
Sense and Deduction: The Power of Peewees Applied
to the SENSEVAL-2 Swedish Lexical Sample Task

Torbjorn Lagert and Natalia Zinovjevat
tDepartment of Linguistics, Uppsala University

+Hapax Information Systems AB, Stockholm

Abstract

This paper describes our use of Prolog Word
Experts (PWEs) in the SENSEVAL-2 competi
tion. We explain how we specify our PWEs as
sequences of transformation rules and how they
can be trained on sense tagged corpus data. We
give a semantics of PWEs by translating them
into first order predicate logic, and we describe
how PWEs can be compiled into Prolog pro
cedures. We finally present our results for the
Swedish lexical sample task: 63% (fine-grained
score) for our best PWE, and a second place in
the ranking.

1 Introduction

Word experts are small expert system-like mod
ules for processing a particular target word
based on neighboring words. Typically, a word
expert uses rules that test the identity and rela
tive position of words in the context in order to
infer the role of the target word in the passage
(Berleant, 1995). In this paper, we describe the
development of various kinds of word experts in
a logic programming framework, dealing with
word sense disambiguation in the context of the
SENSEVAL-2 competition.

In a logic programming framework, the task
of engineering a word (sense) expert can be
specified as follows. Given a suitable represen
tation of a text, we want to define a predicate
sense/2 such that sense (P, S) is true iff the
word at position P in the text has the senseS. In
the remainder of the paper, we will refer to this
kind of word expert as a Pro log Word Expert (or
PWE for short - "Peewee" to its friends). This
is to distinguish it from other kinds of word ex
perts, and to emphasize the fact that it is 'pro
grammed in logic'.

99

2 The Anatomy of a Peewee

2.1 Peewee Specifications

In the present paper, a word expert's knowledge
will be expressed, not as Prolog clauses defining
sense/2 directly, but as a sequence of transfor
mation rules. For example, here is how we spec
ify a word expert which is able to disambiguate
occurrences of interest:1

word_expert sense :=
sense:add 6 <- word:interest@[O] o
sense:6>1 <- word:in@[l] o
sense:1>5 <- word:'/.'@[-1] o
end.

The first rule works as a default rule, which sim
ply assigns the most frequent sense to the word
interest (6 in this case). If no other rules apply,
this is the tag that the word will eventually get.
The other rules dictate when based on the
context - a word should have its tag changed.
The second rule is to be read "replace the tag
for sense 6 with the tag for sense 1, if the next
word is in". The third rule says "replace the tag
for sense 1 with the tag for sense 5, if the pre
vious 'word' is '%'." The o-symbol is a compo
sition operator, and (R o Rs) basically means
that the output of applying the rule R forms the
input to the application of the rules Rs. Thus,
rules are strictly order-dependent. Note, for ex
ample, that the third rule is applicable only if
the second rule is.

Needless to say, the above rules are not at
all sufficient for the task of disambiguating all
uses of interest. But the number of rules can
be increased, and typically a word expert will

1This word was of course not used the Swedish task,
but is used here for expository reasons. The sense tags
are numbers: l="readiness to give attention", 5="a
company share", 6= "money paid for the use of money",
etc.

have access to anything between just a handful
of rules and several hundred ones. 2

2.2 Peewee Logic

Interestingly, a sequence of transformation rules
can be translated into a set of axioms, expressed
in first-order predicate logic, defining relation
ships between positions in a text, word forms,
and senses (Lager, 2000; Lager & Nivre, 2001).
For example, the meaning of the rules from the
previous section can be spelled out as follows:

Vp[w(p,interest)-> S1(p,6)]

Vpo,Pl [S1 (po,6) 1\ Pl=Po+ll\ w(p1,in) -> S2(Po,l)j
Vpo,pl,x[SI(Po,x) l\p1=po+ll\ •w(p1,in)-> S2(po,x)]

Vpo,PI [S2(po,l) 1\ Pl=po-11\ w(p1 ,%) -> S3(po,5)]
iipo,Pl ,x[S2(Po,x) 1\ Pl=Po-11\ •w(pl ,%) -> Sa(po,x)]

Vx,p[S3(p,x)-> S(p,x)]

The idea is that for each rule in the sequence a
new predicate si is introduced, where the sub
script indicates where in the sequence the rule
belongs. Semantically, Si relates a position to
a sense, and the formulas define this predicate
in terms of the predicate Si-1 plus a number
of other predicates. Each Si corresponding to a
replacement rule is defined by two sentences -
one stating the conditions under which a sense
tag is replaced with another sense tag, the other
one stating the conditions under which the old
sense tag is kept.

