
Explana~..: 3tructures in XSEL

Karen Kukich

Computer Science Department

Carnegie-Mellon University

Pittsburgh, PA 15213

412-578.2621

Kukich@CMU-CS-A

1. Introduct ion

Expert systems provide a rich testbed from which to develop

and test techniques for natural language processing. These

systems capture the knowledge needed to solve real-world

problems in their respective domains, and that knowledge can

and should be exploited for testing computational procedures for

natural language processing. Parsing. semantic ,nterpretation,

dialog monitoring, discourse organization, and text gef,eration

are just a few of the language processinq problems that might

takeadvantage of the pre.structured semantic knowledge of an

expert system. In particular, the need for explanation generation

facilities for expert systems provides an opportunity to explore

the relationships between the underlying knowleqge structures

needed for automated reasoning and those needed for natural

language processing. One such exploration was the

development of an explanation generator for XSEL, which is an

expert system that hellos a salesperson in producing a purchase

order for a computer system[10]. This pager describes a

technique called "link-dependent message generation" that

forms the basis for explanation generation in XSEL.

1.1. Overview of XSEL

Briefly, the function of the XSEL system is to assist a

salesperson in configuring a custom-tailored purchase order for

a Digital Equipment Corporation VAX computer system. XSEL

works with the salesperson tO elicit the functional computing

requirements of the individual customer, and then goes on to

select the components that best fit those requirements. The

output of an XSEL session is a purchase order consisting of a list

of line-items that specify hardware and software components.

There ~re two main phases to XSEL's processincj, a fact

gathering phase and a component select=on phase. During the

fact gathering phase XSEL carries on an interactive dialog with

the salesperson to elicit values for facts that determine the

customer's functional computing requirements. These might

include requirements for total disk space, percent of removable

disk storage, number of terminals, lines-per.minute of printing,

etc. Natural language processing during the fact gathering

dialog is minimal: XSEL displays menues and pre-formutated

queries and accepts one- or two-word answers from the user.

Once enough facts have been collected XSEL begins a silent

phase of processing. During this phase a set of candidate

components that satisfy the customer's basic requirements is

retrieved from the DEC parts database. Within each class of

component, i.e., processor, disk, terminal, etc., candidates are

ranked according to their score on a~q evaluation function that

measures the degree to which a candidate satisfies the

customer's weighted functional requirements. The candidate

with the highest score is selected and placed on the purchase

order.

The most important knowledge structure used by XSEL during

the fact gathering I~ase is a fact. A fact is simply a list of

attribute-value pairs that represent knowledge about one of the

customer's functional computing requirements. Figure 1-1

depicts a sample facL

(FACT ?ATTRIBUTE TOTAL.DISK-SPACE
?STATUS INFERENCE TCLASS DISK
?UNITS MEGAB~'TE3 ?MEAN 3600
YTOKEN G'.29)

Figure 1.1: Sample XSEL Fact

228

The fact collection process is driven by backward-chaining

rules. A top-level rule deposits a few "core" facts for which XSEL

must obtain values, such as "total.disk-space", "total-number.of-

terminals", etc. One at a time, XSEL solicits a value for these

core facts from the salesperson. If the salesperson answers

"unknown" to a solicitation, another rule fires to deposit some

additional facts that would enable XSEL to infer a value for the

unknown fact. The cycle is then repeated as XSEL solicits values

for each of the newly deposited facts. Any time a newly

instantiated fact completes the set of facts required to infer a

value for some other fact. the appropriate inference rule is

automatically triggered and the value for another fact is inferred.

This backward-chaining process continues until XSEL obtains

values for all of the core facts, or until no more data can be

collected and no more inferences can be made, in which case

some default value rules fire to instantiate values for any

remaining unknown facts.

The most important knowledge structure used by XSEL during

the component selection phase is a rank element. Like a fact, a

rank element is simply a list of atthbute.value palm. In this case

the attribute-value pairs represent knowledge about a candidate's

score for one term in the evaluation function. A different

evaluation function is associated with each class of component.

and each evaluation function is a sum of some weighted terms.

