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Abstract

This paper compares how different ma-
chine learning classifiers can be used to-
gether with simple string matching and
named entity recognition to detect loca-
tions in texts. We compare five differ-
ent state-of-the-art machine learning clas-
sifiers in order to predict whether a sen-
tence contains a location or not. Fol-
lowing this classification task, we use a
string matching algorithm with a gazetteer
to identify the exact index of a toponym
within the sentence. We evaluate different
approaches in terms of machine learning
classifiers, text pre-processing and loca-
tion extraction on the SemEval-2019 Task
12 dataset, compiled for toponym reso-
lution in the bio-medical domain. Fi-
nally, we compare the results with our sys-
tem that was previously submitted to the
SemEval-2019 task evaluation.

1 Introduction

The task of toponym resolution (TR) is a topic in
natural language processing (NLP) which is aimed
at extracting locations from texts. TR includes the
sub-tasks of detecting, disambiguating and finally
resolving and assigning coordinates to the proper
location in the text. The first step is to detect a
location in a text, which can be carried out by
more simple means of gazetteer lookup or named
entity recognition (NER) (Piskorski and Yangar-
ber, 2013). Next, each detected location that is
ambiguous needs to be distinguished and the cor-
rect location chosen (Leidner et al., 2004). The
final step involves assigning coordinates or apply-
ing some other meta-information to clearly distin-
guish each proposed location (Smith and Crane,
2001; Leidner et al., 2004).

TR can involve many challenges, caused by
cases that are not trivial to resolve. This includes,
for example, locations contained in phrases such
as London Bus Company, which contains Lon-
don but refers to an organisation and should
therefore not be marked as a location. Further-
more, locations can be contained in other types
of phrases, such as genome sequences mentioned
in bio-medical texts, as seen in the SemEval-2019
data (Weissenbacher et al., 2019). For exam-
ple, the location Henan in the string A/Tree spar-
row/Henan/4/04 could be omitted from the results,
as it is part of the name of a genome. Similar prob-
lems can occur where a location might be detected
in a character sequence denoting a chemical.

The increasing availability of online resources
has been beneficial to TR. On the one hand
large-scale geographical databases, such as GeoN-
ames1, make information about many different lo-
cations easily and freely available. On the other
hand, readily available mapping services, such as
Google Maps2, allow users to visualise these lo-
cations. Although some of these services, such as
GeoNames, have been used since the beginnings
of TR (Smith and Crane, 2001; Leidner et al.,
2004), they are more complete today. A lack of
training and evaluation data also existed for some
time, mainly reflected by the fact that no standard
corpora existed up until a certain period (Leidner,
2004) and that advanced learning techniques could
not be used (Smith and Crane, 2001).

Geographic information contained in texts is
highly useful and, therefore, the areas where TR
is applied are diverse. In the past, TR has
been used to catalogue digital libraries (Larson,
1996; Hill et al., 1999) and to make informa-
tion retrieval techniques spatially aware (Clough,

1http://www.geonames.org/
2http://www.google.com/maps
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2005). A more specialised area included the
automatic tracking of biological specimens from
different places around the world (Beaman and
Conn, 2003). Today, the possible uses range
from analysing social media texts (Ireson and
Ciravegna, 2010) to news streams (Lieberman and
Samet, 2012), where locations of large-scale ac-
tivity and problematic regions are mapped, re-
spectively. A further example is the bio-medical
domain, where the spreading of viruses can be
tracked by analysing texts that mention locations
(Weissenbacher et al., 2019). However, as the ar-
eas of application are varied, the effectiveness of
toponym resolvers is also said to vary among dif-
ferent types of text (Gritta et al., 2018).

This paper presents further research into TR,
or to be more precise the detection of toponyms.
Moreover, this research was carried out in the con-
text of SemEval-2019 Task 12: Toponym Res-
olution (Weissenbacher et al., 2019) and aimed
specifically at subtask 2, which deals only with
the detection of toponyms. To the best of our
knowledge, prior work on exploring how a ma-
chine learning classifier can be used together with
relatively simple string matching to detect loca-
tions in texts has been limited. Previously, we
explored the use of machine learning classifiers
to predict a location within short word windows
in the context of SemEval-2019 Task 12 (Plum
et al., 2019).We employ our system submitted to
the SemEval-2019 task as a baseline and make use
of the same dataset, consisting of texts from the
bio-medical domain Plum et al. (2019). While the
system serving as a baseline was reasonably com-
petitive in terms of precision, it did not achieve
a high recall. The neural network architectures
that are used for this research are novel to this
type of task even though some of the architectures
have been used for sentence classification tasks
like sentiment analysis, spam detection and so on.

