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Abstract

Analogy completion via vector arithmetic
has become a common means of demon-
strating the compositionality of word em-
beddings. Previous work have shown that
this strategy works more reliably for cer-
tain types of analogical word relationships
than for others, but these studies have not
offered a convincing account for why this
is the case. We arrive at such an account
through an experiment that targets a wide
variety of analogy questions and defines
a baseline condition to more accurately
measure the efficacy of our system. We
find that the most reliably solvable anal-
ogy categories involve either 1) the appli-
cation of a morpheme with clear syntac-
tic effects, 2) male–female alternations, or
3) named entities. These broader types
do not pattern cleanly along a syntactic–
semantic divide. We suggest instead that
their commonality is distributional, in that
the difference between the distributions
of two words in any given pair encom-
passes a relatively small number of word
types. Our study offers a needed expla-
nation for why analogy tests succeed and
fail where they do and provides nuanced
insight into the relationship between word
distributions and the theoretical linguistic
domains of syntax and semantics.

1 Introduction

In recent years, low-dimensional vectors have
proven an efficient and fruitful means of represent-
ing words for numerous computational applica-
tions, from calculating semantic similarity to serv-

∗ This work was done while the first author was a post-
doctoral research associate at the University of Minnesota.

ing as an early layer in deep learning architec-
tures (Baroni et al., 2014; Schnabel et al., 2015;
LeCun et al., 2015). Despite these advances,
however, strategies for representing meaning com-
positionally with a vector model remain limited.
Given the difficulties in training representations of
composed meaning (for example, most possible
phrases will be rare or unattested in training data),
achieving an accurate means of building complex
lexical or phrasal representations from lower-order
ones would be a decisive coup in computational
semantics.

Another promising avenue of compositional se-
mantics is the representation of concepts that do
not map easily to lexemes. A simple averaging
of two vectors may yield a concept that is seman-
tically akin to both, and the arithmetic difference
between word vectors has been said to represent
the relationship between two terms. The ability to
model knowledge unbounded by linguistic labels
is an exciting prospect for natural language pro-
cessing and artificial intelligence more broadly.

A common test of the compositional proper-
ties of word vectors is complete-the-analogy ques-
tions. Word vector arithmetic has achieved sur-
prisingly high accuracy on this type of task. A
flurry of recent studies have applied this test under
various conditions, but there has been limited fo-
cus on defining precisely what types of relations
vectors can capture, and less still on explaining
these differences. As such, there remains a major
gap in our understanding of distributional seman-
tics. Our original experimental work improves
upon prior methods by 1) targeting a wide vari-
ety of analogy questions drawn from several avail-
able resources and 2) defining a baseline condition
to control for differences in “difficulty” between
questions. These considerations enable an anal-
ysis that constitutes a major step towards a com-
prehensive, theoretically grounded account for the
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observed phenomena. To begin, however, we
present a brief review of the analogy problem as
usually posed.

2 Background

Several computational approaches have been pro-
posed for representing the meaning of words (and
holistic phrases) in terms of their co-occurrence
with other words in large text corpora. Some of
these, such as latent semantic analysis (Landauer
and Dumais, 1997), focus on developing semantic
representations based on theories of human cog-
nition, whereas others, such as random indexing
(Kanerva, 2009) and word embeddings (Bengio
et al., 2003; Mikolov et al., 2013a) focus more
on computational efficiency. Despite differences
in purpose and implementation, all current dis-
tributional semantic approaches rely on the same
basic principle of using similarity between co-
occurrence frequency distributions as a way to in-
fer the strength of association between words. For
many practical purposes, such as information in-
dexing and retrieval and semantic clustering, these
approaches work remarkably well.

There is no obvious best way to compose these
types of representations into larger arbitrary lin-
guistic units, although it does seem that cer-
tain regularities exist between terms that surface
through vector subtraction (Mikolov et al., 2013c;
Levy et al., 2014). Why should this be the case?
Consider the relationships between a difference
vector wb−wa and other words in the vocabulary:
wb−wa will be orthogonal to words that co-occur
equally frequently with wa and wb, highly simi-
lar to words that co-occur only with wb, and dis-
similar (negative) to words that co-occur only with
wa.1 If a word’s context is a fair representation of
its meaning, as is the key tenet of the distributional
hypothesis, then this vector difference should iso-
late crucial differences in meaning.