The terms of the evaluation function for the class disk, for

example, include price, disk-pack-type, storage-capacity,

average-access-time, peak-transfer-rate, and handednesa. For

every candidate, XSEL computes a rank value for each term in

the evaluation function. The rank value for a term is the product

of the candidate's normalized SCore for the term and a weight

which represents an importance factor. The essential information

needed to compute a rank value for a term for a candidate is

stored in a rank element, an example of which is shown in Figure

1-2.

(RANK tRANK-NAME AVERAGE.ACCESS-TIME
tNAME RA60-AA" tCLASS DISK
fRANK-VALUE -3 tCOEFFICIENT t
tVALUE 50 tlMPORTANCE I
tTOKEN G:9)

Figure 1-2: Sample XSEL Rank

After aJl the rank values have been computed for a candidate they

are summed to obtain a total score for the candidate. The

candidate with the highest total score is selected and placed on

the purchase order.

The component selection phase is driven by forward.chaining

rules. These rules perform the subtasks of first, retrieving

candidates from the database, next, determining a quantity and

cost for each of the candidates, next, computing a total rank

score for each candidate, and finally, selecting the candidate with

the highest rank score.

At present, the entire XSEL system consists of over three

thousand OPS5 [2] rules. The explanation generator, which will

be described shortly, comprises an additional five hundred rules.

Anywhere from approximately five hundred to five thousand rules

may fire during the fact gathering phase to create from fifty to five

hundred facts, and roughly three thousand rules will fire during

the component selection phase to create around one thousand

rank elements. The whole process can take anywhere from ten to

thirty minutes of real time, depending on how XSEL's queries are

answered.

t .2. Sample Exp lana t ions

Three of the most obvious types of queries a user m~ght ask

were targeted for initial explanation development. Sample

explanations from each of those types are given in this section.

The following sections describe the knowledge structures and

processes within both XSEL and the explanation generator that

produced those explanations, as well as the goals and rationale

behind them.

One type of query that is likely to be asked is why a particular

component appears on a purchase order. We refer to queries of

this type as "why-choice" queries. To answer a why-choice

query the explanation generator must compare the rank elements

for each candidate on each term of the evaluation function in

order to determine which attributes were responsible for the

higher SCore of the component that was actually selected. The

following are sample explanations from the why-choice class of

queries.

229

? why ra81

THE RA81 IS CHEAPER THAN ANY
ALTERNATIVE RXED PACK DISK,
POSSIBLY BECAUSE IT HAS A SMALLER
TOTAL STORAGE CAPACITY AND A
SLOWER AVERAGE-ACCESS-TIME.

?why rm05

ALTHOUGH THERE ARE LESS EXPENSIVE
DISK S, THE RM05 HAS A LARGER
DISK PACK THAN ANY ALTERNATIVE
REMOVABLE PACK DISK.

Figure 1-3: Sample Why-Choice Explanations

A second obvious type of query asks why a certain fact has

whatever value it has. e.g., why total-disk.space is 3600

megabytes. We refer to queries in this class as "why-lact"

queries. In the case of why-fact queries, the explanation

generator must examine the facts that were created during the

fact gathering phase, and it must determine how those facts are

related through the backward-chaining process. An example of

an explanation that was generated in response to a why.fact

query follows:

? why q total-disk-space

XSEL INFERRED A VALUE QF 3600 MEGABYTES
FOR TOTAL-DISK.SPACE. 3574 MEGABYTES
ARE REQUIRED FOR TOTAL.USER-DISK-SPACE.
THE REMAINDER IS ACCOUNTED FOR BY OTHER
FACTORS, SUCH AS SUM-OF-SYSTEM-DISK-
SPACE.

3574 MEGABYTES WAS INFERRED FOR
TOTAL-USER-DISK-SPACE BECAUSE 2859
MEGABYTES ARE REQUIRED FOR USER-DISK-
SPACE AND THAT VALUE IS MULTIPLIED
BY 125 FOR PERCENT-FOR-EXPANSION .

XSEL INFERRED A VALUE OF 25 MEGABYTES
FOR SUM.OF.SYSTEM.DISK-SPACE FROM 1
SYSTEM-DISK-SPACE REQUIREMENT OF 25
MEGABYTES FOR THE VMS OPERATING-SYSTEM.

