
Event Time Extraction with a Decision Tree of Neural Classifiers

Nils Reimers†, Nazanin Dehghani‡∗, Iryna Gurevych†
† Ubiquitous Knowledge Processing Lab (UKP) and Research Training Group AIPHES

Department of Computer Science, Technische Universität Darmstadt
‡ School of Electrical and Computer Engineering, University of Tehran

www.ukp.tu-darmstadt.de

Abstract

Extracting the information from text when an
event happened is challenging. Documents do
not only report on current events, but also on
past events as well as on future events. Often,
the relevant time information for an event is
scattered across the document.

In this paper we present a novel method to auto-
matically anchor events in time. To our knowl-
edge it is the first approach that takes tempo-
ral information from the complete document
into account. We created a decision tree that
applies neural network based classifiers at its
nodes. We use this tree to incrementally infer,
in a stepwise manner, at which time frame an
event happened. We evaluate the approach on
the TimeBank-EventTime Corpus (Reimers et
al., 2016) achieving an accuracy of 42.0% com-
pared to an inter-annotator agreement (IAA) of
56.7%. For events that span over a single day
we observe an accuracy improvement of 33.1
points compared to the state-of-the-art CAEVO
system (Chambers et al., 2014). Without re-
training, we apply this model to the SemEval-
2015 Task 4 on automatic timeline generation
and achieve an improvement of 4.01 points
F1-score compared to the state-of-the-art. Our
code is publically available.1

1 Introduction

Knowing when an event happened is useful for a lot
of use cases. Examples are in the fields of time-aware
information retrieval, text summarization, automated
timeline generation, and automatic knowledge base
population. Many facts in a knowledge base are

∗During author’s internship in the research training group
AIPHES at UKP Lab, TU Darmstadt.

1https://github.com/ukplab/
tacl2017-event-time-extraction

only true for a certain time period, for example the
presidency of a person. Hence, the population of a
knowledge base can highly benefit from high quality
event and event time2 extraction (Surdeanu, 2013).

Inherent to events is the connection to time. Allan
(2002) defines an event as “something that happens
at some specific time and place”. The challenges for
automatic event time extraction are manifold. The
temporal information in news articles which states
when an event happened is, in most cases, not in
the same or in neighboring sentences with the event
(Reimers et al., 2016). It can be mentioned far before
the event or far after the event. Even worse, for more
than 60% of events, the specific day at which the
event happened is not mentioned. However, from the
world knowledge and causal relations, the reader can
infer a lot of temporal information about those events
and can often infer that the event happened before or
after some specific point in time.

In this paper we describe a new classifier for auto-
matic event time extraction. We use the TimeBank-
EventTime Corpus (Reimers et al., 2016) to train
and evaluate our proposed architecture. In contrast
to other corpora on temporal relations, the annota-
tion of the TimeBank-EventTime Corpus does not
make restrictions where, and in which form, tempo-
ral information for an event must be provided. The
annotators were allowed to take the whole document
into account and were asked to answer, to the best of
their ability, the question at which date or time period
the event happened.

The event time annotation for some sample events
is shown in the following:

• He was [sent]1980-05-26 into space on May 26,

2We will refer to the temporal information when an event
happened as event time.

77

Transactions of the Association for Computational Linguistics, vol. 6, pp. 77–89, 2018. Action Editor: Patrick Pantel.
Submission batch: 6/2017; Revision batch: 10/2017; Published 2/2018.

c©2018 Association for Computational Linguistics. Distributed under a CC-BY 4.0 license.

1980. He [spent]endPoint =1980-06-01
beginPoint=1980-05-26 six days

aboard the Salyut 6 spacecraft.

• [...] two areas [expected]endPoint =before 1998-02-06
beginPoint=before 1998-02-06

to be hardest [hit]after 1998-01-01 before 1998-01-31
when the effects of the Asian crisis [...].

This annotation imposes several challenges for an
automatic approach:

1. The number of possible labels is infinite, as date
values are part of the labels.

2. Due to the diverse types of events and due to
varying temporal information for events, the
structure of the labels varies.

3. Temporal information from the whole document
must be taken into account.

4. For 12.6% of the events, the event time label
is a combination of several temporal clues. An
example could be that the annotator combined
that the person went missing on the 15th and
that the person went missing in the month of
August. However, nowhere in text is the 15th of
August explicitly mentioned.

The main contribution of this paper is the proposal
of a novel combination of a decision tree combined
with neural network classifiers for the nodes to solve
the afore-mentioned challenges. To our knowledge,
this is the first system that works on the complete
document and can extract long-range relations be-
tween events and temporal expressions. Further, it is
the first system that focuses on extracting begin and
end points for events that span over multiple days.

Evaluated on the TimeBank-EventTime Corpus
(Reimers et al., 2016), it achieves an accuracy of
42.0% compared to an inter-annotator agreement
(IAA) of 56.7%. Compared to the state-of-the-art
CAEVO system (Chambers et al., 2014), we observe
a substantial improvement in accuracy of 33.7 per-
centage points for events that happened on a single
day. For Multi-Day Events, we observe an accuracy
of 24.3% using a strict metric.

We show that the proposed model generalizes well
to new tasks and textual domains. We applied it
without re-training to the SemEval-2015 Task 4 on
automatic timeline generation. There, it achieves an
improvement of 4.01 points F1-score compared to
the state-of-the-art.

2 Related Work

We start with a review on common annotation
schemes to capture temporal information for events
in documents. Afterwards, we present related work
on automatically extracting temporal information for
events.

2.1 Annotation of Events and Temporal
Information

One of the most widely used specifications for events
and temporal expressions is TimeML (Saurı́ et al.,
2004). It provides specifications for the annotation of
events, temporal expressions, and the temporal links
(TLINK). An event is defined as term for situations
that happen or occur. Temporal expressions, such
as times, dates, or durations, are annotated and their
temporal values are normalized using the definitions
of Ferro (2002). A TLINK is the relation between
two events, between an event and a temporal expres-
sion, or between two temporal expressions. TimeML
defines 14 different relation types, however, most
corpora which are using the TimeML specification
restrict the number of relations to a smaller set.