Analogy tasks have been used to test how well
vector differences capture consistent semantic dif-
ferences. Four-word proportional analogies, typi-
cally written as w1:w2::w3:w4, feature two pairs of
words such that the relationship between w1 and
w2 is the same as between w3 and w4. If these
words are represented with vectors, then, it is as-
sumed that the differences between each pair are

1These assertions are supported by the distributivity of a
dot product, which is the standard calculation for similarity,
over addition: wx · (wb − wa) = wx · wb − wx · wa.

roughly equal:

w2 − w1 ≈ w4 − w3 (1)

In the most popular version of this task, a sys-
tem is given the first three words in the analogy
and asked guess the best candidate for w4. Solv-
ing for w4,

w4 ≈ w3 + w2 − w1 (2)

and thus a system selects its hypothesis whyp from
the vocabulary V —typically excluding w1, w2 and
w3—by finding the word with maximum angular
(cosine) similarity to the hypothesis vector (ex-
pressed as vector dot product, assuming all word
vectors are unit length):

whyp = arg max
w∈V

(w · (w3 + w2 − w1)) (3)

We call this algorithm 3COSADD following
Levy et al. (2014). Levy and Goldberg (2014) note
that this strategy is equivalent to finding the word
in the lexicon that is the best match for w3 and w2

while also being most distant from w1. This re-
framing suggests that it may not be necessary at all
to represent ineffable concepts through intermedi-
ate stages of vector composition; 3COSADD could
be solving analogies simply through term similar-
ity. Indeed, words in a pair sharing some relation
tend to be similar to each other; when they are ex-
tremely similar, the difference between w2 and w1

is negligible, and the task becomes trivial.
Linzen (2016) makes this observation as well

and goes on to demonstrate that accuracy falls to
near zero across the board when not excluding
w1, w2, and w3 from contention in the hypoth-
esis space, which shows how strongly dependent
3COSADD is upon vector similarity. We agree
wholeheartedly with that paper’s claim that it is
important to measure the consistency of vector dif-
ferences in a way that is mindful of the typically
high similarity between paired terms.

2.1 Analogy Test Sets
Several categorized sets of semantic and syn-
tactic analogies are publicly available. One of
the earliest was published by Microsoft Research
(Mikolov et al., 2013c) and consists of 16 cate-
gories of inflectional morphological relations for
English nouns, verbs, and adjectives. The most
commonly reported test set, which we refer to as
the Google set, is included with the distribution of
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the word2vec tool (Mikolov et al., 2013a). The
Google set comprises 14 categories, mostly in-
volving inflectional or geographical relationships
between terms. Categories are grouped into a “se-
mantic” and a “syntactic” subset, and results are
often reported averaged over each rather than by
category. This practice is rather problematic in our
view, as the syntactic/semantic division is quite
coarse and even questionable in some cases. We
explore the relationship between syntax, seman-
tics, and morphology in detail later on.

The “Better Analogy Test Set” (BATS) is a large
set developed to contain a balanced sampling of a
wide range of categories (Gladkova et al., 2016).
BATS features 40 categories of 50 word pairs
each, covering inflectional and derivational mor-
phology as well as several semantic relations.

The relational similarity task in SemEval-2012
featured relations between word pairs targeting
a massive range of lexical semantic relationships
(Jurgens et al., 2012). By drawing on the aggre-
gated results of the task’s participants, we have ex-
tracted highly representative pairs for each relation
to build an analogy set.

2.2 Accounting for Analogy Performance

In addition to those already cited, numerous other
recent papers have evaluated word embeddings
by benchmarking on analogy questions (Mikolov
et al., 2013b; Garten et al., 2015; Lofi et al.,
2016). There is some consensus regarding per-
formance across question types: systems do well
on questions of inflectional morphology (espe-
cially so for English (Nicolai et al., 2015)), but
far less reliably so for various non-geographical
semantic questions—although some gains in per-
formance are possible by adjusting the embedding
algorithms used or their hyperparameters (Levy
et al., 2015), or by training further on subproblems
(Drozd et al., 2016).

Amongst all of these findings, however, we
found lacking a cohesive, thorough, and satisfy-
ing account of why vector arithmetic works where
it does to solve analogies. To that end, we con-
ducted an experiment to arrive at such an expla-
nation, with some notable departures from previ-
ously used methods. We included a wide range
of available test data, which is key because indi-
vidual sets usually feature some bias towards one
type or a few types of question, and benchmark-
ers often report nothing more than accuracy av-

eraged over an entire set (Schnabel et al., 2015).
Additionally, we define a baseline, which is criti-
cal not only to gauge effectiveness, but also to un-
derstand the mechanism behind solving analogies
using compositional methods.