Figure 1,4: Sample Why-Fact Explanation

This explanation would have ended immediately following the

first paragraph had not the user previously asked for longer

explanations. But because the user had earlier typed "explain

more", the explanation generator went on to explain the terms

"total-user-disk-space" and "sum.of.system.disk-space", which

were introduced in the first paragraph. If the user were to type

"explain more" a second time. and then ask the same question

"why quantity total-disk-space", the explanation generator would

not stop where it did. Instead, it would go on to explain the terms

user-disk.space, percent.for-expansion, and system.disk-space,

which were introduced in the second and third paragraphs,

There is no upper bound on the number of levels of explanation

the user may request. If the number of levels to explain is high.

XSEL will keep explaining until it reaches those facts whose

values were set either by user input or by default, in which case

there is nothing further to explain. The user can ~lso type

"explain less" at any time, thus decreasing the number of levels

to explain. The lower bound on the number of levels to explain is

one.

The mechanism for determining which term to explain next is a

queue. As new terms are introduced they are placed in the

queue. The queue was originally implemented as a stack, but as

explanations got longer they began to sound less coherent using

the stack mechanism. So the queue was implemented, but the

stack was retained. Now one can toggle between them by typing

"explain queue" or "explain stack", thus producing alternatively

structured explanations for the sake of comparison.

The third ol~vious class of queries asks why a certain quantity is

needed for any line-item. We refer to these as "why-line.item"

queries, Why-line-item queries require the most complicated

processing because the explanation generator must understand

how the line-item that was selected relates back to the facts that

determine the quantity needed, and there is usually a long

sequence of forward-chaining rules as well as the whole

evaluation function mechananism between the creation of the

facts and the creation of the line-items. Figure 1-5 shows a

sample explanation from the why-line-item class. In this example.

the number of levels to explain was set at two. The first two

paragrapl'~ comprise the first level, so tire explanation could have

23O

stopped there; the remaining two paragraphs were generated in

response to terms introduced in the first two paragraphs.

? why q ra60

4 RA60-AA" 'S WERE SELECTED IN ORDER TO
SATISFY A REMOVABLE-DISK-SPACE
REQUIREMENT OF 900 MEGABYTES.

EACH RA60-AA" PROVIDES A CAPACITY OF 205
MEGABYTES. THEREFORE, 4 RA60-AA" 'S ARE
REQUIRED TO YIELD AT LEAST 90 PERCENT OF
THE REMOVABLE-DISK-SPACE CAPACITY OF 900

MEGABYTES.

900 MEGABYTES OF THE TOTAL-DISK.SPACE
REQUIREMENT OF 3600 MEGABYTES WERE
ALLOCATED TO REMOVABLE.DISK-SPACE .
XSEL INFERRED A VALUE OF 900 MEGABYTES
FOR REMOVABLE-DISK-SPACE BECAUSE 3600
MEGABYTES ARE REQUIRED FOR TOTAL-DISK.
SPACE AND 2700 RXED-DISK ARE
SUBTRACTED FROM IT TO GET THE DIFFERENCE .

THE VALUE OF 205 MEGABYTES FOR REMOVABLE-
DISI(-UNIT.CAPABILITY WAS RETRIEVED FROM
THE DATABASE.

Figure 1-5: Sample Why-Line.Item Explanation

2. XSEL Explanation Design Goals

2.1. Related Explanation Work

The desi(jn of the XSEL explanation generator was motivated

by three goals: first, that explanations should be accurate.

second, that explanations should be direct, and third, that some

degree of generality should be attempted.

Most early attempts at explanation generation adopted either a

canned text or an execution trace approach. The canned text

approach led to accuracy problems and the execution trace

approach led to directness problems. These problems are

described in detail by Swartout[12]. In brief, canned

explanations can suffer from a lack of accuracy in the event that

any modifications or additions are made to the Performance

program without the corresl0onding modifications or additions

being made to the canned text. Execution trace.explanations

tend to suffer from a lack of directness because every step during

program execution gets reported, including what Swartout has

referred to as "computer artifacts", as in "Variable X was

initialized to 0".

Another common early approach to explanation generation

was the goal tree approach, which is very.similar to the execution

trace approach. The original explanations produced by the

MYCIN system were goal tree explanations [1]. This approach

allowed the user to question any request for information made by

the system, and the system would simply locate the goal

immediately above the current one in the goal tree and report that

it needed the information to resolve that higher goal. Goal tree

explanations tend to suffer from the same lack of directness

problems that execution trace explanations suffer from.