A prominent corpus using the TimeML specifica-
tions is the TimeBank Corpus (Pustejovsky et al.,
2003), which was also the basis for the three shared
tasks TempEval-1 (Verhagen et al., 2007), TempEval-
2 (Verhagen et al., 2010) and TempEval-3 (UzZaman
et al., 2013).

A drawback of TLINKs is the quadratic growth of
possible TLINKs with the number of events and tem-
poral expressions, resulting in more than 10,000 pos-
sible TLINKs for several documents in the TimeBank
Corpus. As the annotation of such a large number of
TLINKs would be impractical, annotation of those is
always restricted in some form. For the TimeBank
Corpus, only salient TLINKs were annotated. Which
links are salient isn’t well defined and a low agree-
ment between annotators can be observed. The three
TempEval shared tasks tried to improve the coverage
and added some further temporal links for mentions
in the same sentence. More dense annotations were
applied by Bramsen et al. (2006), Kolomiyets et al.
(2012), Do et al. (2012) and Cassidy et al. (2014).
While Bramsen et al., Kolomiyets et al., and Do et al.
only annotated some temporal links, Cassidy et al. an-
notated all Event-Event, Event-Time, and Time-Time

78

pairs in the same sentence as well as in the directly
succeeding sentence leading to the densest annota-
tion for the TimeBank Corpus. They used six differ-
ent relation types: BEFORE, AFTER, INCLUDES,
IS INCLUDED, SIMULTANEOUS, and VAGUE,
where VAGUE encodes that the annotators were not
able to make a statement on the temporal relation of
the pair.

2.2 Existent Event Time Extraction Systems

Most automatic approaches use the previously in-
troduced TLINKs to train and evaluate systems for
extracting temporal information about events. For a
new document, the system first extracts the temporal
relations between events and temporal expressions.
In a post-processing step, those TLINKs are used to
retrieve the information when an event happened.

Extracting the relations is often formulated as a
pair-wise classification task. Each pair of events
and/or temporal expressions is examined and classi-
fied according to the available relation classes. Ensur-
ing transitivity is a big challenge when formulating
this task as a pair-wise classification task. One sim-
ple but nonetheless frequently used solution is to
automatically infer all temporal relations that can be
derived from transitivity. Some systems have tried to
take advantage of global information to ensure transi-
tivity using Markov logical networks or integer linear
programming (Bramsen et al., 2006; Chambers and
Jurafsky, 2008; Yoshikawa et al., 2009; UzZaman
and Allen, 2010). However, the gains were minor.

Chambers et al. (2014) proposes the CAEVO-
system, a sieve-based-architecture that blends mul-
tiple classifiers into a precision-ranked cascade of
sieves. The system was trained and evaluated on the
TimeBank-Dense Corpus and created a dense TLINK
annotation for all pairs of events and/or temporal ex-
pressions in the same and in adjacent sentences. The
code is publically available.3

A bottleneck of current systems is the limitation to
TLINKs for pairs that are in the same or in adjacent
sentences. According to Reimers et al. (2016) 28.3%
of the events happen at the document creation time
(DCT). For the remaining 71.7% of events, the event
time must be inferred via TLINKs. However, for

3http://www.usna.edu/Users/cs/nchamber/
caevo/

58.7% of those events the most informative time ex-
pression4 is not in the same nor in the previous/next
sentence. In conclusion, for 42.1% of all the events
in a text it would be necessary to take long-range
TLINKs into account to correctly retrieve the event
time. Extending existing systems to take long-range
relations into account is difficult due to a lack of
training and evaluation data.

3 Event Time Annotation

We use the TimeBank-EventTime Corpus (Reimers et
al., 2016) to evaluate our architecture for automatic
event time extraction. The TimeBank-EventTime
Corpus does not use the concept of TLINKs, instead,
for every event, the annotators were asked to anchor
the event in time as precisely as possible.

The annotation distinguishes between events that
happened on a Single Day and Multi-Day Events that
span over multiple days. For Single Day Events, the
annotators provide the day the event happened in the
format YYYY-MM-DD. In the case the exact date is
not mentioned in the document, the annotators were
asked to anchor the event in time as precisely as
possible using the annotation before YYYY-MM-DD
and after YYYY-MM-DD. Before notes that the event
must have happened before the stated date and after
that the event must have happened after the date. A
combination of before and after is possible.

For Multi-Day Events, the annotators were asked
to provide the begin and the end point of the event.
As for Single Day Events, they were allowed to use
the before and after notation in the case the explicit
begin/end point is not mentioned in the document.

The annotated corpus contains news articles and
TV broadcast transcripts from various sources written
mainly between January and April 1998. The shortest
document has five sentences, while the longest has
63 sentences. A label distribution can be found in
(Reimers et al., 2016).

4 Automatic Event Time Extraction

In this section we first present our hierarchical tree
approach to automatically infer the event times in

4The most informative temporal expression is defined as the
temporal expression giving the reader the information at which
date, or in which time frame, the event happened.

79

a document. In Section 4.3 we present two base-
lines that we use for comparison: the first uses dense
TLINKs extracted by the CAEVO system and the
second baseline is a reduced version of the presented
tree approach.

4.1 Event Time Extraction using Trees

We use the tree structure depicted in Figure 1 to
extract the event time for a given target event. The
structure was inspired by how annotators labeled the
data. When annotating the text, the first decision is
typically whether the event is a Single Day Event
or a Multi-Day Event. In the case that it is a Single
Day Event, the next question is whether the event
happened at the Document Creation Time (DCT) or
not. As the annotated data comes from the news
domain, a large set of events (48.28% of the Single
Day Events) happened at the document creation time.
In the case the event did not happen at DCT, then the
annotator scanned the text to decide whether the date
when the event happened is explicitly mentioned or
not. If it is not mentioned, the annotator used the
before and after notation to define the time frame
when the event happened as precisely as possible. For
Multi-Day Events, the process is similar to determine
the begin and end point of the event.

