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Abstract

This paper describes our participation in the
SemEval-2016 Task 1: Semantic Textual Sim-
ilarity (STS). We developed three methods for
the English subtask (STS Core). The first
method is unsupervised and uses WordNet and
word2vec to measure a token-based overlap.
In our second approach, we train a neural net-
work on two features. The third method uses
word2vec and LDA with regression splines.

1 Introduction

Measuring semantic textual similarity (STS) is the
task of determining the similarity between two dif-
ferent text passages. The task is important for var-
ious natural language processing tasks like topic
detection or automated text summarization because
languages are versatile and authors can express sim-
ilar content or even the same content with different
words. Predicting semantic textual similarity has
been a recurring task in SemEval challenges (Agirre
et al., 2015; Agirre et al., 2014; Agirre et al., 2013;
Agirre et al., 2012). As in previous years, the pur-
pose of the STS task is the development of systems
that automatically predict the semantic similarity of
two sentences in the continuous interval [0, 5] where
0 represents a complete dissimilarity and 5 denotes
a complete semantic equivalence between the sen-
tences (Agirre et al., 2015).

The organizers provide sentence pairs whose se-
mantic similarities have to be predicted by the con-
testants. The quality of a system is determined by
calculating the Pearson correlation between the pre-
dicted values and a human gold standard that has

been created by crowdsourcing. The data from pre-
vious STS tasks can be used for training supervised
methods.

The test data consists of text content from differ-
ent sources. In this year’s shared task, the systems
are tested on five different categories with different
topics and varying textual characteristics like text
length or spelling errors: answer-answer, plagia-
rism, postediting, headlines, and question-question

The remainder of the paper is structured as fol-
lows: Section 2 discusses related approaches to au-
tomatically determining semantic textual similarity.
Section 3 describes our three methods in detail. We
discuss their results in section 4. Finally, we con-
clude in chapter 5 and outline future work.

2 Related Work

In the last shared tasks, most of the teams used
natural languages processing techniques like to-
kenization, part-of-speech tagging, lemmatization,
named entity recognition and word embeddings. Ex-
ternal resources like WordNet (Miller, 1995) and
word2vec (Mikolov et al., 2013) are commonly
used. In (Agirre et al., 2012) and (Agirre et al.,
2013), the organizers provide a list and a comparison
of the tools and resources used by the participants in
the first two years, respectively.

In each year, the organizers provide a baseline
value by calculating the cosine similarity of the bi-
nary bag-of-words vectors from both sentences in
each sample. Since 2013, TakeLab (Šarić et al.,
2012), the best ranked system in 2012, has also been
used as another baseline value.

Most of the teams used machine learning in 2015
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(Agirre et al., 2015). In 2014, the best two submitted
runs were from unsupervised systems.

The work most closely related to our Overlap
method is (Han et al., 2015), which uses a two-
phased approach called Align-and-Differentiate. In
the first phase, they compute an alignment score. Af-
terwards, they modify the alignment score in a dif-
ferentiate phase by subtracting a penalty score for
terms that can not be aligned. The idea behind the
computation of our alignment scores is the same:
For each sample, we average over the crosswise sim-
ilarities between the sentences by aligning them, ac-
cumulating similarities between tokens and dividing
by sentence lengths. The results of the alignment
score in our Overlap method differ because (i) our
alignment is different, (ii) we use another similar-
ity function for tokens, and (iii) our preprocessing is
different.

In (Vu et al., 2015), the similarity between LDA
vectors calculated from documents is used together
with syntactic and lexical similarity measures to
compute the similarity between text fragments. This
idea is also incorporated in our Deep LDA method.
Moreover, both approaches use different flavors of
regression analysis for the final model prediction.
Regression analysis was also used in (Sultan et
al., 2015), where the authors combine an unsuper-
vised method with ridge regression analysis. Our
approach differs in the sense that it introduces k-
nearest neighbors as a lazy training layer before the
regression analysis phase to decrease the effect of
noisy data points.

3 Methods

In this section, we describe our three system runs.
The ideas behind our methods are independent of the
word order in a sentence. Our first method is unsu-
pervised, whereas the other two methods are super-
vised. The first and second method share the same
preprocessing.

