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1. Introduct ion 

Expert systems provide a rich testbed from which to develop 

and test techniques for natural language processing. These 

systems capture the knowledge needed to solve real-world 

problems in their respective domains, and that knowledge can 

and should be exploited for testing computational procedures for 

natural language processing. Parsing. semantic ,nterpretation, 

dialog monitoring, discourse organization, and text gef,eration 

are just a few of the language processinq problems that might 

takeadvantage of the pre.structured semantic knowledge of an 

expert system. In particular, the need for explanation generation 

facilities for expert systems provides an opportunity to explore 

the relationships between the underlying knowleqge structures 

needed for automated reasoning and those needed for natural 

language processing. One such exploration was the 

development of an explanation generator for XSEL, which is an 

expert system that hellos a salesperson in producing a purchase 

order for a computer system[10]. This pager describes a 

technique called "link-dependent message generation" that 

forms the basis for explanation generation in XSEL. 

1.1. Overview of XSEL 

Briefly, the function of the XSEL system is to assist a 

salesperson in configuring a custom-tailored purchase order for 

a Digital Equipment Corporation VAX computer system. XSEL 

works with the salesperson tO elicit the functional computing 

requirements of the individual customer, and then goes on to 

select the components that best fit those requirements. The 

output of an XSEL session is a purchase order consisting of a list 

of line-items that specify hardware and software components. 

There ~re two main phases to XSEL's processincj, a fact 

gathering phase and a component select=on phase. During the 

fact gathering phase XSEL carries on an interactive dialog with 

the salesperson to elicit values for facts that determine the 

customer's functional computing requirements. These might 

include requirements for total disk space, percent of removable 

disk storage, number of terminals, lines-per.minute of printing, 

etc. Natural language processing during the fact gathering 

dialog is minimal: XSEL displays menues and pre-formutated 

queries and accepts one- or two-word answers from the user. 

Once enough facts have been collected XSEL begins a silent 

phase of processing. During this phase a set of candidate 

components that satisfy the customer's basic requirements is 

retrieved from the DEC parts database. Within each class of 

component, i.e., processor, disk, terminal, etc., candidates are 

ranked according to their score on a~q evaluation function that 

measures the degree to which a candidate satisfies the 

customer's weighted functional requirements. The candidate 

with the highest score is selected and placed on the purchase 

order. 

The most important knowledge structure used by XSEL during 

the fact gathering I~ase is a fact. A fact is simply a list of 

attribute-value pairs that represent knowledge about one of the 

customer's functional computing requirements. Figure 1-1 

depicts a sample facL 

(FACT ?ATTRIBUTE TOTAL.DISK-SPACE 
?STATUS INFERENCE TCLASS DISK 
?UNITS MEGAB~'TE3 ?MEAN 3600 
YTOKEN G'.29) 

Figure 1.1: Sample XSEL Fact 
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The fact collection process is driven by backward-chaining 

rules. A top-level rule deposits a few "core"  facts for which XSEL 

must obtain values, such as "total.disk-space", "total-number.of- 

terminals", etc. One at a time, XSEL solicits a value for these 

core facts from the salesperson. If the salesperson answers 

"unknown" to a solicitation, another rule fires to deposit some 

additional facts that would enable XSEL to infer a value for the 

unknown fact. The cycle is then repeated as XSEL solicits values 

for each of the newly deposited facts. Any time a newly 

instantiated fact completes the set of facts required to infer a 

value for some other fact. the appropriate inference rule is 

automatically triggered and the value for another fact is inferred. 

This backward-chaining process continues until XSEL obtains 

values for all of the core facts, or until no more data can be 

collected and no more inferences can be made, in which case 

some default value rules fire to instantiate values for any 

remaining unknown facts. 

The most important knowledge structure used by XSEL during 

the component selection phase is a rank element. Like a fact, a 

rank element is simply a list of atthbute.value palm. In this case 

the attribute-value pairs represent knowledge about a candidate's 

score for one term in the evaluation function. A different 

evaluation function is associated with each class of component. 

and each evaluation function is a sum of some weighted terms. 