The first classifier is a binary classifier to decide
whether the event is a Single or a Multi-Day Event.
In the case it is a Single Day Event, the next classifier
decides the relation between the event and the Doc-
ument Creation Time (DCT). In the case the event
happened at DCT, the architecture stops. If the event
happened before or after DCT, the next classifier is
invoked, detecting which temporal expressions are
relevant. For all relevant temporal expressions, it is
then determined whether the event happened simul-
taneously, before, or after the temporal expressions.
The final step (2.4) outputs a single event time by
narrowing down the information it receives from the
relation to DCT (2.1) and the pool of relevant tempo-
ral expressions and relations (2.3).

For Multi-Day Events the process is similar, how-
ever, the system must return the begin and the end
points. The system runs three processes in parallel:
it extracts the relations to relevant time expressions
for the begin point (3.1.1 and 3.1.2); it extracts the
relation to DCT (3.2) and; it extracts the relations to
relevant time expressions for the end point (3.3.1 and

3.3.2). There are three possible relations between a
Multi-Day Event and the DCT: the event started and
ended before the DCT; it started and ended after the
DCT; or it started before DCT and ended after DCT.
This information is taken into account in step 3.1.3
and 3.3.3 when producing single begin point and end
point information for the given event.

4.2 Local Classifiers

This section describes the different local classifiers
applied in our tree structure. For all except the Nar-
row Down classifier, we used the Convolutional Neu-
ral Networks Architecture (Lecun, 1989) depicted
in Figure 2. The Narrow Down classifier is a sim-
ple, hand-crafted, rule-based classifier described in
Section 4.2.6.

4.2.1 Neural Network Architecture
We use the same neural network architecture with

slightly different configurations for the different local
classifiers. The architecture is depicted in Figure 2
and is described in the following sections.

The neural network architecture is based on the
design proposed by Zeng et al. (2014), which can
achieve state-of-the-art performance on relation clas-
sification tasks (Zeng et al., 2014; dos Santos et al.,
2015). The neural network applies a convolution over
the word representations and position embeddings of
the input text followed by a max-over-time pooling
layer. We call the output of this layer Input Text Fea-
tures. Those Input Text Features are merged with the
word embedding for the event and time expression
token. The merged input is fed into a hidden layer
using either the hyperbolic tangent tanh(·) or a rec-
tified linear unit (ReLU) as activation function. The
choice of the activation function is a hyperparameter
and was optimized on a development set. The final
layer is either a single sigmoid neuron, in the case
of binary classification, or a softmax layer. To avoid
overfitting, we used two dropout layers (Srivastava et
al., 2014), the first before the dense hidden layer and
the second after the dense hidden layer. The percent-
ages of the dropouts were set as hyperparameters.

Word Embeddings. We used the pre-trained
word embeddings presented by Levy and Goldberg
(2014). The embedding layer of our neural networks
maps each token from the input text to their respec-
tive word embedding. Out-of-vocabulary tokens are

80

Figure 1: Tree structure used to extract the temporal information for an event. Rectangles are local classifiers based on
deep convolutional neural networks except for the Narrow Down rectangles, which are simple rule based classifiers.

Figure 2: The neural network architecture used for the different local classifiers.

replaced with a special UNKNOWN token, for which
the word embedding was randomly initialized.

Position Embeddings. Collobert et al. (2011) pro-
poses the use of position embeddings to keep track
how close words in the input text are to certain tar-
get words. For each input text, we specify certain
words as targets. For example, we specify the event
and the temporal expression as target words and train
the network to learn the temporal relation between
those. Each word in the input text is then augmented
with the relative distances. Let pos1, pos2, ... be the
positions of the target words in the input text. Then,
a word at position j is augmented with the features

j − pos1, j − pos2, · · · . These augmented position
features are then mapped in the embedding layer to
a randomly initialized vector. The dimension of this
vector is a hyperparameter of the network.

The word embeddings and the position embed-
dings are concatenated to form the input for the con-
volutional layer. In the case of two target words, the
input for the convolutional layer would be:

emboutput = {[wew1 , pe1−pos1 , pe1−pos2], [wew2 ,

pe2−pos1 , p2−pos2], ..., [wewn , pen−pos1 , pen−pos2]}

with wewj the embedding of the j-th word in the

81

input text, pej−posk the embedding for the distance
between the j-th word and the target word k.

Convolutional & Max-Over-Time Layer. A
challenge for the classifier is the variable length of
the input text and that important information can be
anywhere in the input text. To tackle this issue, we
use a convolutional layer to compute a distributed
vector representation of the input text. Let us define
a vector xk as the concatenation of the word and po-
sition embeddings for the position k as well as for m
positions to the left and to the right:

xk = ([wewk−m , pek−m−pos1 , pek−m−pos2]||...||
[wewk , pek−pos1 , pek−pos2]||...||
[wewk+m , pek+m−pos1 , pek+m−pos2])

The convolutional layer multiplies all xk by a
weight matrix W1 and applies the activation func-
tion component-wise. After that, a max-over-time is
applied, i.e., the max-function is applied component-
wise. The j-th entry of the convolutional and max-
over-time layer output is defined as:

[convoutput]j = max
1≤k≤n

[tanh(W1xk)]j

Lexical Features. Previous approaches heavily
rely on lexical features. For example, the CAEVO
system (Chambers et al., 2014) uses, for the classifi-
cation of event-time edges, the token, the lemma, the
POS tag, the tense5, the grammatical aspect6 and the
class of event7 as well as the parse tree between event
and time expression. In our evaluation, we did not
observe that these features have a significant impact
on the performance. Hence, we decided to use the
event and time tokens as the only features besides
the dense vector representation of the input text. For
multi-token expressions, we only use the first token.

