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Abstract

We study sequential language games in which
two players, each with private information,
communicate to achieve a common goal. In
such games, a successful player must (i) in-
fer the partner’s private information from the
partner’s messages, (ii) generate messages that
are most likely to help with the goal, and (iii)
reason pragmatically about the partner’s strat-
egy. We propose a model that captures all
three characteristics and demonstrate their im-
portance in capturing human behavior on a
new goal-oriented dataset we collected using
crowdsourcing.

1 Introduction

Human communication is extraordinarily rich. Peo-
ple routinely choose what to say based on their
goals (planning), figure out the state of the world
based on what others say (inference), all while tak-
ing into account that others are strategizing agents
too (pragmatics). All three aspects have been stud-
ied in both the linguistics and AI communities. For
planning, Markov Decision Processes and their ex-
tensions can be used to compute utility-maximizing
actions via forward-looking recurrences (e.g., Vo-
gel et al. (2013a)). For inference, model-theoretic
semantics (Montague, 1973) provides a mechanism
for utterances to constrain possible worlds, and this
has been implemented recently in semantic parsing
(Matuszek et al., 2012; Krishnamurthy and Kollar,
2013). Finally, for pragmatics, the cooperative prin-
ciple of Grice (1975) can be realized by models in
which a speaker simulates a listener—e.g., Franke
(2009) and Frank and Goodman (2012).
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Pdigit view

Pletter: square
Pdigit: circle

Pletter: click (1,3)

Planning: Let me
first try square,
which is just one
possibility.

Inference: The
square’s letter must
be B.

Pragmatics: The
square’s digit can-
not be 2.

Figure 1: A game of InfoJigsaw played by two hu-
man players. One of the players (Pletter) only sees
the letters, while the other one (Pdigit) only sees the
digits. Their goal is to identify the goal object, B2,
by exchanging a few words. The clouds show the
hypothesized role of planning, inference, and prag-
matics in the players’ choice of utterances. In this
game, the bottom object is the goal (position (1, 3)).

There have been a few previous efforts in the lan-
guage games literature to combine the three aspects.
Hawkins et al. (2015) proposed a model of commu-
nication between a questioner and an answerer based
on only one round of question answering. Vogel et
al. (2013b) proposed a model of two agents playing
a restricted version of the game from the Cards Cor-
pus (Potts, 2012), where the agents only communi-
cate once.1 In this work, we seek to capture all three
aspects in a single, unified framework which allows

1Specifically, two agents must both co-locate with a specific
card. The agent which finds the card sooner shares the card
location information with the other agent.
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for multiple rounds of communication.

Specifically, we study human communication in
a sequential language game in which two players,
each with private knowledge, try to achieve a com-
mon goal by talking. We created a particular sequen-
tial language game called InfoJigsaw (Figure 1). In
InfoJigsaw, there is a set of objects with public prop-
erties (shape, color, position) and private properties
(digit, letter). One player (Pletter) can only see the
letters, while the other player (Pdigit) can only see the
digits. The two players wish to identify the goal ob-
ject, which is uniquely defined by a letter and digit.
To do this, the players take turns talking; to encour-
age strategic language, we allow at most two English
words at a time. At any point, a player can end the
game by choosing an object.

Even in this relatively constrained game, we can
see the three aspects of communication at work.
As Figure 1 shows, in the first turn, since Pletter
knows that the game is multi-turn, she simply says
square; if the other player does not click on the
square, she can try the bottom circle in the next turn
(planning). In the second turn, Pdigit infers from
square that the square’s letter is probably B (in-
ference). As the digit on the square is not a 2, she
says circle. Finally, Pletter infers that digits of cir-
cles are 2, and in addition she infers from circle
that the digit on the square is not a 2 as otherwise,
Pdigit would have clicked on it (pragmatics). There-
fore, she correctly clicks on (1,3).

In this paper, we propose a model that captures
planning, inference, and pragmatics for sequential
language games, which we call PIP. Planning re-
currences look forward, inference recurrences look
back, and pragmatics recurrences look to simpler in-
terlocutors’ model. The principal challenge is to in-
tegrate all three types in a coherent way; we present
a “two-dimensional” system of recurrences to cap-
ture this. Our recurrences bottom out in very simple,
literal semantics, (e.g., context-independent mean-
ing of circle), and we rely on the structure of re-
currences to endow words with their rich context-
dependent meaning. As a result, our model is very
parsimonious and only has four (hyper)parameters.