Given a suitable logical representation of a
text, such as

w(1,Sue) w(2,developed) w(3,an) w(4,interest)
w(5, in) w(6, computers) w(7, and) w(8, bought)
w(9, an) w(10, 11.5) w(ll, %) w(12, interest)
w(13, in) w(14, Microsoft)

and given a suitable constructive proof method,
the exact identity of the sense of an occurrence
of the word interest -say the word at position
12 - will follow as a logical consequence of the
theory formed by taking the union of the pre
vious two sets of formulas. For example, the
formula 3x[S(12,x)) is a theorem, for which we
can construct (only) the example x --+ 5, and
we have thus formally proved that this partic
ular occurrence of interest means "a share in a
company" .3

2 A demo of a more potent PWE is available at:
http://www.ling.gu.se/~lager/Home/pwe_ui.html

3 The theory can be used in other ways too. Searching

100

What we have here is something that we like
to think of as word sense disambiguation as de
duction, in analogy to the ideas of parsing as
deduction due to Pereira and Warren (1983).

2.3 The Peewee Compiler

Since the above formulas have already logic pro
gramming form, it is straightforward to trans
late them into Prolog. For example, the second
and the third formulas can be translated as fol
lows:4

s2(P0,1)
s2(PO,X)

si(P0,6), Pi is P0+1, w(Pi,in).
si(PO,X), Pi is PO+i, \+ w(Pl,in).

To write Prolog procedures such as these by
hand for many rules would be tedious and prone
to errors. Fortunately, since the formalism for
transformation rules is compositional, it was
straightforward to write a compiler5 that gener
ates word expert procedures from word expert
specifications automatically.

2.4 Peewee Training

There is an obvious choice of learning method
for training Prolog Word Experts, namely
Transformation-Based Learning (Brill, 1995).
Of course, the fact that transformation rules can
be learned from tagged corpora was a major rea
son for using them in the first place. The J_L-TBL
system - described in detail in (Lager, 1999) -
uses the search and database capabilities of the
Prolog programming language to implement a
generalized form of transformation-based learn
ing. Through its support of a compositional
rule/template formalism and 'pluggable' algo
rithms, the J_L-TBL system can easily be tailored
to different learning tasks. 6

Rules that can be learned in Transformation
Based Learning are instances of rule templates.
For example, the second of the rules in our ex
ample PWE specification is an instance of the
following template:

sense:A>B <- word:C@[1].

for a word token with a particular sense (say 5) becomes
a matter of constructively proving 3p[S(p,5)].

4There are equivalent but more efficient ways to rep
resent these clauses in Prolog (cf. Lager, 2000).

5 Download the compiler from the PWE homepage at:
http://www.ling.gu.se/~lager/pwe.html

6The J..t-TBL system is available from:
http://www.ling.gu.se/~lager/mutbl.html

The template is to be read "replace the tag for
sense A with the tag for sense B if the word im
mediately to the right is C", where A, B and C are
variables. Learning is a matter of repeatedly in
stantiating rule templates in training data, scor
ing rules on the basis of counts of positive and
negative evidence of them, selecting the highest
scoring rule on the basis of this ranking, and
applying it to the training data.

3 Peewees at SENSEVAL-2

The lexical sample task for Swedish in
SENSEVAL-2 involved 40 lemmas: 20 nouns, 15
verbs and 5 adjectives. Together they repre
sented 145 senses and 304 sub-senses. 8, 718
annotated instances were provided as training
material and 1,525 unannotated instances were
provided for testing. Furthermore, a lexicon
-the GLDB (Gothenburg Lexical Database) -
complete with morphological information, defi
nitions, language examples, etc. was available.

Our team explored three approaches. For
each lemma, we trained:

• PWE-smpl: a simple PWE capable of ar
riving at a single sense for each instance of
that lemma in the testing material.

• PWE-disj: a committee of PWEs (i.e. a
set of PWEs) capable of arriving at (pos
sibly) multiple senses for each instance of
that lemma, by collecting the individual re
sults into a set.

• PWE-vote: a committee of PWEs capable
of arriving at a single sense for each in
stance of that lemma, by applying a simple
voting procedure.

As it turned out, the second of these approaches
produced a rather unimpressive result, and we
will therefore spend very little time discussing
it. Indeed, had we been able to run the scor
ing software ourselves (which we were not), we
would have left them outside the competition
altogether.

3.1 The Simple Peewees
For the training of our simplest form of sense
disambiguation expert, the following set of
seven templates was used:

sense:A>B <- word:C~(-1].

sense:A>B <- word:C~[-1,-2].

sense:A>B <- word:C~[1].

sense:A>B <- word:C~[1,2].

sense:A>B <- word:C~[1) & word:D~[2].
sense:A>B <- word:C~[-1] & word:D~(-2].
sense:A>B <- word:C~[-1) & word:D~[1).

The idea was to exploit. a fact noted by many
researchers in the field: that the sense of an
occurrence of a word can fairly successfully be
determined from just looking at the two previ
ous words and the two following words (cf. Ide
& Veronis, 1998). The choice of the above set
of templates is based on a fairly thorough trail
and-error process and works well for most words
that we have tried.