The terms of the evaluation function for the class disk, for 

example, include price, disk-pack-type, storage-capacity, 

average-access-time, peak-transfer-rate, and handednesa. For 

every candidate, XSEL computes a rank value for each term in 

the evaluation function. The rank value for a term is the product 

of the candidate's normalized SCore for the term and a weight 

which represents an importance factor. The essential information 

needed to compute a rank value for a term for a candidate is 

stored in a rank element, an example of which is shown in Figure 

1-2. 

(RANK tRANK-NAME AVERAGE.ACCESS-TIME 
tNAME RA60-AA" tCLASS DISK 
fRANK-VALUE -3 tCOEFFICIENT t 
tVALUE 50 tlMPORTANCE I 
tTOKEN G:9) 

Figure 1-2: Sample XSEL Rank 

After aJl the rank values have been computed for a candidate they 

are summed to obtain a total score for the candidate. The 

candidate with the highest total score is selected and placed on 

the purchase order. 

The component selection phase is driven by forward.chaining 

rules. These rules perform the subtasks of first, retrieving 

candidates from the database, next, determining a quantity and 

cost for each of the candidates, next, computing a total rank 

score for each candidate, and finally, selecting the candidate with 

the highest rank score. 

At present, the entire XSEL system consists of over three 

thousand OPS5 [2] rules. The explanation generator, which will 

be described shortly, comprises an additional five hundred rules. 

Anywhere from approximately five hundred to five thousand rules 

may fire during the fact gathering phase to create from fifty to five 

hundred facts, and roughly three thousand rules will fire during 

the component selection phase to create around one thousand 

rank elements. The whole process can take anywhere from ten to 

thirty minutes of real time, depending on how XSEL's queries are 

answered. 

t .2. Sample  Exp lana t ions  

Three of the most obvious types of queries a user m~ght ask 

were targeted for initial explanation development. Sample 

explanations from each of those types are given in this section. 

The following sections describe the knowledge structures and 

processes within both XSEL and the explanation generator that 

produced those explanations, as well as the goals and rationale 

behind them. 

One type of query that is likely to be asked is why a particular 

component appears on a purchase order. We refer to queries of 

this type as "why-choice" queries. To answer a why-choice 

query the explanation generator must compare the rank elements 

for each candidate on each term of the evaluation function in 

order to determine which attributes were responsible for the 

higher SCore of the component that was actually selected. The 

following are sample explanations from the why-choice class of 

queries. 
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? why ra81 

THE RA81 IS CHEAPER THAN ANY 
ALTERNATIVE RXED PACK DISK, 
POSSIBLY BECAUSE IT HAS A SMALLER 
TOTAL STORAGE CAPACITY AND A 
SLOWER AVERAGE-ACCESS-TIME. 

?why rm05 

ALTHOUGH THERE ARE LESS EXPENSIVE 
DISK S, THE RM05 HAS A LARGER 
DISK PACK THAN ANY ALTERNATIVE 
REMOVABLE PACK DISK. 

Figure 1-3: Sample Why-Choice Explanations 

A second obvious type of query asks why a certain fact has 

whatever value it has. e.g., why total-disk.space is 3600 

megabytes. We refer to queries in this class as "why-lact" 

queries. In the case of why-fact queries, the explanation 

generator must examine the facts that were created during the 

fact gathering phase, and it must determine how those facts are 

related through the backward-chaining process. An example of 

an explanation that was generated in response to a why.fact 

query follows: 

? why q total-disk-space 

XSEL INFERRED A VALUE QF 3600 MEGABYTES 
FOR TOTAL-DISK.SPACE. 3574 MEGABYTES 
ARE REQUIRED FOR TOTAL.USER-DISK-SPACE. 
THE REMAINDER IS ACCOUNTED FOR BY OTHER 
FACTORS, SUCH AS SUM-OF-SYSTEM-DISK- 
SPACE. 