As our interest is in modeling human communi-
cation in sequential language games, we evaluate
PIP on its ability to predict how humans play In-

foJigsaw.2 We paired up workers on Amazon Me-
chanical Turk to play InfoJigsaw, and collected a
total of 1680 games. Our findings are as follows:
(i) PIP obtains higher log-likelihood than a base-
line that chooses actions to convey maximum infor-
mation in each round; (ii) PIP obtains higher log-
likelihood than ablations that remove the pragmatic
or the planning components, supporting their im-
portance in communication; (iii) PIP is better than
an ablation with a truncated inference component
that forgets the distant past only for longer games,
but worse for shorter games. The overall conclu-
sion is that by combining a very simple, context-
independent literal semantics with an explicit model
of planning, inference, and pragmatics, PIP obtains
rich context-dependent meanings that correlate with
human behavior.

2 Sequential Language Games

In a sequential language game, there are two play-
ers who have a shared world state w. In addition,
each player j ∈ {+1,−1} has a private state sj .
At each time step t = 1, 2, . . . , the active player
j(t) = 2(t mod 2) − 1 (which alternates) chooses
an action (including speaking) at based on its policy
πj(t)(at | w, sj(t), a1:t−1). Importantly that player
j(t) can see her own private state sj(t), but not the
partner’s s−j(t). At the end of the game (defined
by a terminating action), both players receive utility
U(w, s+1, s−1, a1:t) ∈ R. The utility consists of a
penalty if players did not reach the goal and a re-
ward if they reached the goal along with a penalty
for each action. Because the players have a common
utility function that depends on private information,
they must communicate the part of their private in-
formation that is relevant for maximizing utility. In
order to simplify notation, we use j to represent j(t)
in the rest of the paper.

InfoJigsaw. In InfoJigsaw (see Figure 1 for an ex-
ample), two players try to identify a goal object, but
each only has partial information about its identity.
Thus, in order to solve the task, they must communi-
cate, piecing their information together like a jigsaw

2One could in principle solve for an optimal communication
strategy for InfoJigsaw, but this would likely result in a solution
far from human communication.
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(a) Pdigit view (b) Pletter view

Figure 2: Chat interface that Amazon Mechanical Turk (AMT) workers use to play InfoJigsaw (for read-
ability, objects with the goal digit/letter are bolded).

puzzle. Figure 2 shows the interface that humans use
to play the game.

More formally, the shared world state w includes
the public properties of a set of objects: position on
a m× n grid, color (blue, yellow, green), and shape
(square, diamond, circle). In addition, w contains
the letter and digit of the goal object (e.g., B2). The
private state of player Pdigit is a digit (e.g., 1,2,3) for
each object, and the private state of player Pletter is a
letter (e.g., A,B,C) for each object. These states are
s+1, s−1 depending on which player goes first.

On each turn t, a player j(t)’s action at can be
either (i) a message containing one or two English
words 3 (e.g., circle), or (ii) a click on an object,
specified by its position (e.g., (1,3)). A click action
terminates the game. If the clicked object is the goal,
a green square will appear around it which is visible
to both players; if the clicked object is not the goal,
a red square appears instead. To discourage random
guessing, we prevent players from clicking in the
first time step. Players do not see an explicit util-
ity (U ); however, they are instructed to think strate-
gically to choose messages that lead to clicking on
the correct object while using a minimum number
of messages. Players can see the number of correct
clicks, wrong clicks, and number of the words they
have sent to each other so far at the top right of the
screen.

We would like to study how context-dependent
meaning arises out of the interplay between a

3 If the words are not inside the English dictionary, the
sender receives an error and the message is rejected. This pre-
vents players from circumventing the game rules by connecting
multiple words without spaces.

