
Proceedings of Recent Advances in Natural Language Processing, pages 654–662,
Hissar, Bulgaria, Sep 7–9 2015.

Training Automatic Transliteration Models on DBpedia Data

Velislava Todorova
Linguistic Modeling Department

IICT-BAS
slava@bultreebank.org

Kiril Simov
Linguistic Modeling Department

IICT-BAS
kivs@bultreebank.org

Abstract

Our goal is to facilitate named en-
tity recognition in Bulgarian texts by
extending the coverage of DBpedia
(http://www.dbpedia.org/) for Bul-
garian. For this task we have trained
translation Moses models to transliter-
ate foreign names to Bulgarian. The
training sets were obtained by extract-
ing the names of all people, places
and organizations from DBpedia and
its extension Airpedia (http://www.
airpedia.org/). Our approach is ex-
tendable to other languages with small
DBpedia coverage.

1 Introduction

DBpedia Linked Open Dataset1 provides the
wealth of Wikipedia in a formalized way via
the ontological language in which DBpedia
statements are represented. Still DBpedia re-
flects the multilingual nature of WikiPedia.
But if a user needs to access the huge num-
ber of instances extracted from the English
version of WikiPedia, for example, in a dif-
ferent language (in our case Bulgarian) he/she
will not be able to do so, because the DBpedia
in the other language will not provide appro-
priate Uniform Resource Identifiers (URIs) for
many of the instances in the English DBpe-
dia. In this paper we describe an approach to
the problem. It generates appropriate names
in Bulgarian from DBpedia URIs in other lan-
guages. These new names are used in two
ways: (1) to form gazetteers for annotation
of DBpedia instances in Bulgarian texts; and
(2) they refer back to the DBpedia URIs from
which they have been created and in this way

1http://wiki.dbpedia.org/

provide access to all RDF statements about
the original URIs.

The paper presents several transliteration
models and their evaluation. Their evaluation
is done over 100 examples, transliterated man-
ually by two people, independently from each
other. The discrepancies between the two hu-
man transliterations demonstrate the complex-
ity of the task.

The structure of the paper is as follows: in
section 2 we describe the problem in more de-
tail; in section 3 we present some related ap-
proaches; section 4 reports on the preliminary
experiments; section 5 describes how the train-
ing data is extended on the basis of the results
from the preliminary models and new models
are trained; section 6 provides some heuristic
rules for combining transliteration and trans-
lation of names’ parts; section 7 describes the
evaluation of the models; the last section con-
cludes the paper and presents some directions
for future work.

2 Challenges

The transliteration of proper names presents
many and quite challenging difficulties not
only to automatic systems, but also to humans.
A lot of information is needed to perform the
task: the language of origin to determine the
pronunciation; some real world facts like how
this name was/is actually pronounced by the
person it belongs or belonged to (in case of
personal names) or by the locals (in case of
toponyms) and so on; and also the tradition
in transliterating names from this particular
language into the given target language. Even
if all of this information is gathered and if it
is consistent (which is not always the case),
there are still decisions to be made – the task
of finding a phonetic equivalent of one lan-
guage’s phoneme into another is not trivial; in

654

some cases the name or parts of it are meaning-
ful words in the source language and it might
not be obvious which is more appropriate –
translation or transliteration; and sometimes
it might be better to leave the name in its orig-
inal script.

In their survey on machine transliteration
(Karimi et al., 2011) give a list of five main
challenges for an automated approach to the
task: 1) script specifications, 2) language
of origin, 3) missing sounds, 4) deciding on
whether or not to translate or transliterate a
name (or part of it), and 5) transliteration vari-
ants.

Fortunately, 1) does not present great diffi-
culties when dealing with European languages
only, as the direction of writing is the same
and the characters do not undergo changes in
shape due to the phonetic environment. The
only problem related to the script (apart from
the minor one of choosing appropriate encod-
ing) is the letter case. We decided to leave the
upper and lower case characters in our train-
ing data, trading overcomplication of the sta-
tistical models for a result that does not need
additional postprocessing.