3574 MEGABYTES WAS INFERRED FOR 
TOTAL-USER-DISK-SPACE BECAUSE 2859 
MEGABYTES ARE REQUIRED FOR USER-DISK- 
SPACE AND THAT VALUE IS MULTIPLIED 
BY 125 FOR PERCENT-FOR-EXPANSION . 

XSEL INFERRED A VALUE OF 25 MEGABYTES 
FOR SUM.OF.SYSTEM.DISK-SPACE FROM 1 
SYSTEM-DISK-SPACE REQUIREMENT OF 25 
MEGABYTES FOR THE VMS OPERATING-SYSTEM. 

Figure 1,4: Sample Why-Fact Explanation 

This explanation would have ended immediately following the 

first paragraph had not the user previously asked for longer 

explanations. But because the user had earlier typed "explain 

more", the explanation generator went on to explain the terms 

"total-user-disk-space" and "sum.of.system.disk-space", which 

were introduced in the first paragraph. If the user were to type 

"explain more" a second time. and then ask the same question 

"why quantity total-disk-space", the explanation generator would 

not stop where it did. Instead, it would go on to explain the terms 

user-disk.space, percent.for-expansion, and system.disk-space, 

which were introduced in the second and third paragraphs, 

There is no upper bound on the number of levels of explanation 

the user may request. If the number of levels to explain is high. 

XSEL will keep explaining until it reaches those facts whose 

values were set either by user input or by default, in which case 

there is nothing further to explain. The user can ~lso type 

"explain less" at any time, thus decreasing the number of levels 

to explain. The lower bound on the number of levels to explain is 

one. 

The mechanism for determining which term to explain next is a 

queue. As new terms are introduced they are placed in the 

queue. The queue was originally implemented as a stack, but as 

explanations got longer they began to sound less coherent using 

the stack mechanism. So the queue was implemented, but the 

stack was retained. Now one can toggle between them by typing 

"explain queue" or "explain stack", thus producing alternatively 

structured explanations for the sake of comparison. 

The third ol~vious class of queries asks why a certain quantity is 

needed for any line-item. We refer to these as "why-line.item" 

queries, Why-line-item queries require the most complicated 

processing because the explanation generator must understand 

how the line-item that was selected relates back to the facts that 

determine the quantity needed, and there is usually a long 

sequence of forward-chaining rules as well as the whole 

evaluation function mechananism between the creation of the 

facts and the creation of the line-items. Figure 1-5 shows a 

sample explanation from the why-line-item class. In this example. 

the number of levels to explain was set at two. The first two 

paragrapl'~ comprise the first level, so tire explanation could have 
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stopped there; the remaining two paragraphs were generated in 

response to terms introduced in the first two paragraphs. 

? why q ra60 

4 RA60-AA" 'S WERE SELECTED IN ORDER TO 
SATISFY A REMOVABLE-DISK-SPACE 
REQUIREMENT OF 900 MEGABYTES. 

EACH RA60-AA" PROVIDES A CAPACITY OF 205 
MEGABYTES. THEREFORE, 4 RA60-AA" 'S ARE 
REQUIRED TO YIELD AT LEAST 90 PERCENT OF 
THE REMOVABLE-DISK-SPACE CAPACITY OF 900 

MEGABYTES. 

900 MEGABYTES OF THE TOTAL-DISK.SPACE 
REQUIREMENT OF 3600 MEGABYTES WERE 
ALLOCATED TO REMOVABLE.DISK-SPACE . 
XSEL INFERRED A VALUE OF 900 MEGABYTES 
FOR REMOVABLE-DISK-SPACE BECAUSE 3600 
MEGABYTES ARE REQUIRED FOR TOTAL-DISK. 
SPACE AND 2700 RXED-DISK ARE 
SUBTRACTED FROM IT TO GET THE DIFFERENCE . 

THE VALUE OF 205 MEGABYTES FOR REMOVABLE- 
DISI(-UNIT.CAPABILITY WAS RETRIEVED FROM 
THE DATABASE. 