In the following sections we present the design
of the experiment, baseline condition, and ques-
tion sets; a discussion of how performance on
analogy questions breaks down by broad category;
and finally, a theoretical accounting for the ob-
served patterns and the implications for distribu-
tional semantics.

3 Method

3.1 Word Embeddings

We used word embeddings trained on the plain
text of all articles from Wikipedia as of Septem-
ber 2015, processed to remove all punctuation
and case distinctions. We tested the word2vec
and GloVe (Pennington et al., 2014) training algo-
rithms. Results were qualitatively very similar be-
tween the two, although word2vec scored slightly
higher on our metrics. Due to space considera-
tions, we discuss only the word2vec results.

Hyperparameters were set as recommended for
analogy tasks by the developers: 200-dimensional
vectors, continuous bag-of-words sampling, 8-
word window size. (We also tested a skip-gram
model in word2vec and saw only slight and oc-
casional differences—more subtle even than those
seen between word2vec and GloVe.)

3.2 Test Set

We used a pooled set of analogy questions com-
prising the Google, Microsoft, SemEval 2012, and
BATS test sets. At test time, any analogies that
featured a word absent from our lexicon were dis-
carded. (Note that the Microsoft categories testing
the English possessive enclitic ’s were not tested,
as preprocessing for our vector training corpus re-
moved all punctuation.) The sizes of each set fol-
lowing the removal of out-of-vocabulary analogies
are given in Table 1.

Note that the BATS and SemEval data sets fea-
ture a number of word pairs in each category but
not four-word analogy questions. We simply took
every possible pair of pairs from the same cate-
gory, so long as this did not result in an analogy
in which w1 and w2 were the same word or in
which w4 was not unique. Some pairs in BATS
have more than one correct answer; for uniformity
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SOURCE CATEGORIES ANALOGIES

Microsoft Research 14 7,000
Google (word2vec) 14 19,544

SemEval2012 79 30,082
BATS 40 95,625
Total 147 152,251

Table 1: Summary of test data sources.

with other test sets, we use only the first answer
provided for each of these pairs.

For SemEval, we used the “platinum standard”
data distribution, which includes rankings of word
pairs in each category based on how well they rep-
resent the relationship as defined. We took only
the best half of pairs from that ranking to gener-
ate the test set. This was necessary because pairs
lower down the list tend to poorly represent the re-
lationship, or even to represent its opposite.

3.3 Measures

Virtually all existing studies of automated analogy
solving report accuracy as the main measure. Ac-
curacy is indeed a relevant measure when the goal
is to simulate human performance on a particular
task. Our purpose, however, is to understand the
nature of semantic representations and account for
when vector arithmetic does and does not function
well as a model of relationships.

For every analogy question, we calculate the
ranking of the correct w4 in the hypothesis
space—that is, the ordering of all words in the
lexicon in descending order of the result of the
3COSADD hypothesis function (3). A “correct”
answer would correspond to a ranking of 1.

Accuracy is a coarse measure in that it is in-
sensitive to any ranking other than 1. Rather than
accuracy, we borrow a measure from information
retrieval (Voorhees, 1999)—the reciprocal of rank
(RR) averaged across analogy questions in each
category, which is always a positive fraction in the
range:

1
||V || ≤ RR ≤ 1 (4)

Numerically, RR acts as a “softer” version of ac-
curacy, with rankings other than 1 contributing
somewhat to the average.

Besides being coarse, accuracy is also an un-
controlled measure in that it is insensitive to dif-
ferences in analogy “difficulty,” by which we
mean the prior degree of similarity between sin-

gle word vectors. An example: nominal plural
analogies, such as dog:dogs::horse:horses, often
achieve high accuracy, but this may follow natu-
rally from the high similarity between most singu-
lar nouns and their plural forms—indeed, for both
of these pairs, the singular and plural forms are
the closest terms to each other in our trained vec-
tor space.

To measure the efficacy of vector arithmetic in
a manner controlled for variances in prior vector
similarity, we propose a baseline, defined for each
analogy as the best ranking between the word most
similar to w2 and the word most similar to w3:

rankbase = min(rank(arg max
w∈V

(w · w2)),

rank(arg max
w∈V

(w · w3))) (5)

For the above example, as dog is the most sim-
ilar word to dogs, there is no improvement to be
made upon baseline. Likewise, for the analogy
banana:yellow::sky:blue, baseline would likely be
high because yellow and blue are very similar.

