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Abstract

We present the system developed at FBK
for the SemEval 2016 Shared Task 2 ”Inter-
pretable Semantic Textual Similarity” as well
as the results of the submitted runs. We use a
single neural network classification model for
predicting the alignment at chunk level, the re-
lation type of the alignment and the similar-
ity scores. Our best run was ranked as first in
one the subtracks (i.e. raw input data, Student
Answers), among 12 runs submitted, and the
approach proved to be very robust across the
different datasets.

1 Introduction

The Semantic Textual Similarity (STS) task mea-
sures the degree of equivalence between the mean-
ing of two texts, usually sentences. In the Inter-
pretable STS (iSTS) (Agirre et al., 2016) the sim-
ilarity is calculated at chunk level, and systems are
asked to provide the type of the relationship between
two chunks, as an interpretation of the similarity.
Given an input pair of sentences, participant sys-
tems were asked to: (i) identify the chunks in each
sentence; (ii) align chunks across the two sentences;
(iii) indicate the relation between the aligned chunks
and (iv) specify the similarity score of each align-
ment.

The iSTS task has already been the object of an
evaluation campaign in 2015, as a subtask of the
SemEval-2015 Task 2: Semantic Textual Similarity
(Agirre et al., 2015). More in general, shared tasks
for the identification and measurement of STS were
organized in 2012 (Agirre et al., 2012), 2013 (Agirre
et al., 2013) and 2014 (Agirre et al., 2014).

Data provided to participants include three
datasets: image captions (Images), pairs of sen-
tences from news headlines (Headlines), and a
question-answer dataset collected and annotated
during the evaluation of the BEETLE II tutorial
dialogue system (Student Answers) (Agirre et al.,
2015). For each dataset, two subtracks were re-
leased: the first with raw input data (SYS), the sec-
ond with data split in gold standard chunks (GS).
Given these input data, participants were required
to identify the chunks in each sentence (for the first
subtrack only), align chunks across the two sen-
tences, specify the semantic relation of the align-
ment - selecting one of the following: EQUI for
equivalent, OPPO for opposite, SPE1 and SPE2 if
chunk in sentence1 is more specific than chunk in
sentence2 and vice versa, SIMI for similar mean-
ings, REL for chunks that have related meanings,
and NOALI for chunk has no corresponding chunk
in the other sentence (Agirre et al., 2015)-, and pro-
vide a similarity score for each alignment, from 5
(maximum similarity/relatedness) to 0 (no relation
at all). In addition, an optional tag for alignments
showing factuality (FACT) or polarity (POL) phe-
nomena, can be specified. The evaluation is based
on (Melamed, 1998), which uses the F1 of precision
and recall of token alignments.

We participate in the iSTS shared task with a
system that combines different features - includ-
ing word embedding and chunk similarity - using
a Multilayer Perceptrons (MLP). Our main contri-
bution was focused on the optimization of a Neural
Network setting (i.e. topology, activation function,
multi-task training) for the iSTS task. We show that
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even with a relatively small and unbalanced training
dataset, a neural network classifier can be built that
achieves results very close to the best system. Par-
ticularly, our system makes use of a single model for
the different training sets of the task, proving to be
very robust to domain differences.

The paper is organized as follows. Section 2
presents the system we built; Section 3 reports the
results we obtained and an evaluation of our system.
Finally, Section 4 provides some conclusions.

2 System Description

Our system is built combining different linguis-
tic features in a classification model for predicting
chunk-to-chunk alignment, relation type and STS
score. We decide to use the same features for all
these three subtasks and to use a unique multitask
MLP with shared layers for all the subtasks. The
system is expandable and scalable for adopting more
useful features aiming at improving the accuracy.

In this Section, we describe the pre-processing of
the data, the features we used, the MLP structure,
its training, its output and, finally, the difference be-
tween the three submitted runs.

2.1 Data Pre-processing

The input data undergo a data pre-processing in
which we use a Python implementation of MBSP
(Daelemans and Van den Bosch, 2005), a library
providing tools for tokenization, sentence splitting,
part of speech tagging, chunking, lemmatization and
prepositional phrase attachment. The MBSP chun-
ker is used in the SYS subtrack, which requires par-
ticipants to identify the chunks in each sentence. For
both subtracks, we pre-processed the initial datasets
of sentence pairs by pairing all the chunks in the first
sentence with all the chunks in the second sentence.
Henceforth, we will refer to the two chunks in each
of the obtained pairs as chunk1 and chunk2, being
chunk1 a chunk of the first sentence and chunk2 a
chunk of the second sentence.

2.2 Feature Selection

To compute the chunk-to-chunk alignment, the
relation type and the STS score we use a total of
245 features.