# games # messages average score

All 1680 4967 7.50
Kept 1259 3358 7.48

Table 1: Statistics for all 1680 games and the 1259
games in which each message contains at least one
of the 12 most frequent words or “yes”, or “no”.

context-independent literal semantics with context-
sensitive planning, inference, and pragmatics. The
simplicity of the InfoJigsaw game ensures that this
interplay is not obscured by other challenges.

2.1 Data collection

We generated 10 InfoJigsaw scenarios as follows:
For each one, we randomly choose m,n to be ei-
ther 2× 3 or 3× 2 (which results in 64 possible pri-
vate states). We randomly choose the properties of
all objects and randomly designated one as the goal.
We randomly choose either Pletter or Pdigit to start the
game first. Finally, to make the scenarios interesting,
we keep a scenario if it satisfies: (i) Only the goal
object (and no other objects) has the goal combina-
tion of the letter and digit; (ii) There exist at least
two goal-consistent objects for each player and their
sum of goal-consistent objects is at least m×n; and
(iii) all the goal consistent objects for each player do
not share the same color, shape, or position (which
means all the goal-consistent objects are not in left,
right, top, bottom, or middle).

We collected a dataset of InfoJigsaw games on
Amazon Mechanical Turk using the framework in
Hawkins (2015) as follows: 200 pairs of players
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(e) 30 most frequent messages, which make up 49% of all messages.

Figure 3: Statistics of the collected corpus.

each played all 10 scenarios in a random order. Out
of 200 pairs, 32 pairs left the game prematurely
which results in 168 pairs playing the total of 1680
games. Players performed 4967 actions (messages
and clicks) total and obtained an average score (cor-
rect clicks) of 7.5 per game. The average score per
scenario varied from 6.4 to 8.2. Interestingly, there
is no significant difference in scores across the 10
scenarios, suggesting that players do not adapt and
become more proficient with more game play (Fig-
ure 3c). Figure 3 shows the statistics of the collected
corpus. Figure 4 shows one of the games, along with
the distribution of messages in the first time step of
all games played on this scenario.

To focus on the strategic aspects of InfoJigsaw,
we filtered the dataset to reduce the words in the
tail. Specifically, we keep a game if all its mes-
sages contain at least one of the 12 most frequent
words (shown in Figure 3d) or “yes” or “no”. For
example, in Figure 4, the games containing mes-
sages such as what color, mid row, color

are filtered because they don’t contain any fre-
quent words. Messages such as middle, either
middle, middle maybe, middle objects
are mapped to middle. 1259 of 1680 games sur-
vived. Table 1 compares the statistics between all
games and the ones that were kept. Most games that
were filtered out contained less frequent synonyms
(e.g. round instead of circle). Some questions
were filtered out too (e.g., what color). Filtered
games are 1.15 times longer on average.

3 Literal Semantics

In order to understand the principles behind how
humans perform planning, inference, and pragmat-
ics, we aim to develop a parsimonious, interpretable
model with few parameters rather than a highly ex-
pressive, data-driven model. Therefore, following
the tradition of Rational Speech Acts (RSA) (Frank
and Goodman, 2012; Goodman and Frank, 2016),
we will define in this section a mapping from each
word to its literal semantics, and rely on the PIP re-

546



bl
ue

sq
ua

re
m

id
dl

e
ro

w
sq

ua
re

di
am

on
d

bo
tto

m
ri

gh
t

no
tt

op
co

lo
r

m
id

dl
e

ye
llo

w
sq

ua
re

m
id

dl
e

le
ft

sq
ua

re
no

tc
ir

cl
e

sq
ua

re
s

m
id

dl
e

tw
o

w
ha

tc
ol

or
ye

llo
w

ci
rc

le
di

am
on

d
sq

ua
re

ei
th

er
m

id
dl

e
m

ay
be

m
id

dl
e

m
id

ro
w

m
id

dl
e

ob
je

ct
s

5

10

15

20

fr
eq

ue
nc

y

Find A1 Find A1

A ? A ?

B ? B ?

A ? B ?