On the other hand, 2) is a very hard chal-
lenge and we decided to leave it aside for now.
When we extract names from Wikipedia, we
know the language they are written in, but
there are no straightforward ways to figure out
the language they came from.
3) is the challenge of finding a phonetic

match for a sound that does not exist in the
target language. Human translators need to
make a decision which of the phonemes at hand
is most appropriate in the particular case, and
appropriate does not necessarily mean pho-
netically close, as orthography and etymology
could also be considered important. We hope
to overcome this difficulty by training machine
translation Moses models on parallel lists of
names where the decisions about sound map-
ping have already been made by humans.

Challenge 4) is related to the fact that trans-
ferring a name from one language to another
can happen not only through transliteration,
but also via translation (for example, until
1986, the French name Côte d’Ivoire has been
translated, not transliterated in Bulgarian as
Бряг на слоновата кост) or direct adoption

(like many music band names).2 To distin-
guish the cases where transliteration is needed
from those where direct adoption or transla-
tion is more appropriate, we use some heuris-
tics that involve the combination of several dif-
ferent models and are described in more details
in section 6.

Problem 5) is very peculiar. It looks similar
to the variation in translation, but is different
in its ‘abnormality’. One would accept as nor-
mal different translations of a single sentence
and we know that even in the source language
the meaning of this sentence can be expressed
in other ways. Transliteration, on the other
hand, is expected to produce one single result
for each name, just as this name is an unvaried
reference to an entity. However, there are of-
ten multiple transliterations of the same name.
Our models do not attempt to generate all the
acceptable variants, but we calculate how dif-
ferent our results are from manually generated
transliterations and we expect this estimation
to be useful to determine if an expression is
likely to be a transliteration of a certain name.

3 Related Works

(Matthews, 2007) approaches transliteration
very similarly to the way we do. Like us,
he trains machine translation Moses models
on parallel lists of proper names. The lan-
guage pairs for which he obtains translitera-
tion and backtransliteration models are En-
glish and Arabic, and English and Chinese.
Unlike him, we are only interested in forward
transliteration to Bulgarian. And our ap-
proach differs from his in several other aspects.
First, we do not lowercase our training data.
Second, we explore not only unigram models,
but also bigram ones. And finally, we employ
heuristics to decide whether to transliterate or
not.

The construction of our models was inspired
by (Nakov and Tiedemann, 2012). They train
the only transliteration models for Bulgarian
known to us. They use automatic transliter-
ation as a substitution for machine transla-

2Or it might be a combination of the three. Here
we will not deal with mixed cases as such. We will
consider as cases of direct adoption only those where
the whole name has been directly adopted. We will
treat as translation cases all cases where at least some
part of the name has been translated, and we will take
the rest to be transliteration ones.

655

tion between very closely related languages,
namely Bulgarian and Macedonian. Their
models are of several different types – uni-
gram, bigram, trigram – and their results show
that bigrams perform best, because they are
“a good compromise between generality and
contextual specificity” (Nakov and Tiedemann,
2012, p. 302). We have also trained and com-
pared unigram and bigram models (see Sec-
tions 4 and 5), however we left the trigrams
out because of the specificity problem (a tri-
gram generally occurs much less often than a
unigram, for example), which gets even worse
with proper names coming from many differ-
ent languages with very diverse letter sequence
patterns.3

Here we will not give a full overview of the
automatic transliteration techniques, instead
we will reference (Karimi et al., 2011), which
is a detailed survey on the topic, and (Choi et
al., 2011), where the main approaches to the
task are explained and compared.

4 Preliminary Transliteration
Models

We have trained several machine translation
Moses4 models. We have used standard set-
tings for Moses baseline models for this pur-
pose. The language models have been trained
on the Bulgarian part of the English – Bul-
garian parallel list of names. The translation
models were obtained in two steps. The first
step was to train models on the data we had,

3We have trained several trigram models, but they
performed poorly in our development tests, which was
strong enough reason for us to drop them. The fol-
lowing table shows the BLEU scores that the different
models obtained for each source language they were
applied on. (The abbreviations representing the model
names are clarified in section 5, here ‘T’ stands for ‘tri-
gram’.)

en fr de it ru es
PUM 86.31 85.63 86.84 86.36 90.01 86.25
PBM 81.94 81.45 83.30 82.02 86.37 82.25
PTM 73.79 73.79 76.94 74.56 81.22 74.39
UUM 88.63 88.56 88.77 87.76 87.24 87.80
UBM 83.76 85.02 85.77 84.47 83.30 84.46
UTM 76.76 77.52 78.77 77.80 78.71 77.01
BUM 88.29 88.12 88.67 88.11 87.65 88.07
BBM 84.50 85.32 85.54 84.73 84.04 84.52
BTM 76.78 77.52 78.77 77.80 77.71 77.01
TUM 88.17 88.40 88.79 87.86 87.31 87.94
TBM 84.42 84.72 85.44 84.62 83.34 84.48
TTM 77.41 77.69 78.82 77.70 78.97 77.09
4http://www.statmt.org/moses/

cleaned and tidied as much as possible (details
are given in section 4.1).