The rest of the paper is structured as follows.
We present related work in the field first (Section
2), followed by the methodology employed (Sec-
tion 3). This section includes a description of the
dataset, system and network architectures. Sec-
tion 4 presents the overall results, which are split
into classifier results at the sentence level, i.e. dis-
regarding the indexes and therefore not compara-
ble to the SemEval evaluation (Section 4.1) and
the overall results at the word level, where explicit
indexes are retrieved in order to be evaluated ac-

cording as in SemEval (Section 4.2). Finally, in
Section 5 we come to general conclusions about
the project.

2 Related Work

Detecting and resolving locations or toponyms has
undergone some changes in its approach. The
topic was first dealt with more extensively to-
wards the late 1990s and early 2000s (Larson,
1996; Hill et al., 1999; Smith and Crane, 2001;
Leidner et al., 2004). These earliest approaches
were aimed mainly at using geographical infor-
mation for information retrieval, as well as cata-
logue searches in digital libraries. While the first
of these approaches used named entity tagging, as
well as specially constructed gazetteers to detect
(Larson, 1996; Hill et al., 1999), others went be-
yond this and used a combination of methods to
disambiguate. Smith and Crane (2001) used NE
tagging and a gazetteer to detect locations, and
disambiguated these using information gathered
beforehand. This information, ”local” and ”doc-
ument” context, is said to include co-occurring
words and other locations mentioned throughout
the text, respectively. The authors also use ”world
knowledge” gathered from other sources, which
mainly includes meta information such as coordi-
nates, size, corresponding political entities and so
on (Smith and Crane, 2001). Similarly, Leidner
et al. (2004) used a combination of simple heuris-
tics, linguistic cues, co-occurrence statistics and
discourse information to detect locations and as-
sign coordinates.

TR has shifted from the methods of earlier ap-
proaches and followed the trend of using machine
learning techniques. Whereas in the past learning
techniques lacked data (Smith and Crane, 2001),
this is no longer the case. Approaches using ma-
chine learning with (indirect) supervision include
Hu and Ge (2009) and Speriosu and Baldridge
(2013). Hu and Ge (2009) make use of hierar-
chical structures ensuing from geographical re-
lations, an approach said to perform in an ac-
curacy range of 73.55 to 85.38 percent on an
Australian news corpus. Speriosu and Baldridge
(2013) on the other hand, present their text-driven
approach, which uses context information to re-
solve toponyms. The classifiers themselves are
trained mainly on semi-automatically generated
data, obtained primarily from locations tagged in
Wikipedia. While the aforementioned approach
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relies on the availability of gazetteers, a gazetteer-
independent approach has been brought forward
by DeLozier et al. (2015). This approach, which
also relies on a machine learning classifier to dis-
ambiguate toponyms, solely uses NER techniques
to detect locations, and is said to perform on a
state-of-the-art level on the TR-CoNLL (Leidner,
2006) and Civil War corpora (DeLozier et al.,
2015).

Most recently, Gritta et al. (2018) have pre-
sented a survey of the current state of TR, which
they refer to as geoparsing. While the two terms
are essentially synonymous, the authors use geop-
arsing (or geoparsers) to refer to fully fledged end-
to-end systems. These include CLAVIN3, the Ed-
inburgh Parser (Tobin et al., 2010; Grover et al.,
2010), Topocluster (DeLozier et al., 2015) and
GeoTxt (Karimzadeh et al., 2019). These sys-
tems are said to perform at state-of-the-art lev-
els, and are tested on the Local Global Corpus, as
well as a corpus compiled by the authors, which
is based on Wikipedia and GeoNames data (Gritta
et al., 2018). However, it should be mentioned
that Topocluster and CLAVIN apply learning tech-
niques. The Edinburgh Parser and GeoTxt rely on
NER and heuristics to rank possible candidates.

