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Abstract

This paper introduces aicyber’s systems for
SemEval 2016 , Task 4A. The first system
is build on vector space model (VSM), the
second system is build on a new framework
to estimate sentence vector, it is inspired by
the i-vector in speaker verification domain.
Both systems are evaluated on SemEval 2016
(Task4A) as well as IMDB dataset. Evaluation
results show that the i-vector based sentence
vector is an alternative approach to present
sentence.

1 Introduction

The SemEval 2016 Task 4 is sentiment analysis in
tweets. The subtask, task A focused on classifying
tweets into three classes: positive, negative or neu-
tral sentiment (Nakov et al., 2016).

This paper will first presents the submitted sys-
tem used by team aicyber. Then a new framework
of estimating sentence vector will be introduced and
evaluated.

2 The aicyber system

This section introduces the submitted system for
team aicyber. The text data is first being processed
by tweet tokenizer, emoticons are preserved as to-
kens. Bag-of-ngram feature is extracted and filtered
by a TF-IDF (Salton, 1991) selection. Resulting fea-
ture dimension is around 3800, it is then reduced
to 400 by truncated singular value decomposition
(SVD) (Klema and Laub, 1980; Halko et al., 2009).
This process is also known as Latent Semantic Anal-
ysis (LSA) or Vector Space Model (Turney and Pan-

tel, 2010). Finally a Linear Discriminant Analysis
(LDA) classifier (Hastie et al., 2009) is trained to
classify the test data.

The SemEval 2016 training dataset which con-
tains 3887 tweets are selected to train the TF-IDF,
SVD and LDA. Development dataset is used for tun-
ing parameters and develop-test dataset are used for
local testing.

Task A adopted Macro-F1 measure as evaluation
metric (Nakov et al., 2016):

FPN
1 =

FPos
1 + FNeg

1

2
(1)

The Macro-F1 for Aicyber system measured on
development, develop-test and 2016 Tweet set, are
respectively 0.4514, 0.4787 and 0.4024.

It is obvious that this classification problem has
not been satisfactorily answered. One possible rea-
son is the unbalanced training data causes system
bias towards positive classes. There are 2101 posi-
tive, 1292 neutral but only 494 negative tweets.

Another reason is the size of labeled training set is
too small,with only 3887 tweets, which could hardly
cover a reasonable amount of words. As a result,
the bag-of-ngarm features learned from this training
set, could not generalized well. This motivate us to
seeking alternative feature representation of tweet,
that is sentence vector.

3 Sentence vector

(Le and Mikolov, 2014) proposed sentence vec-
tor or paragraph vector (PV) which could learn
the continuous distributed vector representation for
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text of variable-length and achieved promising re-
sult on movie review texts. It is inspired by
word2vec (Mikolov et al., 2013) embedding which
captures rich notions of semantic relatedness and
constitutionality between words. (Mesnil et al.,
2014) shows the ensemble of sentence vector, RNN
language model (Mikolov et al., 2010) and NB
SVM (Wang and Manning, 2012) achieved new
state-of-the-art result.

(Dai et al., 2015) extends the study and provide a
more thorough comparison of PV to other task such
as document modeling. It concluded PV can effec-
tively be used for measuring semantic similarity be-
tween long pieces of texts.

However such approach assume testing data is
known during learning of vector representation. Ac-
cess of testing data during training may not allowed
for certain machine learning task, and it is not prac-
tical for real application.

Thus we would like to introduce a new approach
to estimate sentence vector or PV for variable-length
of texts from word embeddings by using i-vector
framework.

3.1 i-vector framework in speech domain
i-vector (Dehak et al., 2011) is one of the dom-
inant approaches in speaker verification (SV) re-
search in the recent years. It projects variable
length speech utterances into a fixed-size low-
dimensional vector, namely i-vector. Its devel-
opment advanced from traditional techniques such
as the Gaussian Mixture Models (GMMs) (Rose
and Reynolds, 1990; Reynolds and Rose, 1995) ,
adapted GMMs (Reynolds et al., 2000), GMM su-
pervectors (Campbell et al., 2006) and Joint Factor
Analysis (Kenny et al., 2007).