The second step was to apply the first mod-
els on the data to further clean and tidy it up
(details are given in section 5.1), so that a sec-
ond, better series of models is obtained. In this
section, we describe the first models, and the
next section deals with the ones that were the
product of the second step.

4.1 Training Data

The parallel lists of names on which we have
trained our models have been extracted from
DBpedia. We have used the instance type fea-
ture to select the URLs of all people, places
and organizations in seven languages: Bulgar-
ian, English, German, French, Russian, Ital-
ian and Spanish. Then we have mapped the
Bulgarian names to the corresponding foreign
names via the interlanguage links in DBpedia.
We have further enlarged the lists by adding
Airpedia5 entries with assumed types ‘Person’,
‘Place’ or ‘Organization’ that were not present
in DBpedia.

The obtained parallel lists have been cleaned
from potential noise. Bulgarian entries that
did not contain any Cyrillic letters were re-
moved, as these are not cases of translitera-
tion, but rather adoption of a foreign spelling.
We used a Bulgarian word form dictionary
(Popov et al., 2003) to detect and exclude
probable translation cases.6 We have also re-
moved name pairs with mismatching number
of words to avoid confusing the model if two
names of a person are given in one language
and only one in the other.

At the end, for each language paired with
Bulgarian we had name lists with the following
lengths:

English 38,360 German 30,899
Friench 30,446 Italian 27,369
Spanish 25,312 Russian 21,256

5http://www.airpedia.org/, this is an automati-
cally generated extension of DBpedia.

6A minor problem here is that some foreign names
look like a Bulgarian word when transliterated. We ex-
tracted the 100 most frequent meaningful word forms
from the lists of Wikipedia articles we had and we fil-
tered 20 of them that are more likely to have been ob-
tained via transliteration, not translation. These 20
words were not treated as meaningful ones and the
names containing them were not excluded from our
lists.

656

4.2 Models Trained

The data was divided into training (80%), tun-
ing and development sets (10% each). We have
trained 12 preliminary transliteration models
– two for each source language: one unigram
model and one bigram model. The names in
the training sets for the unigram models looked
like this:

(E l v i s)

The training data for the bigram model
looked like this:

(E El lv vi is s)

The opening bracket indicates the beginning
of the word and the closing bracket indicates
the end of the word.

5 Main Transliteration Models

5.1 Training Data

Before the training of the preliminary models,
the data was cleaned from all name pairs with
mismatching number of words. After obtain-
ing the first transliteration models, we were
able to put back these parts of the names that
were present in both languages. We detected
which word corresponds to which by transliter-
ating (with the preliminary models) the foreign
name to Bulgarian and comparing this translit-
eration to the original Bulgarian name. The
words that were similar enough (were at NLD
less than 0.17) were considered as an indica-
tion that the source word and the Bulgarian
word correspond to each other, and thus were
retained. For example, the English name A. J.
Kronin and the Bulgarian counterpart Арчи-
балд Кронин both contain the family name of
the person, but in Bulgarian the first name is
given in its full form, and in English it is ab-
breviated as well as the second and they would
only confuse the models if they are present in
the training data.

Another problem that we were able to solve
with the help of the preliminary models were
the swapped names (some languages prefer to
put the given name before the family name,
other not). We again calculated the similarity
between each word in the transliteration and

7Normalized Levenshtein Distance, see Section 7 for
an explanation of the metric.

in the original Bulgarian name, to determine
if rearrangement is needed and to perform it.

As we have two preliminary models – uni-
gram and bigram – we obtained two new data
sets – one enhanced by the unigram models,
and one enhanced by the bigram models.