Pletter view

? 3 ? 1

? 1 ? 1

? 2 ? 2

Pdigit view

Pdigit: middle

Pletter: yellow circle

Pdigit: bottom right

Pletter: click (1,2)

Figure 4: Bottom: one of the games played by
Turkers. Top: the distribution of utterances on the
first message. Players choose to explain their pri-
vate state in different ways. Some use more general
messages (e.g., square diamond), while some
use more specific ones (e.g., blue square). Top
diagram shows the first 20 most frequent messages
on the first round (72% of all the messages).

currences (which we will describe in Section 4) to
provide context-dependence. One could also learn
the literal semantics by backpropagating through
these recurrences, which has been done for simpler
RSA models (Monroe and Potts, 2015); or learn the
literal semantics from data and then put RSA on top
(Andreas et al., 2016); we leave this to future work.

Suppose a player utters a single word circle.
There are multiple possible context-dependent inter-
pretations:

• Are any circles goal-consistent?
• All the circles are goal-consistent.
• Some circles but no other objects are goal-

s−1

0
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1

[ ] s+1

1

0
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[ ]
Find B2 Find B2
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? 2

? 3

? 2

Pdigit view

JsquareK =
{
s : s ∧

[
0
1
0

]
6=
[
0
0
0

]}

Jtop bottomK =
{
s : s ∧

([
1
0
0

]
∨
[
0
0
1

])
6=
[
0
0
0

]}

Jtop blueK =
{
s : s ∧

([
1
0
0

]
∧
[
1
1
1

])
6=
[
0
0
0

]}

Figure 5: Private state of the players and meaning
of two action sequences.

consistent.
• Most of the circles are goal-consistent.
• At least one circle is goal-consistent.

We will show that most of these interpretations can
arise from a simple fixed semantics: roughly “some
circles are goal consistent”. We will now define a
simple literal semantics of message actions such as
circle, which forms the base case of PIP. Recall
that the shared world state w contains the goal (e.g.,
B2) and, assuming Pletter goes first, the private state
s−1 (s+1) of player Pletter (Pdigit) contains the let-
ter (digit) of each object. For notational simplicity,
let us define s−1 (s+1) to be a matrix correspond-
ing to the spatial locations of the objects, where an
entry is 1 if the corresponding object has the goal let-
ter (digit) and 0 otherwise. Thus sj also represents
the set of goal-consistent objects given the private
knowledge of that player. Figure 5 shows the private
states of the players.

We define two types of message actions: infor-
mative (e.g., blue, top) and verifying (e.g., yes,
no). Informative messages have immediate mean-
ing, while verifying messages depend on the previ-
ous utterance.

Informative messages. Informative messages de-
scribe constraints on the speaker’s private state
(which the partner does not know). For a message a,
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define JaK to be the set of consistent private states.
For example, JbottomK is all private states where
there are goal-consistent objects in the bottom row.

Formally, for each word x that specifies some ob-
ject property (e.g., blue, top), define vx to be an
n×mmatrix where an entry is 1 if the corresponding
object has the property x, and 0 otherwise. Then, de-
fine the literal semantics of a single-word message x
to be JxK def

= {s : s ∧ vx 6= 0}, where ∧ denotes
element-wise and and 0 denotes the zero matrix.
That is, single-property messages can be glossed as
“some goal-consistent object has property x”.

For a two-word message xy, we define the literal
semantics depending on the relationship between x
and y. If x and y are mutually exclusive, then we
interpret xy as x or y (e.g., square circle);
otherwise, we interpret xy as x and y (e.g., blue
top). Formally, JxyK def

= {s : s ∧ (vx ∧ vy) 6= 0} if
vx ∧ vy 6= 0 and {s : s ∧ (vx ∨ vy) 6= 0} otherwise.
See Figure 5 for some examples.

Action sequences. We now define the literal se-
mantics of an entire action sequence Ja1:tKj with re-
spect to player j, which is the set of possible part-
ner private states s−j . Intuitively, we want to sim-
ply intersect the set of consistent private states of
the informative messages, but we need to also han-
dle verifying messages (yes and no), which are
context-dependent. Formally, we say that private
state s−j ∈ Ja1:tKj if the following holds: for all
informative messages ai uttered by −j, s−j ∈ JaiK;
and for all verifying messages ai uttered by −j if
ai = yes then, s−j ∈ Jai−1K; and if ai = no then,
s−j 6∈ Jai−1K.