Our architecture focuses on extracting the
event time when event annotations and temporal
expressions are provided. In order to evaluate the
accuracy of this isolated step, we decided to use the
provided annotations in the corpus. The baselines we

5Defined tenses: simple, perfect, and progressive
6Defined aspects in TimeBank: past, present, future
7Defined classes in TimeBank: occurrence, perception, re-

porting, aspectual, state, i state, i action

compared against use these gold annotations as well.

Output. The distributed vector representation of
the input text and the embeddings of event/time token
are concatenated and passed through a dense layer.
As the activation function, we allowed either the hy-
perbolic tangent or the rectified linear unit (ReLU).
The choice is a parameter of the network. The final
layer is either a single sigmoid neuron, in the case of
binary classification, or a softmax layer to compute
the probabilities of the different tags.

4.2.2 Single vs. Multi-Day Event Classification
The first local classifier, that decides whether an

event is a Single Day Event or a Multi-Day Event,
uses the event word as the target word.

4.2.3 DCT Classification
A Single Day Event can happen either before

the document was created (Before-class), on the
same day (Simultaneous-class), or it will hap-
pen at least one day after the document was created
(After-class). The configuration of this local clas-
sifier is as in the previous section.

Note, to classify the relation to the DCT, in most
cases, it was not important to know the concrete
Document Creation Time. Therefore, we did not
pass the DCT as a value to the network.

For Multi-Day Events, we decided to group the
events into three categories: first, events that be-
gan and ended before the Document Creation Time
(Before-class); second, events that began before
DCT and ended after DCT (Includes-class); and
third, events that will begin and end after DCT
(After-class).

4.2.4 Detecting Relevant Time Expressions
In the case the event did not happen at the DCT,

it is important to take the surrounding text and po-
tentially the whole document into account to figure
out at which date the event happened. For our classi-
fier, we assume that temporal expressions are already
detected in the document. To detect temporal ex-
pressions, tools like HeidelTime8 can be used that
achieve an F1-score of 0.919 on extracting temporal
expressions in the TimeBank Corpus (Strötgen and
Gertz, 2015).

8https://github.com/HeidelTime

82

As an intermediate step to detect when an event
happened, we first decide whether the temporal ex-
pression is relevant for the event or not. We define
a temporal expression to be relevant, if the (normal-
ized) value of the temporal expression is part of the
event time annotation. The value of the temporal ex-
pression can either be the event time, or it can appear
in the before or after notation.

The classifier is executed for all event and temporal
expression pairs. The input text for the distributed
text representation is the text between the event and
the temporal expression.

4.2.5 Temporal Relation Classification
Given the relevant temporal expression for an

event from the previous step, the next local classi-
fier establishes the temporal relation between the
event and the temporal expression. For a given,
relevant event-temporal expression pair, it outputs
BEFORE - when the event happened before the tem-
poral expression, AFTER - when it happened after,
or SIMULTANEOUS - when it happened on the men-
tioned date. This local classifier has the same configu-
ration as the network used to detect relevant temporal
expression.

4.2.6 Narrow Down Classifier
The goal of the Narrow Down Classifier, that is

used in step 2.4, 3.1.3 and 3.3.3 in Figure 1, is to
derive the final label given the information on the rel-
evant temporal expressions, their relation to the event,
and the relation to the document creation time. For
most events in the corpus, this information was un-
ambiguous, e.g., only one temporal expression was
classified as relevant for the event. The proposed
approach returns multiple relevant temporal expres-
sions only for a small fraction of events. However,
this number was too small to train and to validate a
learning algorithm for this stage. Hence, we decided
to implement a straightforward, rule-based classifier.
This classifier is depicted in Algorithm 1.

It takes all relations to relevant temporal expres-
sions as well as the relation to the Document Cre-
ation Time to derive the final output. In the case a
SIMULTANEOUS relation exists, the classifier stops
and the appropriate temporal expression is used as
event time. If no such relation exists, a frequency
distribution of the linked dates and relations is cre-

ated for BEFORE as well as for AFTER relations.
For example, when the system extracts three relevant
BEFORE relations of different mentions of date1
throughout the text and two relevant BEFORE rela-
tions of different mentions of date2, then the sys-
tem would choose date1 as a slot-filler for the be-
fore property. If there are as many relevant BEFORE
relations for date1 as for date2, the system will
choose the lowest date for the before property (line
13-18). For AFTER relations, we use the same logic,
except that we choose the largest date (line 23).

Algorithm 1 Narrow Down Classifier
1: function NARROWDOWN(times)
2: fd before, fd after = FreqDistribution()
3: for [relation, time] in times do
4: if relation is SIMULTANEOUS then
5: return time
6: else if relation is BEFORE then
7: fd before.new sample(time)
8: else if relation is AFTER then
9: fd after.new sample(time)

10: end if
11: end for
12: //fd before elements have the fields .num=#samples

and .time=time value
13: if fd before.size > 0 then
14: // find the largest number of samples of a time
15: max samples = fd before.max(.num)
16: //take minimum over all times having max samples
17: before time = fd before.filter(.num ==

max samples).min(.time)
18: end if
19: if fd after.size > 0 then
20: // find the largest number of samples of a time
21: max samples = fd after.max(.num)
22: //take maximum over all times having max samples
23: after time = fd after.filter(.num ==

max samples).max(.time)
24: end if
25: return after + after time + before + before time
26: end function

4.3 Baseline

We use two baselines to compare our system. As
the first baseline, we use the system presented in
Reimers et al. (2016). The baseline is based on the
multi-pass architecture CAEVO introduced by Cham-
bers et al. (2014) and extracts all TLINKs between
event mentions and temporal expressions. The sys-
tem by Chambers et al. applies multiple rules and
trained classifiers to extract those TLINKs. The dif-

83

ferent stages are ranked by precision and are executed
consecutively. A shortcoming of the system is that
it does not produce temporal information if an event
lasted for more than a day. Hence, the system cannot
be used to distinguish between Single Day and Multi-
Day Events, nor can it extract the begin/end points
for Multi-Day Events.