The application of the unigram models on
the name lists lead to the following, larger data
sets:

English 43,673 German 34,014
French 33,807 Italian 31,619
Spanish 29,579 Russian 27,980

The application of the bigram models also en-
larged the initial data sets with similar success:

English 43,608 German 34,004
French 33,944 Italian 31,620
Spanish 29,520 Russian 27,994

5.2 Models Trained

On each of the new enhanced data sets we have
trained 12 new models, altogether 24. The
models that we used to improve the training
sets will be called from now on preliminary
unigram and preliminary bigram model (PUM
and PBM). The unigram models trained on the
data, amended with the help of the prelimi-
nary unigram models, will be called unigram
enhanced unigram models or UUM for short.
Similarly, we will have bigram enhanced un-
igram models (BUM), unigram enhanced bi-
gram models (UBM), and bigram enhanced bi-
gram models (BBM).

6 Ensemble Approach

What we train our models, for is how to
transliterate. To decide if transliteration is
needed, we do not employ statistical approach,
but the following heuristics.

6.1 First Heuristic

We use this heuristic to resolve the direct ad-
doption vs. trasnliteration problem. When one
name is the same in all source languages, we
assume that this name should stay as it is in
Bulgarian too, and not be transliterated.8 One
example would be the band name Skazi that

8It is very important here that we have Russian,
a language using Cyrillic script among our languages.
Languages that use the same alphabet are more likely
to directly adopt each other’s proper names and if we
only relied on Latin script, we would have concluded
that direct addoption in Bulgarian is more appropriate
in most cases, which is not desirable.

657

our heuristics leave in Latin script, because it
is given like this in all of the source languages.

6.2 Second Heuristic

We use this heuristic to resolve the translia-
tion vs. trasnliteration problem. If the results
we got from all models are all different, then
we assume that this name has been translated,
not transliterated in our source languages and
needs a translation in the target language too.
An example from our evaluation set would be
the Romanian Television, whose name is al-
ways transliterated differently by our models
depending on the language it comes from.9

6.3 Voting

We assume that in the rest of the cases,
trasnliteration is the appropriate method to
transfer a name to Bulgarian. We apply voting
to decide which transliteration (the one from
which source language) to take. In case of a
tie, a random choice is made.

7 Evaluation

We have evaluated the transliteration models
on a small set of 100 names. The names were
taken from the English DBpedia and we made
sure that there are DBpedia entries for these
entities in the other five languages too. We
asked volunteers to transfer the names to Bul-
garian by whatever method they find more ap-
propriate: transliteration, translation or direct
adoption of the foreign name. The 100 names
were divided in portions of 10 and each por-
tion was transliterated by two different volun-
teers.10 In this way, we obtained two different
references to compare the automatically gen-
erated transliterations to. From now on, we
will refer to these two references as REF1 and
REF2.

9With this heuristic we aim at detecting cases of
at least partial translation and we do not attempt to
identify which parts of the name are translated and
which are not.

10This division of the data in portions is not relevant
to our evaluation method, it is only a way to speed up
the gathering of human input. Transliteration is one of
the most time consuming subtasks of translation and
together with the research it takes quite a lot time and
effort, which we opted to bring to a minimum for our
volunteers.

7.1 General Evaluation

The measure we use is normalized (by the
length of the longer name) Levenshtein dis-
tance (NLD). We have chosen it because it is
very intuitive – a 0-distance means that the
two names are absolutely the same, 1 means
that they are completely different and all the
values in between can be interpreted as the
proportion of errors. 0.1 for example means
that there is one error (a letter that needs to
be removed, inserted or substituted to obtain
the correct name) for each ten letters. This
measure is also fair to long names, unlike the
simple Levenshtein distance.11

If our models have chosen wrongly whether
transliteration is needed or not for a particu-
lar name, they get NLD score 1 for it. Further
down in this section we present a separate eval-
uation of the heuristics that detect translation
or direct adoption cases. So, for each name
the distance between the automatic and the
human generated transliteration is calculated
as follows:

NLD =

LD(waut,wref)
|max(waut,wref)| , for correct decision

to transliterate

0, for correct decision
to translate/adopt

1, for wrong decision.

where LD(waut, wref) is the well known
Levenshtein distance between the words waut

(which is the automatic generated transliter-
ation) and wref (the human generated refer-
ence), i.e. the minimal number of edit opera-
tions (deletions, insertions and substitutions)
that can transform waut into wref .