Swartout's work on an explanation generator for the Digitalis

Therapy Advisor attacked the accuracy and directness problems

successfully. His approach was to redesign the DTA, separating

descriptive facts from domain principles and from the abstract

goals of the system. This allowed the performance program to be

generated by an automatic programmer, which also created a

goal refinement structure in the process. The goal refinement

structure captures the knowledge that goes into writing the

performance program, and makes it accessible to the explanation

generator, where it can be used to produce explanations that are

both accurate and direct. Furthermore, as Swartout points out,

such explanations can be viewed as "justifications" for the

system's behavior.

One of the major contributions of the DTA work was to

demonstrate that a singte explicit representation of knowledge

can and should drive both the automatic program generation

process and the explanation generation process. Further

research supporting the "shared explicit knowledge" approach

to automatic knowledge acquisition, rule generation, and

explanation generation is underway for at least three other

projects [8] [4] [5] [6].

2.2. The XSEL Explanation Approach

XSEL's approach to explanation generation differs from all of

231

the approaches discussed above. The sheer size of XSEL would

make implementing canned responses tedious. Similarly, the

number of rule firings on any run would make reading execution

trace explanations labonous even. or perhaps especially, if they

were translated into natural lanaguage. The approach taken by

Swartout of extracting the regularities and representing them

separately as domain principles would work for the backward-

chaining rules used during XSEL's fact gathering phase, but the

forward-chaining rules used during the component selection

phase are so irregular that attempting to extract regularities

would result in the duplication of nearly the entire set of rules.

Some other common denominator needed to be found in order to

achieve some computational power for explanation generation.

For about two thirds of XSEL's explanation facilities, that

computational power was bought by the creation of links, which

are simple knowledge structures that establish relations between

elements in XSEL's working memory. The role of links will be the

focus of the remainder of this paper. But first a brief general

overview of all the explanation facilities is given.

There is a simple variant of a goal tree explanation facility built

into XSEL. so that the system can always state why it wants a

value for any fact it reduests during the fact gathering dialog. But

the explanation samples shown in the previous section were

generated by an entirely different mechanism, a message-based

explanation generator. A message-based explanation generator

is a two-phase processor that first generates and organizes

messages based on the contents of working memory, and then

maps those messages into surface strings. Two different types of

message generator have been implemented for XSEL. The

message generator used to answer why-choice queries may be

called a comparative message generator; it examines and

compares the rank elements produced by the evaluation

functions to determine what roles they play in the selection of the

chosen component, and then it creates a,opropriate messages,

The message generators used to answer the why-fsct and why.

line.item clueries may be called link-dependent message
generators: they examine the facts and the links between facts to

determine what relations hold among them, and then they create

appropriate messages.

Explanations produced by both the comparative message

generator and the link-dependent message generators are

certain to be accurate because they always originate from the

contenfs of working memory. Special steps had to be taken to

ensure the directness of the link-dependent message generators.

however. Those steps will be discussed in the following sections.

which describe the workings of the l ipk-dependent message

generators in some detail. Discussion of the comparative

message generator and the surface generator will be reserved for

other occasions.

3. Link-dependent Message Generation

3.1. Generic vs. Relat ional Explanat ions

Both of the link-dependent message generators are capable of

operating in two modes, generic mode and relational mode. (The

user can toggle between modes by typing "explain generic" or

"explain relational".) The explanations shown above in Figures

1-4 and 1-5 are relational explanations: they explicate the

relations that hold between facts. Some of those relations are

arithmetic relations, such as sum and product, and some are

abstract relations, such as satisfaction and allocation relations.

Contrast the relational explanation for the query "why q total-

disk-space" shown in Figure 3-1 with the generic explanation for

the same query shown in Figure 1-4. Generic explanations do not

explicate the relations that hold between facts; they simply state

that some generic dependencies exist. The same message

generator is used to generate both generic and relational

explanations. (Notice that the same queuing mechanism is used

to explain subsequent terms in both generic and relational

explanations.) The difference between generic and relational

explanations results from the fact that there are two different

tyoes of links in XSEL's memory, qeneric links and relational

links. Both types of links establish -~ connectton between two or

more facts. The difference is that generic links are ~lways

unnamed, binary links, whereas relational links are always

named, n.ary links, where the name may be an arithmetic relation

such as sum or product, or an abstract relation, such as

satisfaction or allocation. Both types of links au'e deposited into

232

? why q total-disk-space

THE VALUE OF 3600 MEGABYTES FOR TOTAL-DISK
IS DEPENDENT

ON 1424 KILOBYTES FOR TOTAL-APPLICATION-DIS
110592 KILOBYTES FOR PROGRAMMER-DISK.SPAC
2816000 KILOBYTES FOR TOTAL-DATA-FILE.DISK-S
600 KILOBYTES FOR PAGE-AND-SWAP-SPACE