Our previously presented baseline uses the ex-
tracted relations for Single Day Events and gener-
ates a set of <relation, time> tuples in which the
event is involved. We use the narrow down classifier
from section 4.2.6 to extract the final label. When all
extracted relations are of type VAGUE, the baseline
returns that it cannot infer the time for the event.

The second baseline is a reduced version of the
hierarchical tree. For this baseline, we first apply
the classifier to decide whether it is a Single Day or
Multi-Day Event. When it is a Single Day Event, we
classify the relation to the document creation time
(DCT) (classifier 2.1). When the event did not happen
at DCT, we link it to the closest temporal expression
in the document. For Multi-Day Events, we only run
the classifier 3.2 to extract the relation to DCT. When
the event happened before DCT, we set the begin and
end point to BEFORE DCT; when it happened after
DCT, we set both to AFTER DCT; and, when the
relation was Includes, we set the begin point to
BEFORE DCT and the end point to AFTER DCT.

5 Experimental Setup

We conduct our experiments on the TimeBank-
EventTime Corpus (Reimers et al., 2016). The corpus
is comprised of 36 documents and 1498 annotated
events. We use the same split into training, develop-
ment, and test set as Chambers et al. (2014) resulting
in 22 documents for training, 5 documents for hyper-
parameter optimization, and 9 documents for the final
evaluation. Using this split allows a fair comparison
to the CAEVO system.

Hyperparameters for the individual local classi-
fiers were chosen using random search (Bergstra and
Bengio, 2012) with at least 1000 iterations per local
classifier.

6 Experimental Results

We evaluate our system using two different metrics.
The strict metric requires an exact match between

the predicted label and the gold label. A disadvantage
of this metric is that it does not allow partial agree-
ment. The strict agreement between two annotators
is fairly low for events where the exact date of the
event was not mentioned.

In order to allow partial matches, we will also use
a relaxed metric, which will judge two different la-
bels only as an error, if those are mutually exclusive.
Two labels are mutually exclusive, if there is no event
date which could satisfy both labels at the same time.
If the event happened on August 5th, 1998, the two
annotations before 1998-08-31 and after 1998-08-01
before 1998-08-31 would both be satisfied. There-
fore, these two different labels would be considered
as correct. In contrast, the two annotations after 1998-
02-01 and before 1997-12-31 can never be satisfied at
the same time and are therefore mutually exclusive.

The score of the relaxed metric must be seen in
combination with the strict metric. A system could
trick the relaxed metric by returning a before date
that is far in the future which results in a high relaxed
score but a negligible strict score. Future research
is necessary to judge the quality of different kind of
partial matches and to design an appropriate metric.

6.1 System Performance
Following the recommendations in (Reimers and
Gurevych, 2017), we train the system with 25 dif-
ferent random seed values, and compute the mean
performance score and the standard deviation. Table
1 shows the results in comparison to the observed
inter-annotator agreement (IAA). The inter-annotator
agreement is based on two full annotations of the cor-
pus. The chance-corrected agreement is α = 0.617
using Krippendorff’s α (Krippendorff, 2004). The
two annotations were merged into a final gold label
annotation of the corpus, which we used for training
and evaluation.

The accuracy to distinguish between Single Day
and Multi-Day Events is 78.2% on the test set, in
comparison to an inter-annotator agreement of 81.8%.
The overall performance is 42.0%, compared to an
IAA of 56.7% using the strict metric.

For Multi-Day Events, we observe an accuracy
with the strict metric of 24.5%, compared to an IAA
of 52.0%. Breaking it down to the begin- and end-
point extraction, we observe a much lower accuracy
for the begin point extraction of just 28.5%, com-

84

System IAA
Single vs. Multi-Day 78.2% ± 1.33 81.8%
Single Day (Strict) 74.6% ± 1.04 80.5%
Single Day (Relaxed) 92.5% ± 0.60 98.0%
Multi-Day (Strict) 24.5% ± 1.61 52.0%

Begin (Strict) 28.5% ± 0.73 63.8%
End (Strict) 66.5% ± 1.02 74.9%

Multi-Day (Relaxed) 74.6% ± 0.55 94.6%
Begin (Relaxed) 94.9% ± 0.38 98.6%
End (Relaxed) 80.2% ± 0.73 96.1%

Overall Acc. (Strict) 42.0% ± 1.21 56.7%
Overall Acc. (Relaxed) 84.6% ± 0.71 95.3%

Table 1: Accuracy for the different stages of our system
in comparison to the observed inter-annotator agreement
(IAA). The strict metric requires an exact match between
the labels. The relaxed metric requires that the two anno-
tations are not mutually exclusive.

pared to 66.7% accuracy for the end point extraction.
However, using the relaxed metric, we see an accu-
racy of 94.9% for the begin point and 80.2% for the
end point. We can conclude that the extraction of
the begin point works well, however, in a large set of
cases (66.7%) the extracted begin point is less precise
than the gold annotation.

The baseline based on the CAEVO system from
Chambers et al. (2014) can only be applied to Single
Day Events, as TLINK types that define the start
or the end of an event do not exist. We ran this
baseline on all events that were correctly identified as
Single Day Events. The performance of this baseline
is depicted in Table 2. For the proposed approach
we observe a performance increase from 41.2% to
74.6%. For 18.3% of the events, the retrieved label
of the proposed approach was less precise than the
gold label. An example of a less precise label would
be before 1998-12-31 while the gold label was before
1998-08-15. A clear wrong label was observed for
7.1% of the generated labels.

A big disadvantage of a dense TLINK annotation
is the restriction of TLINKs for events and temporal
expression that are in the same, or in adjacent, sen-
tences. For 32.0% of the events, the baseline was not
able to infer any event time information. As our sys-
tem outputs a label for every event, we see a slightly
increased number of wrong labels in comparison to
the baseline.