To understand i-vector, firstly we need to under-
stand the speech data, the speech data is a sequence
of frames. At each frame a fixed-size feature vector
is extracted, such as MFCC (Davis and Mermelstein,
1980), with addition of dynamics features such as
”delta” and ”delta-delta” (Furui, 1986). Thus one
utterance could be viewed as a list of continuous-
valued vectors as shown in Fig.1. A large amount
of utterances are used to train the background GMM
in i-vector framework. Secondly we need to learn
the supervector. Its aim was to convert a spoken ut-
terance with arbitrary duration to a fixed length vec-

Figure 1: In i-vector framework of SV system, during data pre-

processing, spoken utterance is presented as a list of feature

vectors. A trained i-vector extractor could map utterances of

various length into fixed-size vectors.

tor. The supervector mentioned here is specific to
the GMM supervector constructed by stacking the
means of the mixture components. For example,
a GMM with 2048 components built on 60 dimen-
sional feature vectors results a 122880 (2048*60) di-
mensional supervector. A review of GMM and su-
pervector is presented in (Kinnunen and Li, 2010).

Given an utterance, its GMM supervector s can
be represented as follows:

s = m + Tw (2)

where m denotes Universal Background Gaussian
Mixture Model’s (UBM) supervector, T is the total-
variability matrix, which is used to represent the pri-
mary directions’ variation across a large amount of
training data. The coefficients w of this total vari-
ability is known as identity vector or simply i-vector.

Extraction of this i-vector can be done as follows
(Given a SV system built on F dimensional MFCC
features and UBM with C Gaussian components):

w = (I + T tΣ−1NT )−1T tΣ−1A (3)

where I is F × F identity matrix, N is a CF ×
CF diagonal matrix whose diagonal blocks are
NcI(c=1,2,....C), and the supervector A is generated
by the concatenation of the centralized first-order
Baum-Welch statistics. Σ is the covariance matrix
of the residual variability not captured by T . The i-
vector’s dimension is usually 400, much lower than
that of supervectors. This thus allows the use of vari-
ous techniques that were not practical in high dimen-
sional space. To give a completed review of i-vector
is out of scope of this paper, interested individuals
are strongly encouraged to read (Kenny et al., 2008;
Dehak et al., 2011).
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Figure 2: Data preprocessing of proposed NLP i-vector frame-

work. Sentence is represented by its word embedding. A trained

i-vector extractor could map sentence of arbitrary length into

one fixed-size vector.

3.2 i-vector framework for Natural Language
Processing task

(Shepstone et al., 2016) points out that the central to
computing the total variability matrix and i-vector
extraction, is the computation of the posterior dis-
tribution for a latent variable conditioned on an ob-
served feature sequence of an utterance. In Natu-
ral Language Processing(NLP) when observations
(words) could be represented as sequences of feature
vectors, will the same methodology apply? This mo-
tivated us to bring i-vector from speech to NLP do-
main. Fig. 2 illustrates the fundamental principle of
proposed i-vector framework for NLP task, where a
sentence is represented through its word embedding
during data preprocessing. Delta and delta-delta fea-
ture is added during training in order to capture the
context information. Compare to Fig. 1 where spo-
ken utterance is viewed as list of frame level MFCC
feature vectors. The proposed i-vector framework
replace MFCC features by word vectors, and trained
using similar implementation as of speech data.

3.3 The implementation of i-vector framework

Many implementations of i-vector framework are
developed recently, (Glembek et al., 2011) use stan-
dard GMM approach. (Snyder et al., 2015) incor-
porated time delayed deep neural network (TDNN)
trained on speech recognition task into i-vector
framework. A 50% relative improvement is obtained
when TDNN instead of GMM is used to collect first-
order Baum-Welch statistics. In this paper we use
the light weighted conventional GMM approach for
proof of concept purpose.

4 Experiment and evaluation

Training of i-vector system is in a completely un-
supervised manner, it includes training of word2vec
and training of i-vector extractor. Evaluation is done
on IMDB similar to (Maas et al., 2011; Le and
Mikolov, 2014; Mesnil et al., 2014) and SemEval
2016 Task4A.

4.1 Word2vec training

Word2vec training is done by using gensim 1. Train-
ing dataset is selected from IMDB, it contains 25000
labeled training samples and 50000 unlabeled data,
a total of 75000 movie reviews.

The training use a context window of 7, mini-
mum word count of 10 and the resulting dimension
of word vector is 20.

4.2 i-vector extractor training

Same data from word2vec training is used for i-
vector extractor training. As illustrated in Fig 2, the
data preprocessing involved word-to-vector conver-
sion. Words that not appear in the word2vec model
are ignored. Each review is treated as one sentence.
The sentence is saved as list of word vectors, can
be viewed as a M × 20 matrix. Where M denotes
number of words in that sentence.