AND 25600 KILOBYTES FOR SYSTEM-DISK-SPACE.

THE VALUE OF 25600 KILOBYTES FOR SYSTEM.DIS
IS DEPENDENT
ON VMS FOR OPERATING-SYSTEM .

THE VALUE OF 600 KILOBYTES FOR PAGE-AND-SW
IS DEPENDENT

ON 200 KILOBYTES FOR CODE-SIZE.

THE VALUE OF 2816000 KILOBYTES FOR TOTAL-DA
IS DEPENDENT

ON 2816000 KILOBYTES FOR DATA-FILE.DISK.SPAC

THE VALUE OF 110592 KILOBYTES FOR PROGRAM
IS DEPENDENT
ON 2048 KILOBYTES FOR EDITOR-DISK-SIZE,
2816000 KILOBYTES FOR LARGEST-DATA.FILE,

4 PROGRAMMERS FOR NUMBER-OF.PROGRAMME
AND 102400 KILOBYTES FOR LANGUAGE.USE.DISK

THE VALUE OF 1424 KILOBYTES FOR TOTAL.APPLI
IS DEPENDENT
ON 1024 KILOBYTES FOR SOFTWARE-DEDICATED.
AND 150 KILOBYTES FOR APPLICATION.DISK-SPAC

Rgu re 3-1: Sample Generic Explanation

XSEL's working memory by the re;lsoning rules that fire during

program execution. As links are de;)osited during XSEL's

execution, two dynamically growing networks are built up; the

generic network is a sim0le dependency network, and the

relational network is an augmented semantic network. These

networks are the mare source of knowledge for the link-

dependent message generators.

A generic link is a very sJmple memory element consisting of

only two attributes, a source attribute and a sink attribute. The

value of the source attribute is the token (i.e., unique identifier) of

some fact that entered into the inference of the resultant fact; the

value of the sink attribute is the token of the resultant fact. For

example, the rules that fire to infer a value for the fact total-disk-

2 3 3

space will deposit into working memory at lea.st five generic links,

each having the token of the fact total-disk-space in its sink

attribute and each having the token of a fact that entered into the

calculation of the value for total-disk-space, such aS total-

application-disk-space, programmer-disk-space, etc., in its

source attribute. An example of a generic link is shown in Figure

3-2. A relational link is a sJightly richer memory element which

not only names the relation that holds between two or more facts,

but also categorizes it. Figure 3-3 displays one arithmetic

relational link and one abstract relation link.

(generic.link

tsource <total-application-disk-space-token>
tsink <total-disk.space-token>

)

Figure 3-2: Sample Generic Link

(relational- link

trelation sum
tcategory arithmetic

tsmk <total-disk-space-token>
tsourcet <total-user-disk-space-token>
tsource2 <sum-of- System-disk-space- token>

tSOurce3 <sum-of-page-and-swap-space-token>
)

(relational-link
~retation satisfaction
¢category reason
tsink <quantity-of-disks-token>
tsource <total-disk-space- token>

)

F igure 3 - 3 : Sample Arithmetic and Abstract Relational Links

The network formed by relational links is in some ;)laces more

dense and in other ;)laces less dense than the network formed by

genenc links; arithmetic relational links create more levels thus

making the relaUonal network denser, while abstract links tend to

bridge long chains of facts, thus making the network sparser. To

see this distinction, consider the arithmetic formula used by XSEL

to calculate the total-disk-space requirement:

total-disk.space =
((total. application -disk. space
+ programmer-disk-space
÷ total-data- file-disk- space)
* 125%)
+ sum of system.disk.space
+ sum of page-and.swap-space

The rules that execute this formula create at least five generic

links linking total-disk.space to total-application-disk-space,

programmer-disk-space, total-data-file-disk-space, one or more

system-disk-sp,3ce facts, and one or more page-and-swap-space

facts. At the same time they create one relational link linking

total-disk-space to three new intermediate level facts, total-user-

disk-space, sum.of-system-disk-space, and sum-of-page-and-

swap.space, and they create additional relational links linking

each of the intermediate facts to their subfacts. Total.user-disk-

space is a newly created intermediate fact, and a relational link,

with rrelation percent, is created linking it to two more new

intermediate facts, user-disk-space and percent.for-expansion.