The evaluation of toponym resolvers is carried
out on specifically created datasets or corpora.
Leidner (2004) was the first to raise awareness
for the need of a gold standard for these pur-
poses. To this end, the paper describes the ongo-
ing effort to create such a corpus, including a cus-
tom markup language (TRML) and editor (TAME)
(Leidner, 2004). Later, Leidner (2006) describes
the resulting corpus of the previous efforts. It
is based on news articles, with 6, 980 human-
annotated instances of toponyms. The corpus, util-
ising the CoNLL format, is still used today (De-
Lozier et al., 2015; Gritta et al., 2018). However,
recently concerns have been raised again concern-
ing the availability of datasets for toponym resolu-
tion or geoparsing by both Gritta et al. (2018) and
Karimzadeh and MacEachren (2019). Gritta et al.
(2018) have contributed their own dataset com-
piled from Wikipedia. In addition, Karimzadeh
and MacEachren (2019) present their tool GeoAn-
notator which has been developed to aid the com-
pilation of such corpora. The tool is said to not
only be useful for the creation of large-scale cor-
pora on a collaborative basis, but also versatile

3https://clavin.bericotechnologies.com/about-clavin/.

enough to be used for other applications of NLP.
Our System described in Plum et al. (2019)

that was submitted to SemEval-2019 Task 12 will
serve as the baseline. The approach uses GATE
with ANNIE to detect all the occurrences of loca-
tions in a text, using custom gazetteers based on
GeoNames. Several gazetteers were tested and the
best results achieved with a gazetteer of locations
with a population of 15, 000 people or more. Fol-
lowing the string matching, two neural network
models are used to classify five-word windows
around the matched location. For each window a
prediction is made whether a real location is con-
tained or not. The method is reported to have a
significant drawback, since a five-word context is
not enough to carry out proper classification, as the
location itself could, for instance, be a multi-word
expression. Furthermore, the gazetteer matching
carried out beforehand severely limits the overall
recall of the approach, as it is not able to detect
locations that are written across line-breaks, or are
simply not contained in the gazetteer. In contrast
to this system, the approach proposed in this paper
predicts locations on a sentence-by-sentence basis,
then attempts to retrieve the correct index of each
location by using a gazetteer lookup.

3 System Description

This section describes the system we developed
for detecting toponyms in bio-medical texts. Our
approach is based on our system submitted to
SemEval-2019 Task 12, described in Plum et al.
(2019). It differs mainly in the order of the pro-
cessing stages, as well as in the architectures that
were used. The previous system matches location
names using a gazetteer, followed by a machine
learning classifier to predict whether the matched
location is a proper location or not (Plum et al.,
2019). In the present approach, we use a machine
learning classifier to predict whether a sentence
contains a relevant location first, and on this pre-
selection we perform a gazetteer lookup to identify
the specific index range of each location. We also
use spaCy NER4 to compare the effectiveness of
the gazetteer.

The approach for the system is split into three
steps, which are explained in the following three
sections. The first step deals with the preparation
of the texts from the dataset. This involves clean-
ing noisy sections of text and outputting an input

4Version 2.1.3, available at https://spacy.io/
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file for the machine learning classifier containing
all texts split into sentences. Next, each classifier
is trained and run in order to obtain predictions
at the sentence level. Finally, the output from the
classifier is used in conjunction with a gazetteer
lookup algorithm (and later spaCy NER) in order
to determine the exact indexes of the detected lo-
cations.

3.1 Dataset

To ensure comparability with the baseline system,
we work with the same dataset from SemEval-
2019 Task 12. This dataset is made up of 150
journal articles from PubMed Central and are from
the domain of epidemiology (Weissenbacher et al.,
2019). As mentioned previously, the main idea be-
hind detecting locations in texts from this domain
is to track the spreading of viruses (Weissenbacher
et al., 2019). The articles were downloaded as
PDFs and converted to plain text using a pdf-to-txt
tool by the organisers of the task. The toponyms
were manually disambiguated by the organisers
and subsequently annotated using the Brat anno-
tator (Stenetorp et al., 2012). Two texts of the
training set were removed, as they were unread-
able, probably caused by PDF to text conversion
problems. Apart from this, we work with the same
training and test splits as supplied by the organ-
isers, which are 73 and 45 texts, respectively. It
should be pointed out that we had to adjust the an-
notations of some of the training texts, as these
were carried out on texts using CRLF-type line
breaks5 and did not match the indexes read by our
system, as it used LF-type line breaks, which lead
to the indexes being offset.