Figure 1-5: Sample Why-Line.Item Explanation 

2. XSEL Explanation Design Goals 

2.1. Related Explanation Work 

The desi(jn of the XSEL explanation generator was motivated 

by three goals: first, that explanations should be accurate. 

second, that explanations should be direct, and third, that some 

degree of generality should be attempted. 

Most early attempts at explanation generation adopted either a 

canned text or an execution trace approach. The canned text 

approach led to accuracy problems and the execution trace 

approach led to directness problems. These problems are 

described in detail by Swartout[12]. In brief, canned 

explanations can suffer from a lack of accuracy in the event that 

any modifications or additions are made to the Performance 

program without the corresl0onding modifications or additions 

being made to the canned text. Execution trace.explanations 

tend to suffer from a lack of directness because every step during 

program execution gets reported, including what Swartout has 

referred to as "computer artifacts", as in "Variable X was 

initialized to 0". 

Another common early approach to explanation generation 

was the goal tree approach, which is very.similar to the execution 

trace approach. The original explanations produced by the 

MYCIN system were goal tree explanations [1]. This approach 

allowed the user to question any request for information made by 

the system, and the system would simply locate the goal 

immediately above the current one in the goal tree and report that 

it needed the information to resolve that higher goal. Goal tree 

explanations tend to suffer from the same lack of directness 

problems that execution trace explanations suffer from. 

Swartout's work on an explanation generator for the Digitalis 

Therapy Advisor attacked the accuracy and directness problems 

successfully. His approach was to redesign the DTA, separating 

descriptive facts from domain principles and from the abstract 

goals of the system. This allowed the performance program to be 

generated by an automatic programmer, which also created a 

goal refinement structure in the process. The goal refinement 

structure captures the knowledge that goes into writing the 

performance program, and makes it accessible to the explanation 

generator, where it can be used to produce explanations that are 

both accurate and direct. Furthermore, as Swartout points out, 

such explanations can be viewed as "justifications" for the 

system's behavior. 

One of the major contributions of the DTA work was to 

demonstrate that a singte explicit representation of knowledge 

can and should drive both the automatic program generation 

process and the explanation generation process. Further 

research supporting the "shared explicit knowledge" approach 

to automatic knowledge acquisition, rule generation, and 

explanation generation is underway for at least three other 

projects [8] [4] [5] [6]. 

2.2. The XSEL Explanation Approach 

XSEL's approach to explanation generation differs from all of 
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the approaches discussed above. The sheer size of XSEL would 

make implementing canned responses tedious. Similarly, the 

number of rule firings on any run would make reading execution 

trace explanations labonous even. or perhaps especially, if they 

were translated into natural lanaguage. The approach taken by 

Swartout of extracting the regularities and representing them 

separately as domain principles would work for the backward- 

chaining rules used during XSEL's fact gathering phase, but the 

forward-chaining rules used during the component selection 

phase are so irregular that attempting to extract regularities 

would result in the duplication of nearly the entire set of rules. 

Some other common denominator needed to be found in order to 

achieve some computational power for explanation generation. 

For about two thirds of XSEL's explanation facilities, that 

computational power was bought by the creation of links, which 

are simple knowledge structures that establish relations between 

elements in XSEL's working memory. The role of links will be the 

focus of the remainder of this paper. But first a brief general 

overview of all the explanation facilities is given. 

There is a simple variant of a goal tree explanation facility built 

into XSEL. so that the system can always state why it wants a 

value for any fact it reduests during the fact gathering dialog. But 

the explanation samples shown in the previous section were 

generated by an entirely different mechanism, a message-based 

explanation generator. A message-based explanation generator 

is a two-phase processor that first generates and organizes 

messages based on the contents of working memory, and then 

maps those messages into surface strings. Two different types of 

message generator have been implemented for XSEL. The 

message generator used to answer why-choice queries may be 

called a comparative message generator; it examines and 

compares the rank elements produced by the evaluation 

functions to determine what roles they play in the selection of the 

chosen component, and then it creates a,opropriate messages, 

The message generators used to answer the why-fsct and why. 

line.item clueries may be called link-dependent message 
generators: they examine the facts and the links between facts to 

determine what relations hold among them, and then they create 

appropriate messages. 