4 The Planning-Inference-Pragmatics
(PIP) Model

Why does Pdigit in Figure 1 choose circle rather
than top or click(1,2)? Intuitively, when a
player chooses an action, she should take into ac-
count her previous actions, her partner’s actions, and
the effect of her actions on future turns. She should
do all these while reasoning pragmatically that her
partner is also a strategic player.

At a high-level, PIP defines a system of recur-
rences revolving around three concepts, depicted in
Figure 6: player j’s beliefs over the partner’s pri-

Figure 6: PIP is defined via a system of recur-
rences that simultaneously captures planning, infer-
ence, and pragmatics. The arrows show the depen-
dencies between beliefs p, expected utilities V , and
policy π.

vate state pkj (s−j | sj , a1:t), her expected utility of
the game V k

j (s+1, s−1, a1:t), and her policy πkj (at |
sj , a1:t−1). Here, t indexes the current time and k
indexes the depth of pragmatic recursion, which will
be explained later in Section 4.3. To simplify the no-
tation, we have dropped w (shared world state) from
the notation, since everything conditions on it.

4.1 Inference
From player j’s point of view, the purpose of infer-
ence is to compute a distribution over the partner’s
private state s−j given all actions thus far a1:t. We
first consider a “level 0” player, which simply as-
signs a uniform distribution over all states consistent
with the literal semantics of a1:t, which we defined
in Section 3:

p0j (s−j | sj , a1:t) ∝
{
1 s−j ∈ Ja1:tKj ,
0 otherwise.

(1)

For example, Figure 7, shows the Pletter’s belief
about Pdigit’s private state after observing circle.
Remember we show the private state of the players
as a matrix where an entry is 1 if the corresponding
object has the goal letter (digit) and 0 otherwise.

A player’s own private state sj can also constrain
her beliefs about her partner’s private state s−j . For
example, in InfoJigsaw, the active player knows
there is a goal, and so we set pkj (s−j | sj , a1:t) = 0
if s−j ∧ sj = 0.
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Figure 7: Pletter’s probability distribution over
Pdigit’s private state after Pdigit says circle in the
game shown in Figure 5.

4.2 Planning

The purpose of planning is to compute a policy πkj ,
which specifies a distribution over player j’s actions
at given all past actions a1:t−1. To construct the pol-
icy, we first define an expected utility V k

j via the fol-
lowing forward-looking recurrence: When the game
is over (e.g., in InfoJigsaw, one player clicks on an
object), the expected utility of the dialogue is simply
its utility as defined by the game:

V k
j (s+1, s−1, a1:t) = U(s+1, s−1, a1:t). (2)

Otherwise, we compute the expected utility assum-
ing that in the next turn, player j chooses action at+1

with probability governed by her policy πkj (at+1 |
sj , a1:t):

V k
j (s+1, s−1, a1:t) =

∑

at+1

πkj (at+1 | sj , a1:t)

V k
−j(s−1, s+1, a1:t+1).

(3)

Having defined the expected utility, we now de-
fine the policy. First, let Dk

j be the gain in expected
utility V k

−j(s+1, s−1, a1:t) over a simple baseline
policy that ends the game immediately, yielding util-
ity U(s+1, s−1, a1:t−1) (which is simply a penalty
for not finding the correct goal and a penalty for
each action). Of course, the partner’s private state
s−j is unknown and must be marginalized out based
on player j’s beliefs; let Ekj be the expected gain.
Let the probability of an action at be proportional to
max(0, Ekj )

α, where α ∈ [0,∞) is a hyperparame-
ter that controls the rationality of the agent (a larger
α means that the player chooses utility-maximizing

actions more aggressively). Formally:

Dk
j = V k

−j(s+1, s−1, a1:t)− U(s+1, s−1, a1:t−1),

Ekj =
∑

s−j

pkj (s−j | sj , a1:t−1)D
k
j ,

πkj (at | sj , a1:t−1) ∝ max
(
0, Ekj

)α
. (4)

In practice, we use a depth-limited recurrence,
where the expected utility is computed assuming
that the game will end in f turns and the last action
is a click action (meaning that we only consider the
action sequences with size≤ f and a clicking action
as the last action). Figure 8 shows how Pdigit com-
putes the expected gain (Eqn. 4) of saying circle.