In our evaluation we present mean NLD for
all the 100 names, the percentage of the names
that received NLD score exactly 0, as well as
the percentage of those that received score less
than 0.1.

Table 1 shows how different from each other
the two sets of manual transliterations are.

11The measures we use are very similar to the ones
chosen by (Matthews, 2007, pp. 29-46) with the only
difference that we normalize the Levenshtein distance.
Other measures exist too, for example the ones rec-
ommended for the shared transliteration task in 2012
(Zhang et al., 2012, pp. 4-5).
We feel free to refine the measure we use and not stick
to one that has been previously employed, because
there are no other proper name transliteration systems
for Bulgarian, to which we could compare our results
anyway.

658

mean NLD zeroes less than 0.1
0.173 57% 68%

Table 1: Comparison of REF1 and REF2.

model mean NLD zeroes < 0.1
PUM 0.256 39% 51%
PBM 0.234 42% 57%
UUM 0.242 41% 53%
UBM 0.270 36% 51%
BUM 0.286 37% 51%
BBM 0.222 43% 54%

Table 2: Comparison of the performance of the
automatic models to REF1.

‘Mean NLD’ is the mean normalized Leven-
shtein distance for the 100 names, ‘zeros’ is
the percentage of name pairs with NLD equal
to zero, and ‘less than 0.1’ is the percentage of
pairs for which NLD is less or equal to 0.1.

It is to note that only 57% of the name
pairs in the two reference sets are absolutely
the same (NLD=0). This is due to the ‘abnor-
mal’ variation of transliterations that was men-
tioned as one peculiar challenge in Section 2.

We have compared the results of our auto-
matic ensemble approach to each of the two
references. Tables 2 and 3 present how differ-
ent the machine transliteration is from respec-
tively REF1 and REF2.

Generally, the automatic transliterations are
not more different from the references than the
references are from each other. From Table 2 it
seems that BBM performs best, as it has lowest
mean NLD and a greater percentage of exact
matches. However, the models that are clos-
est to the second reference are different. It is
not clear if the enhanced models are altogether
better or worse than the preliminary ones, but

model mean NLD zeroes < 0.1
PUM 0.226 41% 56%
PBM 0.184 43% 57%
UUM 0.225 37% 55%
UBM 0.184 46% 59%
BUM 0.180 44% 60%
BBM 0.188 44% 58%

Table 3: Comparison of the performance of the
automatic models to REF2.

model F ref1 F ref2

PUM 0.64 0.67
PBM 0.56 0.50
UUM 0.79 0.67
UBM 0.71 0.68
BUM 0.69 0.64
BBM 0.55 0.50

Table 4: Evaluation of the ‘translation vs.
transliteration’ heuristic

in most cases the best result is presented by
one of the enhanced models.

7.2 Evaluation of the Heuristics

The tables above present an overall evalua-
tion of our approach. It might be interesting,
though, to look into the performance of our
heuristics separately.

The first heuristic detects cases where direct
adoption is to be preferred over transliteration.
It relies solely on the input in the source lan-
guages, so it produces the same results for all
models.

Against the first reference we have calcu-
lated F score Fref1 = 0, and against the
second reference we obtained Fref2 = 0.75.
This result is more odd than bad, which
can be explained quite well by the absent
inter-annotator agreement for this task (κ =
−0.03).12

The second heuristic resolves the ‘transla-
tion or transliteration’ problem and it is de-
pendent on the output of the transliteration
models, which is why we present F scores for
each model separately in Table 4 (again there
are two F scores, because there are two refer-
ences). The inter-annotator agreement for this
task is almost perfect, κ = 0.89.

It is worth noticing that BBM, which seemed
to be performing best of all models, is the
worst one in this task.

7.3 Evaluation of the Transliteration
Models Alone

The names from the evaluation list which were
considered by both human transliterators to

12There is not a single case in which the two human
transliterators both think that a name should be left in
its original script. This reveals that there is an ongoing
process in Bulgarian to establish when direct adoption
is more appropriate than transliteration.