Consistent with reporting RR for 3COSADD,
we report baseline reciprocal rank (BRR). We
suspect that using RR will be especially illustra-
tive for baseline, where there may be many “near
misses” that are informative but would all be re-
duced to zero if measuring only accuracy.

Our baseline is similar to the so-called ONLY-B
baseline tested by Linzen (2016), except that the
latter considers only w3. We include w2 because
this term has just as much effect on the 3COSADD

hypothesis as w3. Note that our baseline would
not itself be implementable as a solving strategy
because it presumes access to w4 to select be-
tween w2 and w3; nevertheless, we contend that it
is helpful to define the baseline as we have done to
account for those categories in the test data where
all w2 and w4 are drawn from a small semantic
cluster—most notably, the color example in the
previous paragraph. (Overall, 16–18% of analo-
gies across our test sets show similarity to w2 as a
better baseline than to w3.)

Improvement is defined as the difference be-
tween 3COSADD RR and baseline RR, a measure
we will refer to as reciprocal rank gain (RRG).
RRG is more sensitive to shifts in rank that might
not result in perfect accuracy. Analogies that show
improvement from a very poor rank to first place
will show a gain of nearly 1, whereas moving from
second to first place is only 0.5 (and moving from
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poor rank to second is nearly 0.5). If 3COSADD

yields a worse hypothesis, this will be reflected as
a negative RRG.

We also tested other solving methods suggested
by Levy and Goldberg (Levy et al., 2014), 3COS-
MUL and PAIRDIRECTION, although we do not
report them here—results with the former were
virtually indistinguishable from 3COSADD, and
poorer overall with the latter.

The raw results of our similarity experiments,
as well as source code to replicate all steps of the
experiments and analysis, can be downloaded at
https://github.com/gpfinley/analogies.

4 Results

Most broadly, we confirm prior findings that vec-
tor arithmetic can be used to solve analogy ques-
tions, with a mean RRG of .165 across all ques-
tions in all categories (t = 187, p � .01). For
a more nuanced analysis, we sorted analogy tests
into four broad supercategories of analogical rela-
tionship: 30 categories of inflectional morphology,
12 of derivational morphology, 10 of named enti-
ties, and 95 of semantics of non-named entities (79
of which are from SemEval).

The gain in RR from baseline for all categories
is presented visually in Figure 1, where they are
grouped into our four supercategories for ease of
interpretation. (See the appendix for the names
of the top performing categories.) Each individ-
ual category is represented by a line between its
BRR and 3COSADD RR. Within each supercate-
gory, we also consider intermediate groupings of
categories, and these are visualized by differences
in line stroke in the figure. Note that some patterns
are evident between and within supercategories:

• Inflectional: Although all inflectional cate-
gories show positive RRG, adjectival and ver-
bal inflection shows reliably higher RRG than
nominal inflection.

• Derivational: Derivational morphemes
whose primary function is to shift syntactic
class (-tion, -ment, -ly, -ness) show on
average higher RRG than those with stronger
regular semantic consequences (-less, -able,
over-, adjectival un-, repetitive re-, agentive
-er).

• Named entities: All categories—and partic-
ularly those dealing with country capitals—
show high RRG.

• Lexical: Analogy relationships based on
gender difference exhibit high RRG, while
most other categories have low or even nega-
tive RRG.

We performed a linear regression analysis to
predict RRG as a function of supercategory (F =
24600, p � .01, R2 = .39). The model is sum-
marized in Table 4. (Note that the model contains
no intercept term, so the coefficient for each super-
category is equivalent to its mean RRG.) A posi-
tive RRG can be demonstrated with high statistical
significance for all supercategories except lexical
semantics.

We also investigated possible effects of word
frequency on analogy performance. Multi-
collinearity poses a major challenge here: the fre-
quencies of all four words in an analogy are highly
correlated, and frequency can change dramatically
across category. A comprehensive analysis of this
complex problem is beyond the scope of this study,
although we did find that the difference between
an analogy’s w4 frequency and the mean w4 fre-
quency in that category correlates positively with
RRG, although this effect is subtle (r = .016,
t = 6.28, p� .01).