Explanations produced by both the comparative message 

generator and the link-dependent message generators are 

certain to be accurate because they always originate from the 

contenfs of working memory. Special steps had to be taken to 

ensure the directness of the link-dependent message generators. 

however. Those steps will be discussed in the following sections. 

which describe the workings of the l ipk-dependent message 

generators in some detail. Discussion of the comparative 

message generator and the surface generator will be reserved for 

other occasions. 

3. Link-dependent Message Generation 

3.1. Generic vs. Relat ional Explanat ions 

Both of the link-dependent message generators are capable of 

operating in two modes, generic mode and relational mode. (The 

user can toggle between modes by typing "explain generic" or 

"explain relational".) The explanations shown above in Figures 

1-4 and 1-5 are relational explanations: they explicate the 

relations that hold between facts. Some of those relations are 

arithmetic relations, such as sum and product, and some are 

abstract relations, such as satisfaction and allocation relations. 

Contrast the relational explanation for the query "why q total- 

disk-space" shown in Figure 3-1 with the generic explanation for 

the same query shown in Figure 1-4. Generic explanations do not 

explicate the relations that hold between facts; they simply state 

that some generic dependencies exist. The same message 

generator is used to generate both generic and relational 

explanations. (Notice that the same queuing mechanism is used 

to explain subsequent terms in both generic and relational 

explanations.) The difference between generic and relational 

explanations results from the fact that there are two different 

tyoes of links in XSEL's memory, qeneric links and relational 

links. Both types of links establish -~ connectton between two or 

more facts. The difference is that generic links are ~lways 

unnamed, binary links, whereas relational links are always 

named, n.ary links, where the name may be an arithmetic relation 

such as sum or product, or an abstract relation, such as 

satisfaction or allocation. Both types of links au'e deposited into 
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? why q total-disk-space 

THE VALUE OF 3600 MEGABYTES FOR TOTAL-DISK 
IS DEPENDENT 

ON 1424 KILOBYTES FOR TOTAL-APPLICATION-DIS 
110592 KILOBYTES FOR PROGRAMMER-DISK.SPAC 
2816000 KILOBYTES FOR TOTAL-DATA-FILE.DISK-S 
600 KILOBYTES FOR PAGE-AND-SWAP-SPACE 

AND 25600 KILOBYTES FOR SYSTEM-DISK-SPACE. 

THE VALUE OF 25600 KILOBYTES FOR SYSTEM.DIS 
IS DEPENDENT 
ON VMS FOR OPERATING-SYSTEM . 

THE VALUE OF 600 KILOBYTES FOR PAGE-AND-SW 
IS DEPENDENT 

ON 200 KILOBYTES FOR CODE-SIZE. 

THE VALUE OF 2816000 KILOBYTES FOR TOTAL-DA 
IS DEPENDENT 

ON 2816000 KILOBYTES FOR DATA-FILE.DISK.SPAC 

THE VALUE OF 110592 KILOBYTES FOR PROGRAM 
IS DEPENDENT 
ON 2048 KILOBYTES FOR EDITOR-DISK-SIZE, 
2816000 KILOBYTES FOR LARGEST-DATA.FILE, 

4 PROGRAMMERS FOR NUMBER-OF.PROGRAMME 
AND 102400 KILOBYTES FOR LANGUAGE.USE.DISK 

THE VALUE OF 1424 KILOBYTES FOR TOTAL.APPLI 
IS DEPENDENT 
ON 1024 KILOBYTES FOR SOFTWARE-DEDICATED. 
AND 150 KILOBYTES FOR APPLICATION.DISK-SPAC 

Rgu re 3-1: Sample Generic Explanation 

XSEL's working memory by the re;lsoning rules that fire during 

program execution. As links are de;)osited during XSEL's 

execution, two dynamically growing networks are built up; the 

generic network is a sim0le dependency network, and the 

relational network is an augmented semantic network. These 

networks are the mare source of knowledge for the link- 

dependent message generators. 