The proposed i-vector extractor training system2

is developed using the Kaldi Speech Recognition
Toolkit (Povey et al., 2011)3. Feature used is a
60 dimensional features consisting of the 20 dimen-
sional word vector and its delta, double delta. Mean
and variance normalization is not applied. During
training, a universal background model (UBM) with
2048 Gaussian mixture components is trained on
64000 sentences. Each Gaussian in UBM has a full
covariance matrix. After UBM is trained, the to-
tal variability matrix is similar trained with all the
75000 sentences. Learned i-vector extractor is then
used to estimate vectors for IMDB and SemEval
2016 dataset. The output dimension of i-vector is
200. Note that, test data of IMDB and all data in
SemEval 2016 are not observed during training.

1http://radimrehurek.com/gensim/
2https://github.com/StevenLOL/aicyber_

semeval_2016_ivector
3https://github.com/kaldi-asr/kaldi
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System Training Data Accuracy
(%)

State-of-the-art train+test+unlabeled 92.57
Sentence Vectors train+test+unlabeled 88.73
Aicyber’s system train 88.38
i-vector train+unlabeled 87.52
i-vector+VSM train+unlabeled 89.94

Table 1: Proposed i-vector based sentence vector evaluated on

the IMDB dataset. It didn’t beat the state-of-the-art, an ensem-

ble of three sub systems.

4.3 Evaluation of proposed framework

The i-vector framework is first evaluated on the
IMDB dataset then on the SemEval 2016 dataset.

4.3.1 Evaluation on IMDB
Evaluation metric is accuracy measured on IMDB

database. Table 1 shows the performance of differ-
ent systems. The current state-of-the-art system is
an ensemble of RNN language model, sentence vec-
tors and NB SVM, achieved 92.57% (Mesnil et al.,
2014) testing accuracy. Sentence vector system is
one of sub-system used in ensemble and achieved
88.73% accuracy alone. Aicyber’s system is the
same system mentioned in Section 2, a VSM ap-
proach, it obtained 88.38%. To make a fair com-
parison same type of classifier, LDA is used to train
and classify i-vector system, a 87.52% accuracy is
reported. Concatenation of i-vector and vector from
VSM a 89.94% accuracy can be achieved.

4.3.2 Evaluation on SemEval 2016
Evaluation metric for SemEval 2016 task is

Macro-F1 introduced in Equation 1. During eval-
uation period we validate the performance on devel-
opment and develop-test dataset. Results as shown
in Table 2 indicate i-vector system is worse than our
baseline system. So we only submitted the baseline
system.

4.4 Discussion

Judging from the IMDB evaluation, the idea of i-
vector from speech domain is successfully applied
for NLP task. Though it didn’t beat the state-of-
the-art, it is well-known that basic machine learn-
ing techniques can yield strong baselines (Wang and
Manning, 2012) on this dataset.

Performance dropped in SemEval 2016 could due

System Aicyber’s sys-
tem

i-vector sys-
tem

Development
(Macro-F1)

0.4514 0.3732

Development-
test (Macro-
F1)

0.4787 0.3814

Table 2: Proposed i-vector based sentence vector evaluated on

the SemEval 2016 dataset. Aicyber’s system is VSM approach

and trained on 3887 tweets. The i-vector extractor learned from

IMDB dataset and apply on SemEval data. The results show

that the i-vector system could not beat our submitted system.

to data mis-match, the word2vec and i-vector ex-
tractor is trained on the movie review texts which
are much longer, more formal than tweets and are of
different vocabulary.

Further improvement can be made in the follow-
ing aspects.

1. The word-to-vector conversion is done via
word2vec, using of Glove word vectors (Pen-
nington et al., 2014), either alone or as concate-
nation of two type of word vectors for system
training is worth to explored.

2. Parameters in word2vec, GMM and i-vector
training is not yet optimized to the task. For
example, word vector is set to 20 dimensions
which is much smaller than 300 dimensional
Google word vector. Finding the best pa-
rameters will bring more insight of semantical
meaning of sentence vector.

3. In this paper, the implementation of i-vector
framework is a GMM based approach. In-
corporating deep neural network (Snyder et
al., 2015) or a Convolutional Neural Net-
work (Kalchbrenner et al., 2014) for NLP task
is worth to investigated.

5 Conclusion

This paper had presented a vector space model ap-
proach for team aicyber and a new idea of estimat-
ing sentence vector. Proposed i-vector framework
had evaluated on SemEval 2016 as well as IMDB
dataset. Result shows that the i-vector based sen-
tence vector is an alternative approach to present
sentence.
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