Single Day Events Ours CAEVO
Exact match 74.6% 41.2%
Less precise 18.3% 21.5%
Wrong label 7.1% 5.4%
Cannot infer time - 32.0%

Table 2: Distribution of the retrieved labels for the pro-
posed system and for the baseline. Less precise are labels
where the time frame when the event has happened is
larger than for the gold label. Wrong label are labels
which are in clear contradiction to the gold standard.

Table 3 compares the proposed system against the
reduced tree that only classifies the type of the event
(Single Day or Multi-Day) and the relation to the doc-
ument creation time. We observe a significant drop
in accuracy for Single Day Events, indicating that
just classifying the relation to the document creation
time is insufficient for this task.

System SD MD Overall
Full system 74.6% 24.3% 42.0%
Reduced tree 40.4% 19.6% 24.2%
CAEVO 41.2% - 18.1%

Table 3: Comparison of the accuracy (strict metric) for
Single Day Events (SD), Multi-Day Events (MD) and
overall. Reduced tree uses only the local classifiers 1, 2.1
and 3.2.

6.2 Error Analysis

Error propagation is an important factor in a decision
tree. Table 4 depicts the accuracy of the different
local classifiers. We compare those to a Majority
Vote baseline. For all local classifiers we can see a
large performance increase over the baseline. We
observe the lowest accuracy for the classifiers of the
begin point (3.1.1. and 3.1.2.). This is in line with the
previous observation of the low accuracy for begin
point labels as well as with the low IAA for begin
point annotations.

The root classifier, which decides whether the
event is a Single Day or a Multi-Day Event, is the
most critical classifier. This classifier is responsible
for 21.7% of the erroneously labeled events. How-
ever, with an accuracy of 78.3% it is already fairly
close to the IAA of 81.6% and it is unclear if this
classifier could substantially be improved.

85

System Majority Vote
1. Event Type 78.3% 54.5%
Single Day Event

2.1. DCT Rel. 84.2% 55.6%
2.2. Relevant 79.1% 66.0%
2.3. Relation 81.0% 72.7%

Multi-Day Event
3.1. Begin Point

3.1.1. Relevant 79.0% 68.9%
3.1.2. Relation 63.1% 42.9%

3.2. DCT Rel. 65.2% 46.8%
3.3. End Point

3.3.1. Relevant 83.8% 65.1%
3.3.2. Relation 85.1% 79.0%

Table 4: Accuracy for the different local classifiers vs. a
Majority Vote baseline. Local classifiers are numbered as
depicted in Figure 1.

As mentioned in the introduction, the annotators
were not restricted to the dates that are explicitly
mentioned in the document but could also create new
dates. For example, in the sentence It’s the [second
day]date:1998-03-06 of an [offensive]beginPoint=1998-03-05...
it is clear for the annotator that the offensive started
on 1998-03-05. However, this date is not explicitly
mentioned in the text, only the date 1998-03-06 is
mentioned. We call such dates out-of-document dates.
Handling those cases is extremely difficult and our
system is currently not capable of creating such out-
of-document dates. Table 5 depicts the error rate
introduced by those dates.

As the table depicts, 12.6% of the event time labels
are affected by out-of-document dates. An especially
high percentage of such dates is observed for the be-
gin point of Multi-Day Events. In a lot of these cases
the document states either an explicit or a rough esti-
mation on the duration of the event. In the previous
example, the text stated that the offensive already
lasted for two days. In another example, the docu-
ment gives the information that the event started in
recent years or that it lasted for roughly 2 1/2 years.

6.3 Ablation Test

Table 6 presents the changes in accuracy in per-
centage points when individual components of the
proposed system are changed. We observe a slight

Out-of-document dates
Single Day Events 3.0%
Multi-Day Events 24.1%

Begin Point 17.0%
End Point 9.9%

Overall 12.6%

Table 5: Percentage of labels in the test set affected by
out-of-document dates.

drop of -2.3 percentage points if bidirectional LSTM-
networks with 100 recurrent units are used instead
of Convolutional Neural Networks. LSTM-networks
showed for other NLP tasks state-of-the-art perfor-
mance, however, for this task they were not able to
improve the performance. One reason could be the
comparably small training set of 22 documents. A
further disadvantage of the BiLSTM-networks was
the significantly longer training time, prohibiting run-
ning an extensive hyperparameter tuning.

Configuration Accuracy
Full system 42.0%
BiLSTM instead of CNN -2.3
Rnd. word embeddings -7.7
No input text feature -9.7
No position feature -3.9
No narrow down -1.3

Table 6: Change in accuracy (strict metric) in percent-
age points when replacing individual components of the
architecture.

An important factor for the performance was the
pre-trained word embeddings. Replacing those with
randomly initialized embeddings decreased the per-
formance by -7.7 percentage points. As before, we
think this is due to the small training size. A large
number of test tokens do not appear in the training
set and several tokens only appear infrequently in the
training set. Hence, the network is not able to learn
meaningful representations for those words.

Our system successfully uses the text between the
event and the temporal expression (Input Text Fea-
tures) for classifying the relation between those. Re-
moving this part of the architecture decreases the ac-
curacy by -9.7 percentage points. Further, it appears
that not only the token itself, but also the position of
the token relative to the event / time token is taken

86

into account. Removing this position information
from the input text feature reduces the performance
by -3.9 percentage points.

Replacing the narrow down classifier with a classi-
fier that randomly selects one of the relevant temporal
expressions reduces the performance by only -1.3 per-
centage points. For most events, there was only one
relevant temporal expression extracted. We analyzed
the parameter settings for the top five performing lo-
cal classifiers for each stage. The activation function
(tanh and ReLU) appears to have a negligible impact
on the performance.

6.4 Event Timeline Construction
We evaluated our system on the shared task SemEval-
2015 Task 4: TimeLine: Cross-Document Event Or-
dering (Minard et al., 2015). The goal is to construct
an event timeline for a target entity given a set of 30
documents from Wikinews on certain topics. We use
the setting of Track B, where the events are provided.
We used HeidelTime to detect and normalize time
expressions. We then ran our system out of the box,
i.e., without retraining for the new dataset.