A generic link is a very sJmple memory element consisting of 

only two attributes, a source attribute and a sink attribute. The 

value of the source attribute is the token (i.e., unique identifier) of 

some fact that entered into the inference of the resultant fact; the 

value of the sink attribute is the token of the resultant fact. For 

example, the rules that fire to infer a value for the fact total-disk- 

2 3 3  

space will deposit into working memory at lea.st five generic links, 

each having the token of the fact total-disk-space in its sink 

attribute and each having the token of a fact that entered into the 

calculation of the value for total-disk-space, such aS total- 

application-disk-space, programmer-disk-space, etc., in its 

source attribute. An example of a generic link is shown in Figure 

3-2. A relational link is a sJightly richer memory element which 

not only names the relation that holds between two or more facts, 

but also categorizes it. Figure 3-3 displays one arithmetic 

relational link and one abstract relation link. 

(generic.link 

tsource <total-application-disk-space-token> 
tsink <total-disk.space-token> 

) 

Figure 3-2: Sample Generic Link 

(relational- link 

trelation sum 
tcategory arithmetic 

tsmk <total-disk-space-token> 
tsourcet <total-user-disk-space-token> 
tsource2 <sum-of- System-disk-space- token> 

tSOurce3 <sum-of-page-and-swap-space-token> 
) 

(relational-link 
~retation satisfaction 
¢category reason 
tsink <quantity-of-disks-token> 
tsource <total-disk-space- token> 

) 

F igure  3 - 3 :  Sample Arithmetic and Abstract Relational Links 

The network formed by relational links is in some ;)laces more 

dense and in other ;)laces less dense than the network formed by 

genenc links; arithmetic relational links create more levels thus 

making the relaUonal network denser, while abstract links tend to 

bridge long chains of facts, thus making the network sparser. To 

see this distinction, consider the arithmetic formula used by XSEL 

to calculate the total-disk-space requirement: 

total-disk.space = 
( (total. application -disk. space 
+ programmer-disk-space 
÷ total-data- file-disk- space) 
* 125%) 
+ sum of system.disk.space 
+ sum of page-and.swap-space 



The rules that execute this formula create at least five generic 

links linking total-disk.space to total-application-disk-space, 

programmer-disk-space, total-data-file-disk-space, one or more 

system-disk-sp,3ce facts, and one or more page-and-swap-space 

facts. At the same time they create one relational link linking 

total-disk-space to three new intermediate level facts, total-user- 

disk-space, sum.of-system-disk-space, and sum-of-page-and- 

swap.space, and they create additional relational links linking 

each of the intermediate facts to their subfacts. Total.user-disk- 

space is a newly created intermediate fact, and a relational link, 

with rrelation percent, is created linking it to two more new 

intermediate facts, user-disk-space and percent.for-expansion. 

Another relational link is in turn created linking user-disk-space to 

the three facts total-application-disk-space, programmer-disk- 

space, and total-data-file-disk-space. 

On the other hand, the rules that determine how many RA60 

disk drives are needed, for example, create a dense generic 

network linking all the facts that enter into the calculation of total- 

disk-space to the facts that al locate some portion of that amount 

to fixed-disk-space. From there the network would get even 

denser as fixed-disk-space is linked tO the fixed.disk.unit. 

capabihty and quantity-of-fixed-disks facts for each candidate. In 

fact, these generic links are not currently created due to 

limitations of working memory space. In contrast to the 

potentially dense generic network, the relational network 

contains only a few abstract relation links, such as satisfaction 

and allocation links, that bridge many of the generic links, thus 

resulting in a sparser network (and in more direct explanations). 