5 Discussion

It is clear from our results that vector arithmetic
is a better approach for certain types of analogy
questions than for others. Almost as clear is the
hierarchy of the four broad types of questions that
we have defined: excellent performance for inflec-
tion and named entities, with decidedly mixed re-
sults for derivational morphology and poorer still
for lexical semantics—with the notable exception
of male–female analogies. Below, we account for
these patterns in the context of two domains of lin-
guistic theory: the interaction between morphol-
ogy and syntax, and the type-theoretic difference
between individuals and sets.

5.1 Morphology and Syntax
Verbal and adjectival inflection show much more
improvement over baseline than nominal inflec-
tion. It may simply be that the nominal cate-
gories have too high a baseline value to show
much evidence of improvement by 3COSADD. It
is also possible, however, that the nominal plural
has fewer syntactic implications than verbal and
adjectival morphology: nouns in non-subject po-
sition do not participate in number agreement in
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Figure 1: Mean reciprocal rank shifts between baseline and 3COSADD for four supercategories. Each
line is a single category of analogy questions (“country - capital” or “male - female,” for example). Some
lines are differentiated by stroke type (dotted, solid, or dashed), the meaning of which is idiosyncratic
to each supercategory: for inflectional, dashed lines are for nouns, dotted lines for adjectives, and solid
lines for verbs; for derivational, dotted lines are for morphemes that change syntactic class with minimal
semantic impact (e.g., -ly, as opposed to re-); for named entities, dotted lines are for country capitals;
for lexical semantics, dotted lines are for gender relationships. Within supercategory, the difference in
RRG between categories of different stroke types is significant in every case (|t| between 14.5 and 58.7,
p� .01).

English, so the plurality of many nouns in a text
has little syntactic consequence.

Derivational morphology might be expected to
perform worse than inflectional morphology for
a number of reasons. Even for highly produc-
tive morphemes, derivation tends to have more id-

iosyncratic meaning (Haspelmath and Sims, 2010,
100). For example, although ‘recruitment’ refers
to the act of recruiting, ‘government’ refers to a
governing body rather than the act of governing;
similarly, the adverb ‘sadly’ can be used as a sen-
tential adverb (expressing the speaker’s attitude
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SUPERCATEGORY ESTIMATE STD ERROR t

Inflectional .345 .0015 228 ***
Derivational .106 .0018 57.7 ***

Lexical semantics −.000 .0012 −0.293
Named entities .420 .0020 207 ***

Table 2: Summary of regression model for reciprocal rank gain as a function of analogy supercategory.
All starred levels are highly significant (p� .01).

about the statement) as well as a manner adverb,
whereas ‘angrily’ cannot. These semantic char-
acteristics introduce lexically dependent variance
that is far less pronounced for inflection.

From our results with derivational sets, there
is evidence of a trend in which morphemes with
predominantly syntactic consequences are better
handled than those with stronger semantic conse-
quences (see dotted/solid lines in Figure 1). Sig-
nificant further experimental work is needed to
quantify the syntactic versus semantic effects of
derivational morphemes.

We predict that such work would support the
notion of a continuum between morphemes with
only syntactic effects and those with only (lexi-
cally) semantic effects. Those towards the syntac-
tic end of the continuum will tend to be better cap-
tured by vector offsets in distributional represen-
tations. There would be a partial overlap between
this continuum and the inflectional–derivational
continuum in that derivational morphology tends
to have more idiosyncratic meanings and is less
relevant to syntax. There would be differences
as well, especially as regards the property that
word class-changing morphology is more deriva-
tional: the repetitive re- in English, for example,
may be considered less derivational than the dever-
bal nominalizer -ment because it does not change
word class, but re- has virtually no syntactic con-
sequences for the verb to which it affixes.

5.2 Semantics: Named Entities as Individuals

Our results show that analogy sets containing
named entities are more readily solvable than
those that contain other lexical categories (com-
mon nouns, verbs, etc.).

A possible explanation for this is that named en-
tities have a single real-world referent—there is,
for instance, only one Amsterdam—while there is
a large set of real-world referents that correspond
to a common noun like ‘dog’. We would expect
the co-occurrences of ‘dog’, then, to be more di-

verse than those of a named entity like ‘Amster-
dam’.

The distinction drawn here between named en-
tities and other parts of speech is analogous to the
distinction between words of type e (“individu-
als”) and words of type 〈e, t〉 in Montagovian set-
theoretic semantics (Montague, 1973). According
to Montague, proper names (arguments of type
e) denote individuals, while verbs and common
nouns (predicates of type 〈e, t〉) denote sets of in-
dividuals. Thus, ‘Amsterdam’ denotes an individ-
ual, while ‘dog’ denotes the set of dogs.