For the shared task, an event can occur either at a
specific day, in a specific month, or in a specific year.
Events that can not be anchored in time are removed
from the evaluation. We implemented simple rules
that transform our system output to the format of
the shared task: if an event is simultaneous with a
specific time expression, we will output this date. If
our system returns that it happened before and after a
certain date, it will output the year and month if both
dates are in the same month. If both dates are in the
same year but in different months, it will output the
year. Events with predicted timespans of over more
than one year are rejected. For Multi-Day Events, we
only use the begin point as only this information was
annotated for this shared task.

Two teams participated in the shared task (GPL-
SIUA and HeidelToul). Currently, the best published
performance was achieved by Cornegruta and Vla-
chos (2016) with an F1-score of 28.58. Our system
was able to improve the total F1-score by 4.01 points
as depicted in Table 7.

A challenge for our system is the different anchor-
ing of events in time: while our system can anchor
events at two arbitrary dates, the SemEval-2015 Task
4 only anchors events either at a specific day, month

System Airbus GM Stock Total
Our approach 30.37 28.83 38.01 32.59
Cornegruta 25.65 26.64 32.35 28.58
GPLSIUA 1 22.35 19.28 33.59 25.36
HeidelToul 2 16.50 10.94 25.89 18.34

Table 7: Performance of our system on the SemEval-2015
Task 4 Track B for the topics Airbus, General Motors, and
stock market.

or year. When our system returns the event time
value after 2010-10-01 and before 2010-11-30, we
had to decide how to anchor this event for the gen-
erated timeline. For such an event, three final labels
would be plausible: 2010-10-xx, 2010-11-xx, and
2010-xx-xx. A similar challenge occurs for events
that received a label like before 2010-11-30. If we
anchor it in 2010-11-xx, we must be certain that the
event happened in November. Similarly, if we an-
chor it in 2010-xx-xx, we must be certain that the
event happened in 2010. Such information cannot
be inferred directly from the returned label of our
system. As only 30 documents on a single topic were
provided for training, we could not tune the transfor-
mation accordingly. A manual analysis revealed that
this transformation caused around 15% of the errors.

7 Conclusion

Event Time Extraction is a challenging classifica-
tion task as the set of labels is infinite and the label
depends on the information that is scattered across
the document. The presented classifier is able to
take the whole document into account and to infer
the date when an event has happened. We applied
the system to the TimeBank-EventTime Corpus and
achieved an accuracy of 42.0% in comparison to an
inter-annotator agreement of 56.7% using a strict
metric. For 74.6% of the Single Day events, the
exact event time could be extracted. This is a 33.1
percentage points improvement in comparison to the
state-of-the-art approach by Chambers et al. (2014).

We demonstrated the generalizability by applying
it to the SemEval-2015 Task 4 on timeline generation,
where it improved the F1-score by 4.01 percentage
points compared to the state-of-the-art.

87

Acknowledgements

This work has been supported by the German Re-
search Foundation as part of the Research Training
Group Adaptive Preparation of Information from Het-
erogeneous Sources (AIPHES) under grant No. GRK
1994/1. We would like to thank the TACL editors and
reviewers for their effort and the valuable feedback
we received from them.

References

James Allan. 2002. Topic Detection and Tracking: Event-
based Information Organization. pages 1–16. Kluwer
Academic Publishers, Norwell, MA, USA.

James Bergstra and Yoshua Bengio. 2012. Random
Search for Hyper-parameter Optimization. J. Mach.
Learn. Res., 13:281–305, February.

Philip Bramsen, Pawan Deshpande, Yoong Keok Lee, and
Regina Barzilay. 2006. Inducing Temporal Graphs.
In Proceedings of the 2006 Conference on Empirical
Methods in Natural Language Processing, EMNLP ’06,
pages 189–198, Stroudsburg, PA, USA. Association for
Computational Linguistics.

Taylor Cassidy, Bill McDowell, Nathanael Chambers, and
Steven Bethard. 2014. An Annotation Framework for
Dense Event Ordering. In Proceedings of the 52nd
Annual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers), pages 501–506,
Baltimore, Maryland, USA. Association for Computa-
tional Linguistics.

Nathanael Chambers and Dan Jurafsky. 2008. Jointly
combining implicit constraints improves temporal or-
dering. In Proceedings of the Conference on Empirical
Methods in Natural Language Processing, EMNLP ’08,
pages 698–706, Stroudsburg, PA, USA. Association for
Computational Linguistics.

Nathanael Chambers, Taylor Cassidy, Bill McDowell, and
Steven Bethard. 2014. Dense Event Ordering with a
Multi-Pass Architecture. Transactions of the Associa-
tion for Computational Linguistics, 2:273–284.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa. 2011.
Natural language processing (almost) from scratch. J.
Mach. Learn. Res., 12:2493–2537, November.

Savelie Cornegruta and Andreas Vlachos. 2016. Time-
line extraction using distant supervision and joint in-
ference. In Proceedings of the 2016 Conference on
Empirical Methods in Natural Language Processing,
EMNLP 2016, Austin, Texas, USA, November 1-4, 2016,
pages 1936–1942.

Quang Xuan Do, Wei Lu, and Dan Roth. 2012. Joint
Inference for Event Timeline Construction. In Pro-
ceedings of the 2012 Joint Conference on Empirical
Methods in Natural Language Processing and Compu-
tational Natural Language Learning, EMNLP-CoNLL
’12, pages 677–687, Stroudsburg, PA, USA. Associa-
tion for Computational Linguistics.

Cı́cero Nogueira dos Santos, Bing Xiang, and Bowen
Zhou. 2015. Classifying Relations by Ranking with
Convolutional Neural Networks. In Proceedings of the
53rd Annual Meeting of the Association for Computa-
tional Linguistics and the 7th International Joint Con-
ference on Natural Language Processing of the Asian
Federation of Natural Language Processing, ACL 2015,
July 26-31, 2015, Beijing, China, Volume 1: Long Pa-
pers, pages 626–634.