Another relational link is in turn created linking user-disk-space to

the three facts total-application-disk-space, programmer-disk-

space, and total-data-file-disk-space.

On the other hand, the rules that determine how many RA60

disk drives are needed, for example, create a dense generic

network linking all the facts that enter into the calculation of total-

disk-space to the facts that al locate some portion of that amount

to fixed-disk-space. From there the network would get even

denser as fixed-disk-space is linked tO the fixed.disk.unit.

capabihty and quantity-of-fixed-disks facts for each candidate. In

fact, these generic links are not currently created due to

limitations of working memory space. In contrast to the

potentially dense generic network, the relational network

contains only a few abstract relation links, such as satisfaction

and allocation links, that bridge many of the generic links, thus

resulting in a sparser network (and in more direct explanations).

There are good reasons for the existence of two complete

networks. Essentially, the tradeoff is that while generic links are

trivial tO create, they do not facilitate satisfying explanations. On

the other hand, the creation of relatil)nal links often requires

manual intervention, lout relational links facilitate direct

explanations. Compare again the generic explanation in Figure

3- I to its corresponding relational explanation in Figure 1.4.

Generic links require little effort to create because they simply

incorporate the tokens of the facts that are used in an inference

234

rule. In fact, an automatic rule generator was developed for

automatically creating most of XSEL's backward.chaining fact-

gathering rules from simple arithmetic formulas such as the

formula for total-disk-spsce discussed above. l i t was a trivial task

to have the automatic rule generator include the actions required

to have the inference rules create the generic links.

The task of augmenting the fact-gathering rules to create

arithmetic relational links was also automatable, for the most part.

An automatic l ink-creator was written to parse the arithmetic

formulas that were input to the rule generator and create the

appropriate links. This parser identified the main arithmetic

operations, created names for intermediate facts, and modified

XSEL's rules to have them create the arithmetic relational links.

The output of the automatic l ink-creator required only minor

manual retouching in those cases where its heuristics for

creating names for intermediate facts fell short. 2 But the task of

augmenting the component selection rules to create the abstract

relational links between facts has so far resisted an automatic

solution. These links are now being added manually. They

require the effort of someone who understands the workings of

XSEL and recognizes what explanations might be called for and.

consequently, which rules should be modified to create relational

links.

3.2. O v e r v i e w of Process ing

The processing of a query by a l ink-dependent message

generator goes as follows. When the initial query is input, a

query-interpretation context is entered. In this context some

rules fire tO identify and locate the fact in question, to create a

query-term with the same token as the fact. and to place that

query-term in the query-queue. Following query-interpretation, a

message generation cycle consisting roughly of the following five

steps reiterates: 1) focus on the next query-term in the queue, 2)

locate the links related to that query-term, 3) select an

explanation schema 3 based on the links found, 4) create

1XSEL's automatic ride gammer was v~ten by Samly Marcus.

2XSEL's auSommic link-creatm ~S vmtmen by kTr.ttaet ~ w ~

additional query-terms and messages suggested by the selected

schema, and 5) turn control over to the surface generator. Each

time a new query-term is created, queue-control rules decide

whether to place it in the query-queue, depending on such

factors as whether the term has already been explained and how

many levels of explanation the user has requested. As long as

the query-queue is not empty, the message generation cycle is

reiterated.

