semantic representation of
the event expressed by the sentence. Events are
represented with complex formal structures that
contain the distributional vectors of its compo-
nent. Sentence interpretation is carried out by
unifying stored distributional information about

11p-values computed with the χ2 statistical test.
12Since the computation of the two θs requires a different

number n of factors, the scores have been normalized by ele-
vating them to the power of 1/n.
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events, GEKL. The event representing a sentence
is the event with the highest semantic composi-
tion weight, SCW, which is in turn a function of
its internal semantic coherence and the activation
strength by the linguistic input. The semantic co-
herence of an event, measured by the θ score, de-
pends on its similarity to stored events. There-
fore, the unlimited ability of understanding new
sentences can be conceived as the ability to adapt
our general knowledge about events to novel situ-
ations: in brief, productivity is adaptation, and
adaptation is by similarity.

The model has been successfully applied to the
case of logical metonymy, accounting for two as-
pects of this phenomenon that have always been
treated separately in the literature, namely pro-
cessing costs and covert event retrieval. Given
these encouraging results, we are planning to ap-
ply the model also to other semantic tasks in-
volving event knowledge, such as the detection of
anomalies (e.g. violations of selectional restric-
tions), the recovery of implicit arguments and of
bridging inferences.
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