Lisa Ferro. 2002. TIDES. Instruction Manual for the
Annotation of Temporal Expressions. Technical report,
MITRE TECHNICAL REPORT.

Oleksandr Kolomiyets, Steven Bethard, and Marie-
Francine Moens. 2012. Extracting Narrative Timelines
As Temporal Dependency Structures. In Proceedings
of the 50th Annual Meeting of the Association for Com-
putational Linguistics: Long Papers - Volume 1, ACL
’12, pages 88–97, Stroudsburg, PA, USA. Association
for Computational Linguistics.

Klaus Krippendorff. 2004. Content Analysis: An In-
troduction to Its Methodology (second edition). Sage
Publications.

Yann Lecun, 1989. Generalization and network design
strategies. Elsevier.

Omer Levy and Yoav Goldberg. 2014. Dependency-
Based Word Embeddings. In Proceedings of the 52nd
Annual Meeting of the Association for Computational
Linguistics, ACL 2014, June 22-27, 2014, Baltimore,
MD, USA, Volume 2: Short Papers, pages 302–308.

Anne-Lyse Minard, Manuela Speranza, Eneko Agirre,
Itziar Aldabe, Marieke van Erp, Bernardo Magnini,
German Rigau, and Ruben Urizar. 2015. SemEval-
2015 Task 4: TimeLine: Cross-Document Event Order-
ing. In Proceedings of the 9th International Workshop
on Semantic Evaluation, SemEval@NAACL-HLT 2015,
Denver, Colorado, USA, June 4-5, 2015, pages 778–
786.

James Pustejovsky, Patrick Hanks, Roser Sauri, Andrew
See, Robert Gaizauskas, Andrea Setzer, Dragomir
Radev, Beth Sundheim, David Day, Lisa Ferro, and
Marcia Lazo. 2003. The TIMEBANK Corpus. In Pro-
ceedings of Corpus Linguistics 2003, pages 647–656,
Lancaster, UK.

Nils Reimers and Iryna Gurevych. 2017. Reporting Score
Distributions Makes a Difference: Performance Study
of LSTM-networks for Sequence Tagging. In Proceed-
ings of the 2017 Conference on Empirical Methods in

88

Natural Language Processing (EMNLP), pages 338–
348, Copenhagen, Denmark, September.

Nils Reimers, Nazanin Dehghani, and Iryna Gurevych.
2016. Temporal Anchoring of Events for the Time-
Bank Corpus. In Proceedings of the 54th Annual Meet-
ing of the Association for Computational Linguistics
(ACL 2016), volume 1: Long Papers, pages 2195–2204.
Association for Computational Linguistics, August.

Roser Saurı́, Jessica Littman, Robert Gaizauskas, Andrea
Setzer, and James Pustejovsky. 2004. TimeML Anno-
tation Guidelines, Version 1.2.1.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya
Sutskever, and Ruslan Salakhutdinov. 2014. Dropout:
A Simple Way to Prevent Neural Networks from Over-
fitting. J. Mach. Learn. Res., 15(1):1929–1958, Jan-
uary.

Jannik Strötgen and Michael Gertz. 2015. A Baseline
Temporal Tagger for all Languages. In Proceedings
of the 2015 Conference on Empirical Methods in Nat-
ural Language Processing, pages 541–547, Lisbon,
Portugal, September. Association for Computational
Linguistics.

Mihai Surdeanu. 2013. Overview of the TAC 2013
Knowledge Base Population Evaluation: English Slot
Filling and Temporal Slot Filling. In Proceedings of
the TAC-KBP 2013 Workshop, Gaithersburg, Maryland,
USA.

Naushad UzZaman and James F. Allen. 2010. TRIPS
and TRIOS System for TempEval-2: Extracting Tem-
poral Information from Text. In Proceedings of the
5th International Workshop on Semantic Evaluation,
SemEval ’10, pages 276–283, Stroudsburg, PA, USA.
Association for Computational Linguistics.

Naushad UzZaman, Hector Llorens, Leon Derczynski,
Marc Verhagen, James F. Allen, and James Pustejovsky.
2013. SemEval-2013 Task 1: TempEval-3: Evaluating
Time Expressions, Events, and Temporal Relations. In
Proceedings of the 7th International Workshop on Se-
mantic Evaluation (SemEval 2013), pages 1–9, Atlanta,
Gerogia, USA.

Marc Verhagen, Robert Gaizauskas, Frank Schilder, Mark
Hepple, Graham Katz, and James Pustejovsky. 2007.
SemEval-2007 Task 15: TempEval Temporal Rela-
tion Identification. In Proceedings of the 4th Inter-
national Workshop on Semantic Evaluations, SemEval
’07, pages 75–80, Stroudsburg, PA, USA. Association
for Computational Linguistics.

Marc Verhagen, Roser Saurı́, Tommaso Caselli, and James
Pustejovsky. 2010. SemEval-2010 Task 13: TempEval-
2. In Proceedings of the 5th International Workshop
on Semantic Evaluation, SemEval ’10, pages 57–62,
Stroudsburg, PA, USA. Association for Computational
Linguistics.

Katsumasa Yoshikawa, Sebastian Riedel, Masayuki Asa-
hara, and Yuji Matsumoto. 2009. Jointly Identifying
Temporal Relations with Markov Logic. In Proceed-
ings of the Joint Conference of the 47th Annual Meeting
of the ACL and the 4th International Joint Conference
on Natural Language Processing of the AFNLP: Vol-
ume 1, ACL ’09, pages 405–413, Stroudsburg, PA,
USA. Association for Computational Linguistics.

Daojian Zeng, Kang Liu, Siwei Lai, Guangyou Zhou, and
Jun Zhao. 2014. Relation Classification via Convolu-
tional Deep Neural Network. In COLING 2014, 25th
International Conference on Computational Linguis-
tics, Proceedings of the Conference: Technical Papers,
August 23-29, 2014, pages 2335–2344, Dublin, Ireland.

89

90