There are good reasons for the existence of two complete 

networks. Essentially, the tradeoff is that while generic links are 

trivial tO create, they do not facilitate satisfying explanations. On 

the other hand, the creation of relatil)nal links often requires 

manual intervention, lout relational links facilitate direct 

explanations. Compare again the generic explanation in Figure 

3- I to its corresponding relational explanation in Figure 1.4. 

Generic links require little effort to create because they simply 

incorporate the tokens of the facts that are used in an inference 
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rule. In fact, an automatic rule generator was developed for 

automatically creating most of XSEL's backward.chaining fact- 

gathering rules from simple arithmetic formulas such as the 

formula for total-disk-spsce discussed above. l i t  was a trivial task 

to have the automatic rule generator include the actions required 

to have the inference rules create the generic links. 

The task of augmenting the fact-gathering rules to create 

arithmetic relational links was also automatable, for the most part. 

An automatic l ink-creator was written to parse the arithmetic 

formulas that were input to the rule generator and create the 

appropriate links. This parser identified the main arithmetic 

operations, created names for intermediate facts, and modified 

XSEL's rules to have them create the arithmetic relational links. 

The output of the automatic l ink-creator required only minor 

manual retouching in those cases where its heuristics for 

creating names for intermediate facts fell short. 2 But the task of 

augmenting the component selection rules to create the abstract 

relational links between facts has so far resisted an automatic 

solution. These links are now being added manually. They 

require the effort of someone who understands the workings of 

XSEL and recognizes what explanations might be called for and. 

consequently, which rules should be modified to create relational 

links. 

3.2.  O v e r v i e w  of Process ing  

The processing of a query by a l ink-dependent message 

generator goes as follows. When the initial query is input, a 

query-interpretation context is entered. In this context some 

rules fire tO identify and locate the fact in question, to create a 

query-term with the same token as the fact. and to place that 

query-term in the query-queue. Following query-interpretation, a 

message generation cycle consisting roughly of the following five 

steps reiterates: 1) focus on the next query-term in the queue, 2) 

locate the links related to that query-term, 3) select an 

explanation schema 3 based on the links found, 4) create 

1XSEL's automatic ride gammer was v~ten by Samly Marcus. 

2XSEL's auSommic link-creatm ~S  vmtmen by kTr.ttaet ~ w ~  



additional query-terms and messages suggested by the selected 

schema, and 5) turn control over to the surface generator. Each 

time a new query-term is created, queue-control rules decide 

whether to place it in the query-queue, depending on such 

factors as whether the term has already been explained and how 

many levels of explanation the user has requested. As long as 

the query-queue is not empty, the message generation cycle is 

reiterated. 

When the message generator is in generic mode, it b 

constrained to locating generic links during step 2 of the cycle, 

and it is constrained to selecting the generic schema during step 

3 of the cycle. A simplified version of the generic schema is 

depicted in Figure 3.4. The first directive of the generic schema 

(Schema-directives::Generic-schema 

(make goal tgoal-name create.extra.query.terms 

tstatus reiterate) 

(make goal Tgoal-name create-message 

tgredicate IS-DEPENDENT 
~erml  <current-focus>) 

(make goal rgoal-narne create-message 

?predicate ON 
~terml <link.focus> 
tstatus reiterate) 

) 

Figure 3-4: The Generic Schema 

directs the message generator to create additional query.terms 

for all the facts that are linked to the current query-term. The 

second directive directs the message generator to create one 

message with the predicate "IS-DEPENDENT" and with the 

focus-token of term1, which is the current query.term. The 

surface realization of this message will be the clause "THE 

VALUE OF 3600 MEGABYTES FOR TOTAL-DISK-SPACE IS 

DEPENDENT ". The third directive of the generic schema directs 

the message generator to create one additional message with the 

predicate "ON" and the focus.token of terror for each of the link 

terms found. These messages will emerge as prepositional 

phrases in their surface form, such as " ON 1424 KILOBYTES 

FOR TOTAL-APPLICATION.DISK.SPACE, 110592 KILOBYTES 

3'The term so/letup wls adOl~ed fRmt ~e ~ of McKeown(11), ~ 
simdet smBclu=~s f~ discou~e o¢~=anizatlo~. 