Chunk tags. A total of 18 features (9 for chunk1
and 9 for chunk2) are related to chunk tags (e.g.
noun phrase, prepositional phrase, verb phrase).

For each chunk in the SYS datasets -chunked
with MBSP- the system takes into consideration the
chunk tags as identified by that library. 1

For the GS datasets -already chunked datasets- the
system first re-chunks the datasets with MBSP and
than evaluates if chunks in the GS corresponds to
chunks as identified in MBSP. If this is the case,
chunk tag is extracted; otherwise the systems does
the same operation (i.e. re-chunking and tag extrac-
tion) using pattern.en (De Smedt and Daelemans,
2012), a regular expressions-based shallow parser
for English that uses a part-of-speech tagger ex-
tended with a tokenizer, lemmatizer and chunker. 2

If no corresponding chunk is found, no chunk tag
is assigned.

Token and lemma overlap. Four further fea-
tures are related to tokens and lemmas overlap
between a pair of chunks. In particular, the system
considers the percentage of (i) tokens and (ii)
lemmas in chunks1 that are present also in chunk2
and viceversa (iii - iv).

WordNet based features. Another group of
features concerns lexical and semantic relations
between words extracted from WordNet 3.0 (Fell-
baum, 1998). As such, we evaluate the type of
relation between chunks by considering all the
lemmas in the two chunks and checking whether a
lemma in chunk1 is a synonym, antonym, hyponym,
hyperonym, meronym or holonym of a lemma in
chunk2. The relations between all the combinations
of the lemmas in the two chunks are extracted.
The presence or absence of a relation is consider a
feature at chunk level (for a total of 6 features for
chunk1 and 6 features for chunk2).

Furthermore, we consider as a feature the synset
similarity existing in the WordNet hierarchy be-
tween each lemma in the two chunks, as calculated

1The chunk tags are the following: noun phrase (NP), prepo-
sitional phrase (PP), verb phrase (VP), adverb phrase (ADVP),
adjective phrase (ADJP), subordinating conjunction (SBAR),
particle (PRT), interjection (INTJ), prepositional noun phrase
(PNP).

2The two chunkers use the same set of chunk tags.
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by pattern.en. We calculate the average of the
best alignments for each lemma in the two chunks.
For example, consider the chunk pair: chunk1
”the animal” and chunk2 ”the sweet dog”. For
each lemma in chunk1, for which a synset can be
retrieved from WordNet, (”animal”), we calculate
the maximum similarity with lemmas in chunk2.
Thus, for this pair of chunks the resulting maximum
similarity is between ”animal-dog” = 0.299 (being
equal to 0.264 for ”animal-sweet”). The chunk
similarity score is 0.299. With the same strategy
we calculate similarity between lemmas in chunk2
towards chunk1, i.e. ”sweet-animal” = 0.264 , ”dog-
animal” = 0.299 resulting in a chunk similarity
score of [(0.264 + 0.299)/ 2] = 0.281. If lemmas
were not found in WordNet, the synset similarity is
considered 0.

Word embedding. We use a distributional
representation of the chunk for a total of 200 fea-
tures (100 for chunk1 and 100 for chunk2) by first
calculating word embedding and then combining
the vectors of the words in the chunk (i.e. by
calculating the element wise mean of each vector).
We use Mikolov word2vec (Mikolov et al., 2013)
with 100 dimensions using ukWaC, GigaWords
(NYT), Europarl V.7, Training Set (JRC) corpora.

The system computes the chunk-to-chunk simi-
larity by calculating the cosine similarity between
the two chunk vectors with three different models:
the first uses the already described vectors (one
feature); the second uses vectors representations
extracted with a different corpus and a different
parametres -i.e. Google News, with 300 dimensions
of the vectors- (one feature); the third uses GloVe
vectors (Pennington et al., 2014) with 300 dimen-
sions (one feature).

Baseline feature. The baseline output - pro-
vided by the organizers (Agirre et al., 2016) - was
also exploited, i.e. we consider if the chunks are
evaluated as aligned, if chunk1 is not aligned, if
chunk2 is not aligned (3 features).

Composition of the input data. The last three
features refer to the datasets. The system takes
into consideration if the chunks are extracted from
Headline, Images, or Student Answers dataset.

#features

Chunk tags 18
Token and lemma overlap 4
WordNet relations and similarity 14
Word embedding 200
Cosine Similarity 3
Baseline feature 3
Composition of the input data 3

Total 245

Table 1: Feature Selection.