3.1 Run 1: Overlap Method

Our first method is unsupervised. It measures the
overlap between the tokens in sentence s1 and the
tokens in sentence s2.

3.1.1 Preprocessing

For preprocessing the input text, we first pro-
cess each sentence with Stanford CoreNLP (Man-
ning et al., 2014). Afterwards, we use Hunspell1

with the latest OpenOffice English dictionaries to
suggest spelling corrections for tokens with at least
two characters in length. For each token, we cal-
culate the Levenshtein distance for all suggestions.
If suggestions have the same lowest distance, we
choose the longest word and replace the former mis-
spelt word. Abbreviations are also replaced by their
full forms. Afterwards, we process the corrected
sentence with Stanford CoreNLP again. We use the
WordnetStemmer from the Java Wordnet Interface
(Finlayson, 2014) to look up lemmas with the help
of WordNet (Miller, 1995). If the WordnetStemmer
can not provide a lemma for a token, we use the pre-
dicted lemma from the Stanford CoreNLP.

Instead of accessing all tokens in a sentence, we
start from the root token and recursively follow out-
going dependency edges and add all visited tokens
to a list. This approach improves our results slightly
because some tokens will be ignored. Furthermore,
the tokens are filtered for stopwords2.

3.1.2 Method

The Overlap method measures the token-based
overlap between two sentences. Therefore, we need
to define a similarity function for tokens: We first
try to identify a textual similarity of 1 by comparing
the lower case lemmas of both tokens or by check-
ing if their most common WordNet synsets are the
same. We assess their similarity as 0.5 if they share
any synset. If this is not the case, we use word2vec
(Mikolov et al., 2013) with the 300-dimensional
GoogleNews-vectors-negative300 model. We look
up both words (or their lemmas if the words are not
present in the model) and calculate the cosine simi-
larity of their word embeddings. Otherwise, we re-
turn a default value.

This yields the following similarity function for
two tokens:

1http://hunspell.github.io/
2http://xpo6.com/list-of-english-stop-

words/
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sim(t1, t2) :=





1 if t1.lemma == t2.lemma
1 if t1 and t2 have the same

most common synset
0.5 if t1 and t2 share any

synset
d(t1, t2) if t1 and t2 have word

embeddings
default otherwise

where d(t1, t2) denotes the cosine similarity be-
tween the two word embeddings of the tokens.

Given a token t from one sentence, we calculate
its similarity to another sentence S by taking the
maximum similarity between t and all tokens of S:

msim(t, S) := max
t2∈S

sim(t, t2)

We define the similarity score between two sen-
tences in [0, 1] as follows:

ssim(s1, s2) :=

∑
t∈s1

msim(t, s2)

2 · |s1|
+

∑
t∈s2

msim(t, s1)

2 · |s2|

To predict the semantic similarity score in [0, 5],
we multiply ssim by 5, however, this does not
change our evaluation results because the Pearson
correlation is scale invariant:

STS(s1, s2) := 5 · ssim(s1, s2)

We observed that some samples in the STS 2016
test data consist almost entirely of stopwords. For
example, the STS 2016 evaluation data contained
a sample with the sentences “I think you should do
both.” and “You should do both.” before the final fil-
tering. After filtering stop words, the first sentence
would only contain the word “think” and the sec-
ond sentence would be empty, which would result
in a predicted score of zero. To avoid these extreme
cases, we do not filter stop words if this would result
in a sentence length of less than two tokens in both
sentences.

3.2 Run 2: Same Word Neural Network
Method

We train a neural network with 3 layers and a sig-
moid activation function in Accord.NET (de Souza,

2014). Our network consists of 2 neurons in the in-
put layer, 3 neurons in the hidden layer and 1 neuron
in the output layer, as illustrated in Figure 1. The
layer weights are initialized by the Nguyen-Widrow
function (Nguyen and Widrow, 1990). We use the
Levenberg-Marquardt algorithm (Levenberg, 1944;
Marquardt, 1963) to train our network on the STS
Core test data from 2015 and 2014.