To better appreciate how this distinction might
lead to “fuzzier” representations for some words,
consider that training a vector on separate refer-
ences to numerous members of a set of individuals
is akin to a massive case of pseudo-polysemy—the
vector can only capture the average of all refer-
ents rather than a single, clear referent. Polysemy
is a well-known problem in training word vectors
(Reisinger and Mooney, 2010), although this case
of multiple referents has not been considered be-
fore to our knowledge.

Overall, named entity categories show very
good RRG results, especially when both terms in
a pair are named entities (as opposed to ‘name -
occupation’, say). Country capitals show excel-
lent performance in particular. In the broader his-
tory of this line of reserach, it is worth noting that
the composition of the Google test set plays to this
strength: country capital questions constitute over
a quarter of its analogies (and over half of those
in the “semantic” set, as noted by Gladkova et
al. (2016)). As our experiments and others have
demonstrated, however, the vector arithmetic ap-
proach struggles for most semantic questions.

Given the enormous influence of word2vec, it
is worth asking whether prevailing knowledge in
this field has been influenced by a selective fo-
cus on easier tasks. As further illustration of
this point, note that the classic go-to example,
king:queen::man:woman, is drawn from the sole
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category in lexical semantics with any clear posi-
tive result in our experiments.

As a matter of fact, we should address the
exceptional performance on analogies in male–
female categories; why, of all lexical semantic
sets, do we see such high performance here? We
suspect these categories does well for the same
reason that inflectional analogies do well: En-
glish features gender agreement with some per-
sonal pronouns—and, of course, with coreferen-
tial gendered terms—so there are concrete and
regular distributional consequences of a noun’s se-
mantic gender.

5.3 A Unified Account

A recurrent thread in our accounting for all
categories is that 3COSADD does well with
relationships that have predictable effects on
distribution—i.e., nearby terms and their morphol-
ogy and syntax (although all morphology is effec-
tively suppletive for these embeddings). This is
especially evident with inflectional morphology,
and true as well for certain types of derivational
morphology as well as classes that participate in
agreement, such as gender.

Relations between named entities are not gov-
erned by syntactic differences as inflectional rela-
tionships are, but there is a certain distributional
parallel between the two: terms with a single
referent will generally exhibit a less blurred co-
occurrence profile than those with multiple refer-
ents; similarly, the difference between two realiza-
tions of the same root (e.g. ‘hot’ and ‘hotter’) will
be highly non-orthogonal primarily with words of
syntactic relevance, which is also a small set. The
common theme is clear: the smaller the set of
unique word types that co-occur with either word
1 or word 2 but not both (i.e.,the symmetric differ-
ence), the more cleanly the relationship between
word 1 and word 2 can be captured.

Recall that our results also suggest that analogy
questions containing frequent words are easier to
solve with vector arithmetic than those containing
less frequent words. We suspect that this is be-
cause the distributional representations of frequent
words are more robust and less noisy. We believe,
however, that more targeted investigation into the
effects of frequency might qualify this generaliza-
tion. For instance, it is reasonable to assume that
a word’s frequency correlates with the diversity
of its co-occurrence, and that this diversity could

signal distinct word senses, which are notoriously
tricky for distributional representations. This is a
ripe topic for further study.

5.4 Challenges

One challenge in interpreting our results is that
categories with seemingly identical relations can
show marked discrepancies in performance: note
the differences between Google ‘comparative’ and
Microsoft ‘JJ JJR’, which examine the same in-
flectional relationship but show rather different
levels of performance. Similarly, note the ex-
treme difference in baseline rank for Google ‘gen-
der’ (called ‘family’ in the original set) and BATS
‘male - female’ categories. Clearly, lexical choices
make a significant difference and can even over-
shadow the inter-category differences that we are
trying to measure. Note that in both of the above
examples, the version of the category featuring
more unique word types showed lower baseline
and lower gain.

The explanations we put forward here may
need to be extended to address other types
of relationships that we did not evaluate.
One particular interesting example might be
Linzen et al.’s (2016) tests of analogies be-
tween quantifiers across domains—e.g., ev-
erything:nothing::always:never—which show in-
triguingly mixed results.