2.3 Neural Network

We use a multitask MLP (see Figure 1) to classify
chunk pairs, implemented with the TensorFlow li-
brary (Abadi et al., 2015). The system uses three
classifiers: one for the chunk alignment, one for
alignment type, one for STS score. The input layer
has 245 entities, so we use fully connected hidden
layers with 250 nodes. During the test we observed
that smaller (200 nodes) or bigger (300 nodes) layers
reduce the performances. The system is composed
by two layers (i.e. L1 and L2) shared between the
three classifiers. On the top of them there are other
two layers: the former (L3a) used only for the align-
ment classifier and the latter (L3b) shared among the
score classifier and the type classifier. At the very
end of L3b, there are other two layers one for the
score (L4a) and one for the type (L4b). In synthe-
sis for alignment there are three hidden layers, two
shared (L1 and L2) and one private (L3a), for STS
score there are four hidden layers, three shared (L1,
L2, L3b) and one private (L4a) and the same for the
type labeling (L1, L2, L3b + L4b). Every output lay-
ers is a softmax; during the training the system has a
dropout layer that remove nodes from the layer with
a probability of 50% to avoid overfitting.

We use sigmoid as activation function as it results
the best one during the development test among all
the activation function available in the library. Fi-
nally, we train our MLP using three different opti-
mizers; each of them reduces the softmax error on
a subtasks (i.e. alignment, type labeling or STS
score). For the optimization we use the Adam algo-
rithm (Kingma and Ba, 2014) with different learning
rates: 0.00006 for the first classifier and 0.00004 for

785



...
...

...

...

...

...

...

I1

In

L1 L2

L3A

L3B

L4A

L4B

O1

O2

O3

Figure 1: Multitask learning Neural Network.

the other ones.
We train the classifiers for three cycles. This train-

ing strategy is driven by learning curves analysis: we
keep training the classifiers until the learning curves
keep growing. We notice that the alignment classi-
fier stops learning earlier, followed by the relation
type classifier, and, at the end, the STS score classi-
fier. Under these findings, to train all the classifiers
in the same way overfits the training data. Further-
more, the training data are very unbalanced (most of
the pairs are not aligned); thus, we use random mini-
batches with a fix proportion between aligned pairs
and unaligned pairs. To do so, we use the unaligned
pairs more than once in a single training epoch. In
particular, first we train the alignment classifier with
the following proportion: 2/5 of aligned examples
and 3/5 of not aligned pairs, for 8 training epochs
(i.e. every aligned pair is used as training data at
least 8 times). The second training cycle optimizes
relation type labeling and STS score, with the pro-
portion of 9/10 aligned and 1/10 not aligned for
other 8 training epochs. Finally, in the third training
cyle, we train only for STS score with a proportion
of 9/10 aligned and 1/10 not aligned pairs.

2.4 Output

We combine the output of the three classifiers (align-
ment, relation type and similarity score) organized

in a pipeline. First, we label as ”not aligned”
all the punctuation chunks (i.e. those defined as
”not alignable” by the baseline); then we label as
”aligned” all the chunks aligned by the first classi-
fier, allowing multiple alignments for each chunk.
For every aligned chunk pair we add the type label
and the STS score. We do not take into consider-
ation chunk pairs classified as ”not aligned” by the
first classifier even if they are classified with a label
different from NOTALI or with an STS score higher
than 0.

2.5 Submitted Runs
We submitted three runs, with different training set-
tings. In the first run we use all the training data
with a mini-batch of 150 elements. In the second run
we train and evaluate separately each dataset with a
mini-batch of 150 elements. Finally, in the third run
we use all the training data with a mini-batch of 200
elements. We choose these settings in order to eval-
uate how in-domain data and different sizes of the
mini-batch influence the classification results.

3 Results and Evaluation

Table 2 compares the results of our runs with the
baseline and the best system for each subtrack of the
three datasets, showing:

• F1 on alignment classification (F);
• F1 on alignment classification plus relation

alignment type (+T);
• F1 on alignment classification plus STS score

(+S);
• F1 on alignment classification plus relation

alignment type and STS score (+TS);
• Ranked position over the runs submitted: i.e.

13 runs for Images and Headlines SYS, 12
for Student Answer SYS, 20 for Images and
Headlines GS and 19 for Student Answer GS
(RANK)

Table 2 shows that for all the six subtracks run1
and run3 register better results. In particular, for
what concerns GS subtasks (with already chunked
sentences), run2 is ranked at least two positions
lower with respect to the other two runs. Since
the difference between run2 and the other runs lays
on the data used for training, these results seem to

786



IMAGES SYS IMAGE GS

F +T +S +TS RANK F +T +S +TS RANK

Baseline 0.7127 0.4043 0.6251 0.4043 0.8556 0.4799 0.7456 0.4799
OurSystem-Run1 0.8427 0.5655 0.7862 0.5475 5 0.8728 0.5945 0.8147 0.5739 9
OurSystem-Run2 0.8427 0.5179 0.7807 0.4969 8 0.8789 0.543 0.8178 0.525 15
OurSystem-Run3 0.8418 0.5541 0.7847 0.5351 7 0.8786 0.5884 0.8193 0.5656 11
BestSystem 0.8429 0.6276 0.7813 0.6095 1 0.8922 0.6867 0.8408 0.6708 1