Input

layer

Hidden

layer

Output

layer

Figure 1: Architecture of our neural network

All samples are preprocessed as described in sec-
tion 3.1.1. For each sample (s1, s2, gs) in the train-
ing set, we create a vocabulary list of the lowercase
lemmas from both sentences. Lemmas that share a
most common synset in WordNet are grouped to-
gether. Let n be the size of the vocabulary. We
create two bag-of-words vectors bows1 and bows2 .
For each lemma l, we calculate the minimum num-
ber of times l occurs in each sentence and the delta
between the minimum and the maximum:

mini := min(bows1 [i], bows2 [i])

|∆i| := |bows1 [i]− bows2 [i]|
As input vectors for the neural net, we build two

sums per sample and use them as the two dimen-
sional feature vector (sameWords, notSameWords)
for the expected output gs:

sameWords :=
n∑

i=1

mini

notSameWords :=
n∑

i=1

|∆i|

Table 1 shows an example of the same word
neural network method for the two input sentences
“Tim plays the guitar” and “Tim likes guitar songs”,
which have the input vector (2, 3).
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i Lemma bows1 bows2 mini |∆i|
1 tim 1 1 1 0
2 play 1 0 0 1
3 guitar 1 1 1 0
4 like 0 1 0 1
5 song 0 1 0 1∑

2 3

Table 1: An example for creating the two-dimensional feature

vector for the Same Word Neural Network method

We trained the neural net until the error rate
between two iterations did not change more than
ε = 10−5.

3.3 Run 3: Deep LDA Method

We represent the semantic similarity between two
documents s1 and s2 by means of a vector
F = [f1, f2, f3, f4] ∈ R4, where each component of
F is responsible for modelling a different aspect
of the semantic similarity, namely the surface-level
similarity, context similarity, and the topical simi-
larity.

Surface-level Similarity

The surface-level similarity can to some extent
(although not entirely) capture the semantic similar-
ity between documents. Let s1 and s2 be the refer-
ence and the candidate documents respectively. We
compute the components f1, f2 ∈ R as follows:

f1(s1, s2, N) =
mN

ls1N

f2(s1, s2, N) =

(
N∏

n=1

mN

ls2n

) 1
N

where mN is the number of matched N -grams be-
tween s1 and s2, ls1N denotes the total number of N -
grams in s1 and ls2n is the total number of n-grams
in s2. f1 is the common ROUGE (Lin, 2004) met-
ric used in automatic text summarization and f2 is a
modified version of the BLEU (Papineni et al., 2002)
metric (standard machine translation metric) where
the brevity penalty is eliminated. Note that f1 can
be interpreted as the recall-oriented surface similar-
ity and f2 as the precision-oriented one.

Context Similarity
In order to model the context similarity be-

tween documents, we use word embeddings that
learn semantically meaningful representations for
words from local co-occurrences in sentences. More
specifically we use word2vec (Mikolov et al., 2013)
which seems to be a reasonable choice to model
context similarity as the word vectors are trained to
maximize the log probability of context words. We
denote the context similarity of two documents s1
and s2 by f3 ∈ R and compute it as follows:

f3(s1, s2) = cos(ṽs1 , ṽs2)

= cos

(∑
v∈s1 v

|s1|
,

∑
v′∈s2 v

′

|s2|

)

where v is the dense vector representation of a token
and ṽ represents the centroid of the word vectors in
a document.

Topical Similarity
To model the topical similarity between two doc-

uments, we use Latent Dirichlet Allocation (LDA)
(Blei et al., 2003) to train models on the English
Wikipedia. For both documents s1 and s2, we com-
pute the topic distributions θ1 and θ2 and use the
Hellinger distance to measure the similarity between
the documents. This can be formally written as

f4(s1, s2) = 1− 1√
2

√√√√
k∑

i=1

(√
θ1i −

√
θ2i

)2

where k represents the number of learned LDA top-
ics.

Similarity Prediction
In order to predict the semantic similarity between

two documents, we use a combination of k-NN and
Multivariate Adaptive Regression Splines (MARS)
(Friedman, 1991).

Let T = {(s1, s′1, gs1), . . . , (sm, s′m, gsm)} be
the training set consisting of m document pairs
together with their corresponding gold standard
semantic similarity and (si, s

′
i) /∈ T be a doc-

ument pair for which the semantic similarity
has to be computed. We construct a set
F = {(F1, gs1), . . . , (Fm, gsm)} where each Fj is
the four-dimensional vector representation of the se-
mantic similarity between sj and s′j . Moreover, we
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Sentence 1 Sentence 2 gs STS
Unfortunately the answer to your question
is we simply do not know.