3.2 The Peewee Committees

The idea here was to train five different PWEs
for each lemma, and then to use a simple vot
ing mechanism to arrive at a final decision.
The PWEs were different only in that they
used different sets of templates during the train
ing. Templates looking forwards only, templates
looking backwards only, and templates looking
both forwards and backwards. Furthermore,
one member in each committee was trained for
using a bag-of-words approach to disambigua
tion, based on templates of the following form:

sense:A>B <- inBag:W~[O].

sense:A>B <- inBag:W1~[0] & inBag:W2~[0].

Finally, one PWE in each committee had access
to a list of words extracted from the language
examples provided by the GLDB.

3.3 The Procedure

In this section we describe the actions that we
took in order to submit our entry in the compe
tition.

• In a preparatory step, the XML formatted
training data was parsed and subsequently
converted into the format required by the
p-TBL system.

• The training was performed, and resulted
in one PWE specification per lemma.
Training took between 5 seconds and a cou
ple of minutes per lemma, depending on the
amount of training data available for the
lemma in question.

• The PWE specifications were compiled into
a set of PWE procedures, by means of the
PWE compiler.

101

• Simple procedures were written to print the
results to a file in the prescribed format,
and the PWEs were then run on the test
data. This took only a couple of seconds
for the whole test corpus.

3.4 Results

In the following table we show the results of
our entry in the competition, copied from the
SENSEVAL-2 homepage.7

System Evaluation Accuracy (%).
PWE-smpl Fine 61.1

Mixed 66.8
PWE-vote Fine 63.0

Mixed 68.6

Five groups and altogether eight systems par
ticipated in the Swedish lexical sample task. In
terms of ranking, our PWE-vote came in sec
ond, after Yarowski's JHU system, and before
the Goteborg team's best entry. However, we
hasten to add that the step from Yarowski's
(nearly 70%, fine grained evaluation) to our re
sults is a very significant 7%, and that the step
down to Goteborg's result is very small and
probably statistically insignificant. Our simple
Peewees shared the fourth place with Resnik et
al.'s UMD-SST.

As can be seen from the table, the PWE com
mittees did slightly better than a single simple
PWE. It is however dubious whether the small
difference was really worth the trouble. It is
quite possible that training a single PWE on
the combination of corpus data and the exam
ples from the GLDB would have lead to a result
almost as good, and with less work.

4 Conclusion

It seems we can conclude that an ap
proach to word sense disambiguation based
on Transformation-Based Learning is compet
itive with approaches based on Memory-Based
Learning as used by the Goteborg team, and
support vector machine (SVM) learning, used
by the University of Maryland team, This is

7Note that the coarse-grained evaluation was not ap
plicable to the Swedish task. Also, it should be noted
that our results in the first round of evaluation were
slightly worse than the results reported here. However,
this was due to a spelling error which could be corrected
by the conference organizers and thus did not involve
any resubmission of test results.

102

good news for those aiming at building NLP sys
tems in which transformation rules play a major
role.

As we have seen, there is meaning in the life
of Peewees, and sound mathematical meaning
at that! Also, given the link between first order
logic and a logic programming language such
as Prolog, the implementation follows very di
rectly from the specification. The existence of
a compiler from Peewee specifications into Fro
log procedures makes Peewees very convenient
to work with in a Prolog environment.

5 Acknowledgements
We thank the SENSEVAL-2 organizers for mak
ing all this possible, and in particular Jerker
Jarborg and Dimitrios Kokkinakis in Goteborg
for their work on preparing for the Swedish lex
ical sample task.

References
Berleant, D. (1995) Engineering "Word Ex

perts" for Word Disambiguation. Natural
Language Engineering, 1(4).

Brill, E. (1995) Transformation-Based Error
Driven Learning and Natural Language Pro
cessing: A Case Study in Part of Speech Tag
ging. Computational Linguistics 21.

Ide, N. and Veronis, J. (1998) Introduction to
the Special Issue on Word Sense Disambigua
tion: The State of the Art. Computational
Linguistics 24(1).

Lager, T. (1999) The J-L-TBL System: Logic
Programming Tools for Transformation
Based Learning. In Proceedings of CoNLL 'g9,
Bergen, Norway.

Lager, T. (2000) A Logic Programming Ap
proach to Word Expert Engineering. In Pro
ceedings of ACIDCA 2000: Workshop on
Corpora and Nat ural Language Processing,
Monastir, Tunisia, March 22-24 2000.

Lager, T. and Nivre, J. (2001) Part of Speech
Tagging from a Logical Point of View. In
de Groote, P., Morrill, G., Retor, C. (eds.)
Logical Aspects of Computational Linguistics.
Springer-Verlag, LNAI. VOL. 2099.

Pereira, F. and Warren, D. H. D. (1983) Pars
ing as Deduction, In Proceedings of the 21th
Meeting of the ACL.