659

mean NLD zeroes less than 0.1
0.107 57.7% 71.8%

Table 5: Comparison of the two manually gen-
erated transliterations for the 78 pure translit-
eration cases.

need pure transliteration, were 78. On them
we have calculated mean NLD, percent of zero
scores and percent of low scores (< 0.1), as
in the general evaluation of our approach, to
be able to present this time an evaluation of
the transliteration models without the impact
of the heuristics. Table 5 shows how close
the two references are to each other for the
pure transliteration cases only, Tables 6 and
7 present the transliterations of the automatic
models compared to REF1 and REF2 respec-
tively. There are six models of a kind, one for
each of the six different source languages.

Generally, all models seem to perform better
when they only need to transliterate, not to de-
cide whether to transliterate. The gap between
the references is also narrower. REF2 is again
more similar to the automatic transliterations
than REF1. It is interesting that REF2 is in
average closer to the automatic models than
to REF1 for English (all models) and German
(almost all models).

All the models perform best when applied to
English as source language. This might be due
to the fact that the training data for English
is more than for any of the other languages.
Another reason for this result might be that
the list of names, that was presented to the
human transliterators, was extracted from the
English DBpedia. Even though the volunteers
were encouraged to use Wikipedia as resource
also in the other five languages, they might
have had somewhat of an inclination towards
a more English sounding transliteration.

It is not very easy to explain why Russian as
source language challenges the automatic mod-
els so much. One would expect that transliter-
ation between two languages using the same al-
phabet would be easier, but it is exactly the op-
posite here. The two languages have very dif-
ferent pronunciation rules and even use quite
different sets of phonemes, which is one possi-
ble reason why a name is transliterated with
one sequence of letters in Russian and a differ-

ent one in Bulgarian.

Now, when we have the evaluation of the
different models for each source language, we
can start working on a weighted version of the
voting in our ensemble approach. It would be
interesting to see, if giving more weight to the
English and German models, and less to the
Russian ones would contribute significantly to
the final results.

8 Conclusion and Future Work

We have presented an approach to machine
transliteration that makes use of machine
translation Moses models and some simple
heuristics to detect if transliteration is appro-
priate, and to perform it if it is. This ap-
proach can help closing the gap between well
and not so well represented languages in DB-
pedia. Even though the transliterations gener-
ated by our models would be somewhat differ-
ent than manual transliteration, one could still
make use of them. For example, in an infor-
mation retrieval task, one could search not for
exact matches of the name, but for words that
are very similar. (Our evaluation can serve
as a guide to what similarity should be taken
as being enough. It would be nice to have at
some point a larger set of human generated
references for a sounder result.) Besides, if in-
tegrated in a machine translation system, our
transliteration approach would give a (close to)
acceptable result, improving in this way the
performance of the whole machine translation
system.

One problem that we have not tackled yet
is determining the language of origin for each
name. When we do, we could train different
models according to this information and see
if automatic transliteration benefits from it as
much as a human transliterator does.

Another improvement would be to train
models for more languages to extend the cov-
erage of our approach. It is also interesting to
experiment with different groups of languages
and see how the number and kind of the source
languages influences the results of our ensem-
ble approach. Experiments with weighted vot-
ing for our ensemble approach would also be
beneficial.

660

model mean NLD zeroes < 0.1

PUM

de 0.131 39.5% 56.6%
en 0.114 44.7% 57.9%
es 0.156 36.8% 44.7%
fr 0.142 34.2% 55.3%
it 0.162 32.9% 48.7%
ru 0.412 22.4% 27.7%

PBM

de 0.132 36.8% 53.9
en 0.114 39.5% 59.2%
es 0.157 34.2% 48.7%
fr 0.134 39.5% 56.6%
it 0.167 30.2% 48.7%
ru 0.407 26.3% 31.6%

UUM

de 0.120 42.1% 57.9%
en 0.126 43.4% 56.6%
es 0.150 36.8% 48.7%
fr 0.139 39.5% 51.3%
it 0.158 38.1% 50.0%
ru 0.411 17.1% 22.4%

UBM

de 0.122 39.5% 56.6%
en 0.116 43.4% 53.2%
es 0.147 34.2% 48.7%
fr 0.135 38.3% 57.9%
it 0.156 34.2% 55.3%
ru 0.403 23.7% 27.6%