When the message generator is in generic mode, it b

constrained to locating generic links during step 2 of the cycle,

and it is constrained to selecting the generic schema during step

3 of the cycle. A simplified version of the generic schema is

depicted in Figure 3.4. The first directive of the generic schema

(Schema-directives::Generic-schema

(make goal tgoal-name create.extra.query.terms

tstatus reiterate)

(make goal Tgoal-name create-message

tgredicate IS-DEPENDENT
~erml <current-focus>)

(make goal rgoal-narne create-message

?predicate ON
~terml <link.focus>
tstatus reiterate)

)

Figure 3-4: The Generic Schema

directs the message generator to create additional query.terms

for all the facts that are linked to the current query-term. The

second directive directs the message generator to create one

message with the predicate "IS-DEPENDENT" and with the

focus-token of term1, which is the current query.term. The

surface realization of this message will be the clause "THE

VALUE OF 3600 MEGABYTES FOR TOTAL-DISK-SPACE IS

DEPENDENT ". The third directive of the generic schema directs

the message generator to create one additional message with the

predicate "ON" and the focus.token of terror for each of the link

terms found. These messages will emerge as prepositional

phrases in their surface form, such as " ON 1424 KILOBYTES

FOR TOTAL-APPLICATION.DISK.SPACE, 110592 KILOBYTES

3'The term so/letup wls adOl~ed fRmt ~e ~ of McKeown(11), ~
simdet smBclu=~s f~ discou~e o¢~=anizatlo~.

FOR PROGRAMMER.DISK.SPACE , 2816000 KILOBYTES FOR

TOTAL-DATA.FILE.DISK.SPACE , 600 KILOBYTES FOR PAGE.

AND-SWAP-SPACE AND 25600 KILOBYTES FOR SYSTEM-DISK-

SPACE ."

When the message generator is in relational mode, it is

constrained to locating relational links and using relational

schemas. There are a variety of each. Currently, relational links

are categorized as being either reasons, elaborations, or

arithmetic links. During step 2 of the message-generation cycle,

the message generator searches first for reason links, next for

elaboration links, and finally for arithmetic links. In some cases,

the search for arithmetic links may be suppressed. For example,

some links whose relation is allocation are subcategorized as

being arithmetic operations, as in "75 percent of the total.disk.

space requirement was allocated to removable-pack disks". In

these cases, expressing the arithmetic relation also would be

redundant.

When a relational link is located, a corresponding schema is

selected. In contrast to the single generic schema, there are a

variety of arithmetic and abstract relational ~chemas. Figure 3-5

illustrates the arithmetic "plus" schema that was used to

generate the messages for the first paragraph of the "why

quantity totaJ-disk-space" relational explanation shown in Figure

1-4. It contains five directives, one to create the new query-terms

found in the arithmetic reasoning trace and four to create

messages. The second message creation directive will create as

many messages as are needed to account for at least 80 percent

of the total value of the fact being explained. (The 80 percent

factor was implemented in order to filter out insignificant facts,

thus making the explanation more concise. Another process that

contributes to more readable explanations is the conversion of all

units in different clauses of the explanation to the same highest

common denominator, eg. megabytes.) Following that, two

additional messages will be created, one to mention that the

remainder of the total is accounted for by other terms, and

another to give an example.

Figure 3-6 illustrates the "setisfactJon" schema that was u~=d

235

(Schema-directives:plus-schema

(make goal tgoal-name create-extra-query.terms

~status reiterate)

(make goal tgoal-name create- message

tfocus-token <token I >

tpredicate CAPACITY.REQUIREMENT

tsubname RECOMMENDED)

(make goal tgoal.name create-messege

tfocus-token new

?predicate CAPACITY-REQUIREMENT

~ubname GENERAL

tamount 80)

(make goal tgoal-name create-message

tpredicate REMAINDER)

(make goal tgoal.name Create-message tfocus.token new

tpredicate EXAMPLE)

)
Figure 3-5: Sample Arithmetic Schema

to create the massages for the first sentence of the "why quantity

RA60" explanation shown in Figure 1-5. It contains one directive

to create an extra query-term matching the token of the new term

identified in the "satisfaction" link, and three actions making the

three messages which surface as three clauses of text in the

explanation.