6 Conclusion

We evaluated syntactic and semantic analogy
questions from a large and highly diverse test set
using metrics more controlled and more sensitive
than accuracy. Inspecting the results across cate-
gories, we were able to account for the differences
in performance we observed across types of word
relationships in terms that are consistent with the
distributional training objectives of word embed-
dings.

Vector arithmetic with word embeddings is
most effective when co-occurrence are limited to
a small number of words, either by syntactic reg-
ularities or ease of semantic representation. It is
possible to account for both of these by consider-
ing distributional phenomena directly.

Still, questions remain—do our negative results
reflect the failure of word vectors to model seman-
tic nuances, or the failure of vector arithmetic to
capture them, or is the semantic data simply too
noisy for current methods? Further experiments

8



with special attention paid to smoothing lexical se-
mantic representations will be key to solving this
problem.
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Appendix: Mean Rank by Category

CATEGORY RR CATEGORY BRR CATEGORY RRG
G:capital .950 G:plural .711 G:capital .750

G:capital-all .945 noun - plural reg .674 country - capital .659
G:gender .933 G:gender .618 verb inf - 3pSg .604

G:nationality-adj .917 noun - plural irreg .603 G:superlative .600
country - capital .909 NN NNS .596 G:capital-all .584

G:comparative .896 G:pres-participle .566 VBZ VB .580
verb inf - 3pSg .843 X is opp. dir. from Y .535 G:comparative .578

G:plural .841 verb inf - Ving .496 VB VBZ .573
noun - plural reg .835 G:city-in-state .486 G:nationality-adj .548

VB VBZ .818 NNS NN .484 JJS JJR .536
verb inf - Ving .783 verb Ving - Ved .478 JJR JJS .496

VBZ VB .781 G:past-tense .463 VBD VB .470
G:city-in-state .774 X, Y same category .462 VBD VBZ .469

G:pres-participle .755 antonyms - binary .436 VBZ VBD .465
G:plural-verbs .752 G:plural-verbs .371 verb inf - Ved .465

G:past-tense .739 G:nationality-adj .369 VB VBD .443
G:superlative .713 G:capital-all .361 JJ JJR .443

NN NNS .710 things - color .340 JJ JJS .426
VBD VB .677 verb Ving - 3pSg .336 adj - comparative .422

verb Ving - Ved .670 can’t X and Y at same time .320 verb 3pSg - Ved .400
noun - plural irreg .662 G:comparative .317 G:plural-verbs .381
verb Ving - 3pSg .661 male - female .317 adj - superlative .373

JJ JJR .659 antonyms - gradable .306 name - occupation .340
JJS JJR .653 G:opposite .292 verb Ving - 3pSg .325

NNS NN .626 X, Y two kinds in category .283 JJR JJ .321
VBD VBZ .623 X and Y are contrary .279 G:gender .316

VB VBD .621 un+adj reg .268 name - nationality .312
verb inf - Ved .604 country - capital .250 G:city-in-state .288

VBZ VBD .571 X, Y similar type of thing .245 verb inf - Ving .287
adj - comparative .570 VB VBZ .245 country - language .278

male - female .557 verb inf - 3pSg .239 G:past-tense .276
verb 3pSg - Ved .553 X will become Y .239 G:currency .246

JJR JJS .543 JJ JJR .217 male - female .240
JJ JJS .520 G:adj-to-adverb .208 verb+tion irreg .240

adj - superlative .468 VBD VB .207 verb+ment irreg .231
JJR JJ .437 re+verb reg .207 JJS JJ .228

X is opp. dir. from Y .421 VBZ VB .201 UK city - county .219
G:adj-to-adverb .402 G:capital .200 G:adj-to-adverb .195

name - occupation .389 synonyms - exact .199 adj+ly reg .192
JJS JJ .376 VB VBD .178 verb Ving - Ved .192

...
...

...

Table 3: The top 40 categories for reciprocal rank using 3COSADD (RR), baseline reciprocal rank (BRR),
and reciprocal rank gain (RRG = RR − BRR) as calculated from embeddings trained on Wikipedia text
using word2vec. Categories based on inflectional morphology are in plain text, derivational morphology
in italics, named entity semantics in bold, and lexical in bold italic. Sources for analogy questions can be
identified from category names: those starting with ‘G:’ are from the Google set; in all capital letters, the
Microsoft set; with reference to ‘X’ and ‘Y’, the SemEval set; all others, BATS. Some category names
are abbreviated from their original names.
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