HEADLINES SYS HEADLINES GS

F +T +S +TS RANK F +T +S +TS RANK

Baseline 0.6486 0.4379 0.5912 0.4379 0.8462 0.5462 0.761 0.5461
OurSystem-Run1 0.8078 0.5234 0.7374 0.5099 5 0.879 0.5744 0.8096 0.5591 16
OurSystem-Run2 0.7973 0.5138 0.7369 0.5028 7 0.8859 0.5643 0.8019 0.5554 18
OurSystem-Run3 0.805 0.5185 0.7374 0.5054 6 0.8853 0.5771 0.8089 0.562 15
BestSystem 0.8366 0.5605 0.7595 0.5467 1 0.8194 0.7031 0.7865 0.696 1

STUDENT ANSWERS SYS STUDENT ANSWERS GS

F +T +S +TS RANK F +T +S +TS RANK

Baseline 0.6188 0.4431 0.5702 0.4431 0.8203 0.5566 0.7464 0.5566
OurSystem-Run1 0.8162 0.5479 0.7589 0.542 3 0.8775 0.5888 0.8102 0.5808 7
OurSystem-Run2 0.8161 0.5434 0.7481 0.5405 4 0.859 0.5758 0.791 0.5714 10
OurSystem-Run3 0.8166 0.5613 0.7574 0.5547 1 0.8505 0.5984 0.7896 0.589 6
BestSystem 0.8684 0.6511 0.8245 0.6385 1

Table 2: Results for the Baseline, Our System three runs and the Best System for the two subtracks split in the three datasets.

suggest that the system takes advantage of a bigger
training set with different domain data. Instead, the
size of the mini-batch (that is the difference between
run1 and run3) does not seem to have a clear influ-
ence on the system performance, since in some cases
run1 is higher ranked while in other cases run3 is
higher ranked.

Furthermore, Table 2 shows that results for Align-
ment classification (F) and for Alignment plus STS
score (+S) frequently approach the Best System (be-
ing the major deficit for F equal to 0.0393 in Head-
line SYS for run3 and equal to 0.0349 for +S in
Student Answwer GS dataset for run3) and in a few
cases outperform it (e.g. in Headlines GS for F re-
sults and in Images SYS for +S results). On the
other hand, when also relation type classification is
considered (i.e. +T and +TS) we register worse per-
formances, being the minimum difference with the
Best System equals to 0.0371 for +T results and of
0.0368 for +TS results (both in Headlines SYS) and

the maximum difference equals to 0.1437 for +T and
to 0.1458 for +TS (both in Images GS). This indi-
cates that type labelling is the hardest subtask for
our system, probably because the subtask requires
to identify a higher number of classes (i.e. 7 types).

By comparing the rank of the two subtracks SYS
and GS, we notice that our system performs much
better in the SYS subtrack (being the worst ranking
8 out of 13 for SYS and 18 out of 20 for GS). This
fact indicates that our system does not benefit from
having already chunked sentence pairs.

Table 3 presents the final rank calculated by
considering the mean of +TS results for the three
datasets. As previously mentioned, our system per-
forms relatively better when chunk identification is
required. Also, it evidences again that run2 performs
worse and that run1 and run3 are similar. Overall our
system ranked second among 4 systems (+1 by the
authors) in the SYS subtrack.
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SYS GS

MEAN RANK MEAN RANKF + TS F + TS

Baseline 0.428433 0.527533
Run1 0.533133 4 0.571266 11
Run2 0.5134 6 0.5506 17
Run3 0.531733 5 0.5722 10
BestSystem 0.552333 1 0.637733 1

Table 3: Mean of the F+TS results in the two subtracks for the

Baseline, Our System three runs and the Best System and final

rank.

4 Conclusion and Further Work

Considering the obtained results, in particular the
difference between the runs, we expect our system
to be robust also in situation where data from dif-
ferent domains are provided (e.g. training data from
several domains and test data on one of them). In
fact, for domain adaptation our system seems to re-
quire few data of the target domain.

In any case, the system perform better with more
training data, independently on the domains in-
volved. As such, further work may include the use of
silver data extracted from other datasets, e.g. SICK
dataset (Marelli et al., 2014).

In addition, we believe that a deep analysis of
the distribution of the type labels and of the STS
scores can improve significantly the performance of
the system.

Finally, an ablation test can be helpful in identify-
ing the most salient features for the systems, helping
to reduce the complexity of the MLP or to develop
better topologies.
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