Figure 8: Planning reasoning for the game in Fig-
ure 1 (reproduced here in the bottom right). (a) In
order to calculate the expected gain (E) of generat-
ing circle, for every state s, Pdigit computes the
probability of s being the Pletter’s private state. (b)
She then computes the expected utility (V ) if she
generates circle assuming Pletter’s private state is
s.

4.3 Pragmatics
The purpose of pragmatics is to take into account
the partner’s strategizing. We do this by construct-
ing a level-k player that infers the partner’s pri-
vate state, following the tradition of Rational Speech
Acts (RSA) (Frank and Goodman, 2012; Goodman
and Frank, 2016). Recall that a level-0 player p0j
(Section 4.1) puts a uniform distribution over all the

549



Figure 9: Pragmatic reasoning for the game in Figure 1 (reproduced here in the upper right) at time step
3. Players reason recursively about each others beliefs: the level-0 player puts a uniform distribution p0j
over all the states in which at least one circle is goal-consistent independent of the shared world state and
previous actions. The level-1 player assigns probability over the partner’s private states s−j proportional to

the probability that she would have performed the last action given that state s−j . For example, if
[
0
0
1

]
were

Pdigit’s private state, then saying bottom would be more probable (given the shared world state); if
[
1
1
1

]

were Pdigit’s state, then clicking on the square would be a better option (given the previous actions). But

given that Pdigit uttered circle,
[
1
0
1

]
is most likely, as reflected by p1j .

semantically valid private states of the partner. A
level-k player assigns probability over the partner’s
private state proportional to the probability that a
level-(k − 1) player would have performed the last
action at:

pkj (s−j | sj , a1:t) ∝ πk−1
−j (at | s−j , a1:t−1)

pkj (s−j | sj , a1:t−2). (5)

Figure 9 shows an example of the pragmatic rea-
soning.

4.4 A closer look at the meaning of actions
In the Section 4.2, we modeled the players as ra-
tional agents that choose actions that lead to higher
gain utility. In the pragmatics section (Section 4.3),
we described how a player infers the partner’s pri-
vate state taking into account that her partner is
acting cooperatively. The phenomena that emerges

from the combination of the two is the topic of this
section.

We first define the belief marginals Bj of a player
j to be the marginal probabilities that each object
is goal-consistent under the hypothesized partner’s
private state s−j ∈ Rm×n, conditioned on actions
a1:t:

Bj(sj , a1:t) =
∑

s−j

pkj (s−j | sj , a1:t)s−j . (6)

At time t = 0 (before any actions), the belief
marginals of both players are m × n matrices with
0.5 in all entries. The change in a belief marginal
after observing an action at gives a sense of the ef-
fective (context-dependent) meaning of that action.

We first explain how pragmatics (k > 0 in (Eqn.
5)) leads to rich action meanings. When a player
observes her partner’s action at, she assumes this ac-
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Figure 10: Belief marginals of Pdigit (Eqn. 6) after
observing sequences of actions for different prag-
matic depths k. (b) Without pragmatics (k = 0),
Pdigit thinks both objects on the right has the same
probability to be goal-consistent. With pragmatics
(k = 1), Pdigit thinks that the object in the bottom
right is more likely to be goal-consistent.

tion was chosen because it results in a higher utility
than the alternatives. In other words, she infers that
her partner’s private state cannot be one in which at
does not lead to high utility. As an example, say-
ing circle instead of top circle or bottom
circle implies that there is more than one goal-
consistent circle. The pragmatic depth k governs the
extent to which this type of reasoning is applied.

Recall in Section 4.2, a player chooses an action
conditioned on all previous actions, and the other
player assumed this context-dependence. As an ex-
ample, Figure 10(d) shows how right changes its
meaning when it follows bottom.

5 Experiments

5.1 Setup

We a priori set the reward of clicking on the goal
to be +100 and clicking on the wrong object to be
−100. We set the smoothing α = 10 and the action
cost to be −50 based on the data. The larger the
action cost, the fewer messages will be used before
selecting an object. Formally, after k actions:

Utility = −50k +
{
+100 the goal object is clicked,

−100 otherwise.