Sorry, I don’t know the answer to your
question.

4 4.05800

You should do it. You can do it, too. 1 4.39817
Unfortunately the answer to your question
is we simply do not know.

My answer to your question is ”Probably
Not”.

1 3.70982

P (A|B) is the conditional probability of
A, given B.

P (B|A) is the conditional probability of B
given A.

3 4.32017

Table 2: Examples for the results of the Overlap method with the corresponding gold standards

compute the vector Fi. Next, we construct a set Fk

containing the k-nearest neighbors to the vector Fi.
In order to calculate the distances between the vec-
tors, we use the Euclidean distance. Finally, we con-
struct a vector gsk containing the gold standard sim-
ilarity values of the k-nearest neighbors and feed it
into a MARS model to predict the semantic similar-
ity of the pair (si, s

′
i). The choice of MARS is due to

its capability to automatically model non-linearities
between variables.

4 Results

We report the results of our three approaches for the
STS Core test from 2016 and 2015.

4.1 STS 2016 Results
In this years shared task, 117 runs were submitted.
We achieved weighted mean Pearson correlations of
0.71134, 0.67502 and 0.62078. In this year’s run,
our best result was the Overlap method, followed
by the Same Word Neural Network method and the
Deep LDA approach. Table 2 shows examples of
good and bad results of our Overlap method on the
2016 data. Detailed results of our runs are given in
Table 3 per test set. Our three approaches achieved
different results.

From a semantic point of view, the most obvious
value for the default value in our Overlap method is
0. However, we have discovered that a default value
0.15 returned better results on the STS Core test data
from 2015 and also chose this default value for our
submission.

In the Deep LDA approach, we set the parame-
ter N = 2, although the use of unigrams did not
show any significant statistical difference in the re-
sults. We choose the number of topics in the LDA
model to be 300. In the prediction phase of the al-

Data set Run 1 Run 2 Run 3
answer-answer 0.50435 0.42673 0.47211
headlines 0.77406 0.75536 0.58821
plagiarism 0.83049 0.79964 0.62503
postediting 0.83846 0.84514 0.84743
question-question 0.60867 0.54533 0.57099
Weighted Mean 0.71134 0.67502 0.62078

Table 3: Pearson correlation of the 2016 test data

Data set Run 1 Run 2 Run 3
answers-forums 0.74163 0.70387 0.79987
answers-students 0.73685 0.76658 0.76733
belief 0.74046 0.73319 0.78242
images 0.82032 0.80813 0.84747
headlines 0.75358 0.74363 0.76076
Weighted Mean 0.76295 0.75922 0.79168

Table 4: Pearson correlation of the 2015 test data

gorithm, we select k = 100 nearest neighbors from
the data sets provided from 2012 to 2015.

4.2 STS 2015 Results

We list the results of our methods for the 2015 test
data in Table 3 to discuss the effect of different eval-
uation sets. It is interesting to see that the Deep LDA
method performed best out of our three systems on
2015. Its results on 2016 were surprisingly lower.
We attribute this difference to the lack of domain
specific training data for 2016. As an unsupervised
approach, the Overlap method has fewer problems
with the domain change.

It should be noted that the gold standard of the
2015 test data was available during the development
of our methods. For the training phase, the Same
Word Neural Network method used the STS Core
test from 2014. The Deep LDA method was trained
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on the data from 2012 to 2014.

5 Conclusion and Future Work

We have presented three approaches to measure tex-
tual semantic similarity. This year, our unsupervised
method achieved the best result. By comparing our
result for 2016 and 2015, we showed that the ap-
proaches yielded different results in a different or-
der.

In our future work, we will try to modify the
Overlap method, by also using a penalty score and
by applying certain similarity score shifters, for in-
stance modifying the score by applying a date ex-
traction with a specific distance function for dates.
We tried to group words into phrases by using a
sliding window approach with a shrinking window
size and matching phrases in word2vec. In our ini-
tial attempt, this worsened the results for the Over-
lap method. We will adjust the similarity function
to increase the weight of phrases in comparison to
unigrams.

We aim to adapt the techniques for German and
Spanish.
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