BUM

de 0.128 40.8% 58.9%
en 0.123 43.4% 59.2%
es 0.158 34.2% 43.4%
fr 0.132 43.4% 57.9%
it 0.160 36.8% 47.4%
ru 0.405 19.7% 27.6%

BBM

de 0.125 39.5% 60.5%
en 0.120 44.7% 59.2%
es 0.156 32.9% 59.2%
fr 0.135 38.1% 55.3%
it 0.172 31.6% 48.7%
ru 0.392 26.3% 30.3%

Table 6: Comparison of the performance of
the automatic models to REF1 for the pure
transliteration cases.

model mean NLD zeroes < 0.1

PUM

de 0.103 38.2% 57.9%
en 0.096 42.1% 60.5%
es 0.124 38.2% 51.3%
fr 0.117 35.5% 51.3%
it 0.141 31.6% 50.0%
ru 0.400 21.1% 26.3%

PBM

de 0.109 34.2% 53.9
en 0.098 36.8% 57.9%
es 0.134 32.9% 53.9%
fr 0.119 36.8% 53.9%
it 0.142 27.6% 50.0%
ru 0.402 23.7% 26.3%

UUM

de 0.097 40.8% 59.2%
en 0.103 42.1% 60.5%
es 0.121 39.5% 52.6%
fr 0.109 39.5% 53.9%
it 0.140 34.2% 48.7%
ru 0.398 18.4% 21.1%

UBM

de 0.102 36.8% 59.2%
en 0.098 42.1% 61.8%
es 0.121 35.5% 50.0%
fr 0.117 35.5% 56.6%
it 0.133 32.9% 56.3%
ru 0.394 25% 27.6%

BUM

de 0.108 36.8% 57.9%
en 0.103 40.8% 59.2%
es 0.127 35.5% 48.7%
fr 0.108 34.4% 55.3%
it 0.139 34.2% 48.7%
ru 0.392 22.4% 25.0%

BBM

de 0.101 36.8% 60.5%
en 0.105 40.8% 57.9%
es 0.129 32.9% 47.4%
fr 0.117 36.8% 55.6%
it 0.154 28.9% 44.7%
ru 0.379 26.3% 30.3%

Table 7: Comparison of the performance of
the automatic models to REF2 for the pure
transliteration cases.

661

Acknowledgments

This research has received partial support by
the EC’s FP7 (FP7/2007-2013) project under
grant agreement number 610516: “QTLeap:
Quality Translation by Deep Language Engi-
neering Approaches” and FP7 grant 316087
AComIn "Advanced Computing for Innova-
tion", funded by the European Commission in
2012–2016.

We are grateful to all the volunteers for
their input, also to Petya Ossenova and Hristo
Todorov for revising an early draft of this pa-
per.

We thank the three anonymous reviewers,
whose remarks, comments, suggestions and en-
couragement helped us to improve the initial
version of the paper. All errors remain our own
responsibility.

References
Key-Sun Choi, Hitoshi Isahara, and Jong-Hoon

Oh. 2011. A comparison of different machine
transliteration models. CoRR, abs/1110.1391.

Sarvnaz Karimi, Falk Scholer, and Andrew Turpin.
2011. Machine transliteration survey. ACM
Comput. Surv., 43(3):17:1–17:46, April.

David Matthews. 2007. Machine transliteration of
proper names. Master’s thesis, School of Infor-
matics, University of Edinburgh.

Preslav Nakov and Jörg Tiedemann. 2012. Com-
bining word-level and character-level models for
machine translation between closely-related lan-
guages. In Proceedings of the 50th Annual Meet-
ing of the Association for Computational Lin-
guistics: Short Papers - Volume 2, ACL ’12,
pages 301–305, Stroudsburg, PA, USA. Associ-
ation for Computational Linguistics.

Dimityr Popov, Kiril Simov, Svetlomira Vidinska,
and Petya Osenova. 2003. Spelling Dictionary
of Bulgarian. Nauka i izkustvo, Sofia, Bulgaria.

Min Zhang, Haizhou Li, Ming Liu, and A Ku-
maran. 2012. Whitepaper of news 2012 shared
task on machine transliteration. In Proceedings
of the 4th Named Entity Workshop, NEWS ’12,
pages 1–9, Stroudsburg, PA, USA. Association
for Computational Linguistics.

662