(7)

We smoothed all polices by adding 0.01 to the
probability of each action and re-normalizing. By
default, we set k = 1 (pragmatic depth (Eqn. 4)).
When computing the expected utility (Eqn. 3) of the
game, we use a lookahead of f = 2. Inference looks
back b time steps (i.e., (Eqn. 1) and (Eqn. 5) are
based on at−b+1:t rather than a1:t); we set b =∞ by
default.

We implemented two baseline policies:
Random policy: for player j, the random pol-
icy randomly chooses one of the semantically valid
(Section 3) actions with respect to sj or clicks on a
goal-consistent object. Formally, the random policy
places a uniform distribution over:

{a : sj ∈ JaK} ∪ {click(u, v) : (sj)u,v = 1}.
(8)

Greedy Policy: assigns higher probability to the
actions that convey more information about the
player’s private state. We heuristically set the prob-
ability of generating an action proportional to how
much it shrinks the set of semantically valid states.
Formally, for the message actions:

π
msg
j (at | a1:t−1, sj) ∝ |Ja1:t−1K−j | − |Ja1:tK−j |

(9)

For the clicking actions, we compute the belief state
as explained in Section 4.4. Remember Bu,v is the
marginal probability of the object in the row u and
column v being goal-consistent in the partner’s pri-
vate state. Formally, for clicking actions:

πclick
j (click(u, v) | a1:t, sj) ∝

min((sj)u,v, Bj(sj , a1:t)u,v). (10)

Finally, the greedy policy chooses a click action with
probability γ and a message action with probability
1 − γ. So that γ increases as the player gets more
confident about the position of the goal, we set γ to
be the probability of the most probable position of
the goal: γ = max

u,v
πclick
j (click(u, v) | a1:t, sj).

5.2 Results
Figure 11 compares the two baselines with PIP on
the task of predicting human behavior as measured
by log-likelihood.4 To estimate the best possible

4We bootstrap the data 1000 times and we show 90% confi-
dence intervals.
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Figure 11: Average log-likelihood across messages.
(a) Performance of PIP and baselines on all time
steps. (b) Performance of PIP and baselines on only
the first time step along with the ceiling given by the
entropy of the human data. The error bars show 90%
confidence intervals.

(i.e., ceiling) performance, we compute the entropy
of the actions on the first time step based on approxi-
mately 100 data points per scenario. For each policy,
we rank the actions by their probability in decreas-
ing order (actions with the same probability are ran-
domly ordered), and then compute the average rank-
ing across actions according to the different policies;
see Figure 13 for the results.

To assess the different components (planning, in-
ference, pragmatics) of PIP, we run PIP, ablating
one component at a time from the default setting of
k = 1, f = 2, and b =∞ (see Figure 12).

Pragmatics. Let PIP-prag be PIP but with a prag-
matic depth (Eqn. 4) of k = 0 rather than k = 1,
which means that PIP-prag only draws inferences
based on the literal semantics of messages. PIP-prag
loses 0.21 in average log-likelihood per action, high-
lighting the importance of pragmatics in modeling
human behavior.

Planning. Let PIP-plan be PIP, but looking ahead
only f = 1 step when computing the expected util-
ity (Eqn. 3) rather than f = 2. With a shorter fu-
ture horizon, PIP-plan tries to give as much informa-
tion as possible at each turn, whereas human players
tend to give information about their state incremen-

tally. PIP-plan cannot capture this behavior and al-
locates low probability to these kinds of dialogue.
PIP-plan has an average log-likelihood which is 0.05
lower than that of PIP, highlighting the importance
of planning.

Inference. Let PIP-infer be PIP, but only looking at
the last utterance (b = 1) rather than the full history
(b = ∞). The results here are more nuanced. Al-
though PIP-infer actually performs better than PIP on
all games, we find that PIP-infer is worse than PIP by
an average log-likelihood of 0.15 in predicting mes-
sages after time step 3, highlighting the importance
of inference, but only in long games. It is likely
that additional noise involved in the inference pro-
cess leads to the decreased performance when back-
ward looking inference is not actually needed.