The texts had to be prepared for the classifica-
tion task. As some parts of the texts had been
deemed irrelevant by the organisers of SemEval-
2019 Task 12 (Weissenbacher et al., 2019), we
had to remove these. This includes the references
and acknowledgement sections of each article. We
also had to remove certain character strings which
are specific to texts from the bio-medical domain.
Finally, the texts had to be split into sentences and
stored with further information in order to be clas-
sified in the next step.

5CRLF-type line breaks are commonly used in text files
created with Microsoft DOS/Windows operating systems.
This type of line break uses two characters to denote the
end of a line. LF-type line breaks are commonly used
on UNIX/Linux-based operating systems, and only use one
character to denote the end of a line.

3.1.1 Text Cleaning
The cleaning of the texts is performed in two steps.
First, all line breaks are removed and replaced
with spaces. This is mainly to deal with sentence
splitting and string matching problems that could
occur over line breaks. For instance, a line break
character between New and York would lead to this
location to be detected as York, not as New York.
The line breaks have to be replaced by one space,
as the annotations take line breaks into account
and add these to the index range of a location. It
should be mentioned that this requires the texts to
use LF-type line breaks, as any other type would
require a different number of replacement charac-
ters. For this dataset, it was ensured that all files
conform to this standard.

Next, we carry out more methods to clean the
texts. Using the guidelines set out by the task or-
ganisers and a brief analysis carried out by Plum
et al. (2019), we determined that certain parts of
the texts are not relevant for detection. This in-
cludes references and certain character and word
strings that describe biological genome sequences.
As these often include toponyms that were ex-
cluded from annotation in the SemEval-2019 task,
these could also be disregarded. In order to re-
move all irrelevant parts but retain indexing con-
sistency, we use regular expressions to find and
replace certain text sequences with an equivalent
number of spaces. As before, we replace each
character with a space in order to ensure that the
indexes match up with the annotations.

We wanted to test the effectiveness of our clean-
ing methods. Therefore, we tested our methods
with both types of text: texts where only the line
breaks have been removed and texts that have been
completely cleaned. During testing it was clear
that the performance was better on fully cleaned
texts, due to the reduction in seemingly random
strings that could be detected (i.e. the string [..]
ACG GGG MA AUA UGC [..] could produce the
match MA, as in the U.S. state Massachusetts).

3.1.2 Sentence Splitting
As the identification of locations primarily hap-
pens at the sentence level, each individual text
needs to be split into sentences. We use spaCy
in order to complete this task. The sentences are
then output to a CSV file, containing information
on each sentence’s text id, as well as its own spe-
cific index range. This information is necessary at
the stage of identifying the exact index range of
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a location and then producing the annotation files
for the SemEval evaluation script. For the machine
learning training file, a separate column indicating
whether or not a location is contained in the sen-
tence is also included.

3.2 Sentence Level Location Identification

Once the texts have been pre-processed, we run
a binary classification on the sentences, predict-
ing whether a sentence contains a location, or not.
Table 1 shows some examples from the training
dataset which is used for this classification task.

Out of the 17, 535 sentences in the training
set, only 2, 117 sentences contain locations. This
means that the dataset is highly unbalanced, thus
making the classification task quite difficult. The
increased difficulty was also caused by the lan-
guage used. As an example, in the row with the
ID PMC2857219, shown in Table 1, the sentence
contains Korea and is not annotated as a location
since it is a part of an organisation name. Also, in
the row with the ID PMC2857219, US is not anno-
tated as a location, as it functions as an adjective
to the word soldier. General named entity recog-
nisers such as spaCy or gazetteer matching could
possibly falsely detect that these sentences contain
a proper location as defined for this task. Fur-
thermore, sentences similar to ID PMC5837706,
shown in 1, caused difficulties, as the text in the
sentence was not clear. Considering all of these is-
sues, we need an intelligent classifier that detects
whether a sentence contains a location or not, by
considering the words that appear in the sentence.

We use five different recurrent network archi-
tectures to perform the binary classification task
on the sentences: pooled Gated Recurrent Unit
(GRU) (3.2.1), stacked Long Short-Term Memory
(LSTM) with attention (3.2.2), LSTM and GRU
with attention (3.2.3), 2D convolution with pool-
ing (3.2.4) and GRU with capsule (3.2.5). Each
classifier was run on prepared and cleaned text (as
explained in Section 3.1.1). These models were
successfully applied to a number of classification
tasks such as GRU for sequence labeling Chung
et al. (2014), LSTM for semantic similarity and
word analogy Coates and Bollegala (2018), and
GRU with capsule for toponym detection Plum
et al. (2019). Their success in these tasks inspired
us to try them for our problem.