4 . Rationale
The knowledge structures just described, including mas=mge~

query.terms, the query-queue, schemas and links, serve as

intermediate structures between the reasoning knowledge of the

expert system and the linguistic knowledge needed for language

generation .4 Some of the terminology used to describe these

structures, e.g., "reason" and "elaboration" relations, is derived

from the work of Mann [7] and Hobbs[3] on discourse

organization. Mann and Hobbs independently postulate that

discourse relations, such as reason and elaboration relations

among others, are rasDonsible for coherence in well-organized

(Schema.directives:satisfy-schema

(make goal tgoal-name create-extra.query-term

Hocus-token <term2>)

(make goal tgoal.narne create-message

?predicate QUANTITY.SELECTED

tterml <term1>)"

(make goal ?goal.name create-message

tpredicate INORDER

1"retype relational-prop)

(make goal tgoal-narne create-message

?predicate CAPACITY.REQUIREMENT

tsubncme SATISFY

tterm2 <term?.>)

Figure 3-6: Sample Satisfaction Schema

natural language text. One of the premises of this work on

explanation generation is that the relations, or links, that are

embodied in the inference rules of a successful reasoning system

are the same ones that give coherence to natural language

explanations. An immediate goal of this research is to identity

those relations. At the present time only twenty.six different

reasoning relations, have been identified in XSEL. As more types

of reasoning relations are identified and corresponding links are

added to XSEL's rules, more of XSEL's reasoning will be

explainable. A long term goal of this work is to continue to

identify and add reasoning links and schemas until we see some

generalities begin to emerge. Perhaps some domain-

independent set of reasoning relations and schemas might be

found. Furthermore. such relations and schemas might facilitate

the design of a knowledge acquisition system that would elicit

knowledge from an expert, represent it as relations, and generate

inference rules from relations. We realize that this could be a

very long term goal, but it aJse has the short term benefit of

providing useful explanations.

4 ~ ~ l d ~ [91 for another ~ ot intermediate

236

Acknowledgements

Many people at CMU and DEC have contributed to the

development of XSEL. Some of these include John McDermott,

Tianran Wang, and Kim Smith who developed XSEL's sizing and

selection knowledge; Robert Schnelbach and Michael Browne

who worked on explanation facilities; Sandy Marcus, who wrote

XSEL's rule generator;, George Wood, Jim Park, and Mike

Harmon who provided technical support; and Dan Offutt who is

extending XSEL's sizing knowledge with a view towards

developing knowledge acquisition facilities.

10. John McDermott. Building Expert Systems. Proceedings of
the 1983 NYU Symposium on Artificial Intelligence Applications
for Business, New York Univer~ty, New York City, April 198,3.

11. Kathleen Rose McKeown. Generating Natural Language
Text in Response to Questions about Database Structure. Ph.D.
Th., University of Pennsylvania Computer and Information
Science Department, 1982.

12. William R. Swartout. "XPLAIN: a System for Creating and
Explaining Expert Consulting Programs". Artificial Intelligence
27 (198,3), 285-325.

References

1. R. Davis. Applications of meta level knowledge to the
construction, maintenance, and use of large knowledge bases.
Ph.D. Th., Stanford University, 1976. Stanford Artificial
Intelligence L~oratory Memo 283, Stanford, CA.

2. C. L Forgy. OPS.5 User's Manual. CMU.CS-81-135, Dept of
Computer Science, Carnegie-Mellon University, Pittsburgh, PA
15213, July 1981.

3. Jerry R. Hobbs. Towards an Understanding of Coherence in
Discourse. In W. G. Lehnert and M. H. Ringle, Ed., Strategies for
Natural Language Processing, Lawrence Erlbaum Associates,
New Jersey, 1982, pp. 223-24,3.

4. Gary Kahn, Steve Now/an, and John McDermott. A
Foundation for Knowledge Acquisition. Proceedings of the IEEE
Workshop on Principles of Knowledge.Based Systems, IEEE,
Denver, CO, 1984, pp..

5. Gary Kahn and David Gelier. MEX: An OPS-based approach
to explanation. 1984.

6. Karan Kukich, John McDermott and Tianran Wang. XSEL as
Knowledge Acquirer and Explainer. 1985.

7. William C. Mann and Sandra A. Thompson. Relational
Propositions in Discourse. 198,3.

8. Sandra L. Marcus, John McDermott and Tianran Wang. A
Knowledge Acquisition System for VT. Proceedings of the AAAI,
AAAI, Los Angeles, CA, 1985, pp..

9. Michael Mauldin. Semantic Rule Based Text Generation.
Proceedings of the lOth International Conference on
Compu=ational Linguistic~ ACL, Stanford University, Stanford,
CA, 2-6 July 1984, pp. 376-380.

237