6 Related Work and Discussion

Our work touches on ideas in game theory, prag-
matic modeling, dialogue modeling, and learning
communicative agents, which we highlight below.

Game theory. According to game theory termi-
nology (Shoham and Leyton-Brown, 2008), Info-
Jigsaw is a non-cooperative (there is no offline op-
timization of the player’s policy before the game
starts), common-payoff (the players have the same
utility), incomplete information (the players have
private state) game with the sequential actions. One
related concept in game theory related to our model
is rationalizability (Bernheim, 1984; Pearce, 1984).
A strategy is rationalizable if it is justifiable to play
against a completely rational player. Another related
concept is epistemic games (Dekel and Siniscalchi,
2015; Perea, 2012). Epistemic game theory studies
the behavioral implications of rationality and mutual
beliefs in games.

It is important to note that we are not interested
in notions of global optima or equilibria; rather, we
are interested in modeling human behavior. Re-
stricting words to a very restricted natural language
has been studied in the context of language games
(Wittgenstein, 1953; Lewis, 2008; Nowak et al.,
1999; Franke, 2009; Huttegger et al., 2010).

Rational speech acts. The pragmatic component
of PIP is based on Rational Speech Act framework
(Frank and Goodman, 2012; Golland et al., 2010),
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Figure 13: Expected ranking of the human mes-
sages according to different policies. Error bars
show 90% confidence intervals.

which defines recurrences capturing how one agent
reasons about another. Similar ideas were explored
in the precursor work of Golland et al. (2010), and
much work has ensued (Smith et al., 2013; Qing and
Franke, 2014; Monroe and Potts, 2015; Ullman et
al., 2016; Andreas and Klein, 2016).

Most of this work is restricted to production and
comprehension of a single utterance. Hawkins et
al. (2015) extend these ideas to two utterances (a
question and an answer). Vogel et al. (2013b) in-

tegrates planning with pragmatics using decentral-
ized partially observable Markov processes (DEC-
POMDPs). In their task, two bots should find and
co-locate with a specific card. In contrast to Info-
Jigsaw, their task can be completed without commu-
nication; their agents only communicate once shar-
ing the card location. They also only study artifi-
cial agents playing together and were not concerned
about modeling human behavior.

Learning to communicate. There is a rich liter-
ature on multi-agent reinforcement learning (Buso-
niu et al., 2008). Some works assume full visibil-
ity and cooperate without communication, assuming
the world is completely visible to all agents (Lauer
and Riedmiller, 2000; Littman, 2001); others as-
sume a predefined convention for communication
(Zhang and Lesser, 2013; Tan, 1993). There is also
some work that learns the convention itself (Foerster
et al., 2016; Sukhbaatar et al., 2016; Lazaridou et al.,
2017; Mordatch and Abbeel, 2018). Lazaridou et al.
(2017) puts humans in the loop to make the commu-
nication more human-interpretable. In comparison
to these works, we seek to predict human behavior
instead of modeling artificial agents that communi-
cate with each other.

Dialogue. There is also a lot of work in compu-
tational linguistics and NLP on modeling dialogue.
Allen and Perrault (1980) provides a model that in-
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fers the intention/plan of the other agent and uses
this plan to generate a response. Clark and Brennan
(1991) explains how two players update their com-
mon ground (mutual knowledge, mutual beliefs, and
mutual assumptions) in order to coordinate. Recent
work in task-oriented dialogue uses POMDPs and
end-to-end neural networks (Young, 2000; Young et
al., 2013; Wen et al., 2017; He et al., 2017). In this
work, instead of learning from a large corpus, we
predict human behavior without learning, albeit in a
much more strategic, stylized setting (two words per
utterance).

7 Conclusion

In this paper, we started with the observation that hu-
mans use language in a very contextual way driven
by their goals. We identified three salient aspects—
planning, inference, pragmatics—and proposed a
unified model, PIP, that captures all three aspects si-
multaneously. Our main result is that a very simple,
context-independent literal semantics can give rise
via the recurrences to rich phenomena. We study
these phenomena in a new game, InfoJigsaw, and
show that PIP is able to capture human behavior.
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