3.2.1 Pooled GRU
This model takes pre-trained fasttext embeddings
(Mikolov et al., 2018) as a matrix for the in-
put which is comprised of the vertically stacked
embedding vectors corresponding to the words
present in the sentence. The matrix can be
thought of as a sequence of embedded words.
Each of these embedding vectors is fed to the bi-
directional GRU (Chung et al., 2014) at their re-
spective timestep. The final timestep output is fed
into a max pooling layer and an average pooling
layer in parallel (Scherer et al., 2010). Following
this, the outputs of the two pooling layers are con-
catenated and connected to a dense layer (Huang
et al., 2017) activated with a sigmoid function.
Additionally, there is a spatial dropout (Tompson
et al., 2015) between the embedding layer and the
bi-directional GRU layer to avoid over-fitting.

The network was trained using adam optimiser
(Kingma and Ba, 2015), with a reduced learning
rate once learning stagnates. This model has been
discussed in Kowsari et al. (2019) as a common
model to perform text classification tasks.

3.2.2 Stacked LSTM with Attention
As with the previous model, this model takes pre-
trained fasttext embeddings (Mikolov et al., 2018)
as an input. Each of these embedding vectors
are then fed into a bi-directional LSTM (Schus-
ter and Paliwal, 1997). The output of this layer
is again fed into a bi-directional LSTM (Schus-
ter and Paliwal, 1997) with self attention (Vaswani
et al., 2017). Finally, the output is connected to
two dense layers that are (Huang et al., 2017) ac-
tivated first with a relu function, and then with a
sigmoid function.

Again, this network was trained using adam op-
timiser (Kingma and Ba, 2015), with a reduced
learning rate once learning stagnates. We adopted
this model from the Toxic Comment Classification
Challenge in Kaggle6.

3.2.3 LSTM and GRU with Attention
This architecture applies a spatial dropout to
the embedding layer (Tompson et al., 2015).
The output is then fed in parallel to a bi-
directional LSTM-layer (Schuster and Paliwal,
1997) with self attention and a bidirectional GRU-
layer (Chung et al., 2014) with self attention

6https://www.kaggle.com/c/jigsaw-toxic-comment-
classification-challenge
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id start end sentence loc? location

PMC2857219 15686 15753
Dr Jin-Won Song is a professor of
microbiology at Korea University.

0 NA

PMC5005937 9817 9928
kConFab recruited multi-generational,
multiple-case families through cancer
family clinics in Australia.

1 Australia

PMC2857219 14913 14947

These data showed the epidemiologic
link between US soldier patients and
rodent hosts at the training sites near
the Demilitarized Zone in South Korea.

1 South Korea

PMC5837706 14489 14531 (46.9) 395 (39.4) 75 (7.5) 245 (24.4) 329 0 NA

Table 1: Example rows in the training set. Sentences containing a location are represented with 1 in the
loc? column and 0 otherwise. The location column contains the explicit location names contained in the
sentence.

(Vaswani et al., 2017). The output from the bi-
directional GRU-layer is fed into an average pool-
ing layer and a max pooling layer. The output from
these layers and the output of the bi-directional
LSTM-layer are concatenated and connected to
a dense layer with relu activation. After that, a
dropout (Srivastava et al., 2014) is applied to the
output and connected to a dense layer activated
with a sigmoid function.

While this network was also trained using adam
optimiser (Kingma and Ba, 2015), it was trained
with a cyclical learning rate (Smith, 2017) this
time. Plum et al. (2019) has used this model to
predict whether a word window contains a loca-
tion or not.

3.2.4 2D Convolution with Pooling

The fourth architecture takes a different approach
than the previous architectures by using 2D convo-
lution layers (Wu et al., 2018), rather than LSTM-
or GRU-layers. The outputs of the embedding lay-
ers are connected to four 2D convolution layers
(Wu et al., 2018), each with max pooling layers.
The outputs of these are concatenated and con-
nected to a dense layer activated with a sigmoid
function after applying a dropout (Srivastava et al.,
2014).

This network also uses adam optimiser
(Kingma and Ba, 2015) and a reduced learning
rate once learning stagnates. This model has
been used in the Quora Insincere Questions
Classification Kaggle competition7.

7https://www.kaggle.com/c/quora-insincere-questions-
classification

3.2.5 GRU with Capsule
Most of the previous architectures rely on a pool-
ing layer. However, this architecture uses a cap-
sule layer (Hinton et al., 2018) rather than pooling
layers. After applying a spatial dropout (Tompson
et al., 2015) the output of the embedding layer is
fed into a bi-directional GRU-layer (Chung et al.,
2014). The output is then connected to a capsule
layer (Hinton et al., 2018). The output of the cap-
sule layer is flattened and connected to a dense
layer with relu activation, a dropout (Srivastava
et al., 2014) and batch normalisation applied, and
re-connected to a dense layer with sigmoid activa-
tion.

The capsule network was trained using adam
optimiser (Kingma and Ba, 2015), with a reduced
learning rate once learning stagnates. This model
has been used in Plum et al. (2019) to predict
whether a word window contains a location or not.

3.3 Word Level Location Identification

The location predictions made by the ML-
classifier at the sentence level are passed as a
CSV file to the string matching script. It runs
through each sentence, matching locations from
a gazetteer. For matching the strings we use a
fast and efficient Aho-Corasick algorithm (Aho
and Corasick, 1975). The implementation used is
available for the Python programming language8

We use a large gazetteer that is comprised of
the full list of all locations from the GeoNames
database9. The main idea behind this is that we
want to achieve the highest chance of detecting

8https://github.com/WojciechMula/pyahocorasick/
9http://www.geonames.org/, last accessed 21.05.2019
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every location. However, as the gazetteer is so
large, is causes a lot of ”noise” during the string
matching, including partial matches and numbers
that have no meaning. In order to combat this,
we apply several filters after finding matches, in
order to exclude certain results. We consciously
avoided removing anything from the gazetteer it-
self, as this would be either time-consuming (man-
ual) or could falsely remove desired locations (au-
tomatic). Therefore, we use filters to remove all
matches with numbers (i.e. 717, 7Palms, 50da),
strings shorter than three characters which are not
both uppercase (i.e. Bl, b1, al but not AL, CA, NY),
sub-string matches (i.e. London in Londonderry)
and all lowercase strings (which are usually frag-
ments of location names left in the database, as
in paseo caribe). The resulting tables are sorted
by index, and duplicates removed. Where matches
overlap in terms of indexing, we give preference to
the longest match. This ensures that in sentences
such as I live in New York, we detect only New
York and not York (as these are separate entries in
the gazetteer).

For comparison purposes, we also employ
spaCy to detect locations in the sentences at this
stage. We used the standard English web corpus
and the spaCy NER algorithm.

4 Results

As our system operates at two levels, we first
present the results of location prediction at the sen-
tence level using the five different recurrent net-
work architectures. Next, we present the results
of the prediction at the word level. These results
are also regarded as our final results, as these pre-
dictions yielded the index range of each location,
which were evaluated with an evaluation script.
The evaluation script that was utilised was the one
provided for SemEval-2019 Task 12.

4.1 Sentence Level Prediction

Results of the sentence level predictions for the
test set are shown in Table 2. We use precision
and recall to evaluate the results. The third model
described, LSTM and GRU with Attention, pro-
vided the best results for the cleaned text. Despite
the dataset being quite unbalanced, the model re-
ported good precision and recall scores of 0.852
and 0.853, which provided a high F1 score, too.

As this is the best model, we use these predic-
tions as the basis for our word level predictions,

which are described in the next section. It should
be mentioned that we did run some word level pre-
dictions on the output of the other classifiers, but
as expected the results were always much lower,
due to the decreased starting point.

4.2 Toponym Identification

As mentioned previously, we regard the word level
predictions as the overall result of the system. The
evaluation was carried out in accordance with pa-
rameters set out for SemEval-2019 Task 12, fea-
turing strict and overlap categories on macro and
micro levels. For the strict measure, predicted lo-
cations are only considered as correct if the text
span matches the gold standard exactly. For the
overlap measure, predictions are considered to
be correct if they share a common span of text
with the gold annotations. The python script was
made available on Bitbucket10 by the SemEval-
2019 Task 12 organizers.

Table 3 shows the results for both the string
matching method using gazetteers to extract the
locations with a custom script for indexes, as well
as the spaCy NER algorithm (only considering
locations) and the baseline system submitted to
SemEval-2019. Our best results were achieved in
the overlap macro classes, and are highlighted in
bold. Overall, while we were not able to beat the
best precision score of Plum et al. (2019), we came
quite close. Nonetheless, we were able to improve
the recall significantly, as well as the overall f-
score.

The trade-offs that each approach brings with
it should become clear when regarding the re-
sults.The approach using the GeoNames gazetteer
detects a higher number of locations overall. This
is due to the simplistic string matching method
backed by such a large gazetteer, and comes at the
cost of overall precision. The spaCy NER algo-
rithm is much more precise, but is more limited
in terms of recall. We find it most likely that this
approach does not tag many locations as such, be-
cause the texts are still quite noisy, and because we
did not train it on our dataset. Due to the small size
and unbalanced nature of our dataset, we did not
consider training spaCy any further. In the future,
given an appropriate dataset from the bio-medical
domain, this could perhaps lead to better results.

10https://bitbucket.org/dweissen/semevaltask
12evaluator/src/master/
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Model
Uncleaned Cleaned

P R F1 P R F1

Pooled GRU .755 .792 .772 .789 .816 .793
Stacked LSTM with Attention .795 .784 .789 .826 .796 .813
LSTM and GRU with Attention .811 .840 .825 .852 .853 .852
2D Convolution with Pooling .802 .743 .769 .842 .758 .792
GRU with Capsule .843 .816 .829 .865 .823 .842

All sentences predicted 1 .042 .500 .078 .060 .500 .107
All sentences predicted 0 .457 .500 .478 .439 .500 .468

Table 2: Results for the sentence level classification. We report Precision (P), Recall (R), and F1 for each
model (bold indicates the best set of results). Two baseline predictions with all sentences predicted 1 and
all sentences predicted 0 are also reported for comparison.

Approach - Level
Strict Detection Overlap Detection
P R F1 P R F1

Gazetteer - Macro .524 .791 .631 .571 .840 .680
Gazetteer - Micro .508 .659 .574 .580 .731 .647

spaCy NER - Macro .780 .573 .661 .861 .627 .726
spaCy NER - Micro .726 .413 .526 .823 .468 .597

Baseline - Macro .828 .474 .603 .898 .496 .639
Baseline - Micro .816 .339 .479 .893 .365 .518

Table 3: Results for the word level classification. We report the same measures as previously, for the
categories described in Section 4. Results are shown for both approaches (bold indicates the best set of
results).

5 Conclusion

We have presented a system for toponym detection
based on a recurrent network and gazetteer lookup.
The approach is novel in that we use the recurrent
network to predict whether a sentence contains a
location, from which we later extract the exact lo-
cation by more simpler means. This eliminates the
need for a more extensive sequence labelling task,
which would require more elaborately annotated
training data. Our approach was able to improve
on the baseline system presented at SemEval-2019
Task 12 on the same dataset. Albeit not at the same
level of precision.

The main conclusion of this paper is that us-
ing a hybrid approach, where a machine learning
approach is mixed with more traditional gazetteer
lookup methods, seems to introduce too many ar-
eas where performance is lost. Both in this pa-
per and in Plum et al. (2019) the machine learn-
ing or rather neural network architectures on their
own perform quite well. However, performing
a gazetteer lookup before or after lowers the re-

sult significantly. Of course, in both cases these
lookups provide necessary information for the sys-
tem to work, as they provide the index range of
each location. The fact that our system performed
better in terms of precision when using the pop-
ular spaCy NER algorithm, shows that simple
gazetteer lookup lacks precision and is probably
too simple.

In the future, we would like to introduce an end-
to-end system entirely based on machine learning
or recurrent network architectures. One emerging
approach is to use BERT (Devlin et al., 2018) for
token classification which is a fine-tuning model
that wraps the BERT model and adds a token-level
classifier on top of the BERT model. The recent
release of BioBERT (Lee et al., 2019) makes it
easier to apply BERT for NER in the bio-medical
domain. While a lot more research has been fo-
cused on these kind of architectures, we hope to
explore tasks other than only sequence labelling.
To this end, our aim is to also explore the use of
word and context embeddings further.
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