FOR PROGRAMMER.DISK.SPACE , 2816000 KILOBYTES FOR 

TOTAL-DATA.FILE.DISK.SPACE , 600 KILOBYTES FOR PAGE. 

AND-SWAP-SPACE AND 25600 KILOBYTES FOR SYSTEM-DISK- 

SPACE ." 

When the message generator is in relational mode, it is 

constrained to locating relational links and using relational 

schemas. There are a variety of each. Currently, relational links 

are categorized as being either reasons, elaborations, or 

arithmetic links. During step 2 of the message-generation cycle, 

the message generator searches first for reason links, next for 

elaboration links, and finally for arithmetic links. In some cases, 

the search for arithmetic links may be suppressed. For example, 

some links whose relation is allocation are subcategorized as 

being arithmetic operations, as in "75 percent of the total.disk. 

space requirement was allocated to removable-pack disks". In 

these cases, expressing the arithmetic relation also would be 

redundant. 

When a relational link is located, a corresponding schema is 

selected. In contrast to the single generic schema, there are a 

variety of arithmetic and abstract relational ~chemas. Figure 3-5 

illustrates the arithmetic "plus" schema that was used to 

generate the messages for the first paragraph of the "why 

quantity totaJ-disk-space" relational explanation shown in Figure 

1-4. It contains five directives, one to create the new query-terms 

found in the arithmetic reasoning trace and four to create 

messages. The second message creation directive will create as 

many messages as are needed to account for at least 80 percent 

of the total value of the fact being explained. (The 80 percent 

factor was implemented in order to filter out insignificant facts, 

thus making the explanation more concise. Another process that 

contributes to more readable explanations is the conversion of all 

units in different clauses of the explanation to the same highest 

common denominator, eg. megabytes.) Following that, two 

additional messages will be created, one to mention that the 

remainder of the total is accounted for by other terms, and 

another to give an example. 

Figure 3-6 illustrates the "setisfactJon" schema that was u~=d 
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(Schema-directives:plus-schema 

(make goal tgoal-name create-extra-query.terms 

~status reiterate) 

(make goal tgoal-name create- message 

tfocus-token <token I > 

tpredicate CAPACITY.REQUIREMENT 

tsubname RECOMMENDED) 

(make goal tgoal.name create-messege 

tfocus-token new 

?predicate CAPACITY-REQUIREMENT 

~ubname GENERAL 

tamount 80) 

(make goal tgoal-name create-message 

tpredicate REMAINDER) 

(make goal tgoal.name Create-message tfocus.token new 

tpredicate EXAMPLE) 

) 
Figure  3-5: Sample Arithmetic Schema 

to create the massages for the first sentence of the "why quantity 

RA60" explanation shown in Figure 1-5. It contains one directive 

to create an extra query-term matching the token of the new term 

identified in the "satisfaction" link, and three actions making the 

three messages which surface as three clauses of text in the 

explanation. 

4 .  Rationale 
The knowledge structures just described, including mas=mge~ 

query.terms, the query-queue, schemas and links, serve as 

intermediate structures between the reasoning knowledge of the 

expert system and the linguistic knowledge needed for language 

generation .4 Some of the terminology used to describe these 

structures, e.g., "reason" and "elaboration" relations, is derived 

from the work of Mann [7] and Hobbs[3] on discourse 

organization. Mann and Hobbs independently postulate that 

discourse relations, such as reason and elaboration relations 

among others, are rasDonsible for coherence in well-organized 

(Schema.directives:satisfy-schema 

(make goal tgoal-name create-extra.query-term 

Hocus-token <term2>) 

(make goal tgoal.narne create-message 

?predicate QUANTITY.SELECTED 

tterml <term1>)" 

(make goal ?goal.name create-message 

tpredicate INORDER 

1"retype relational-prop) 

(make goal tgoal-narne create-message 

?predicate CAPACITY.REQUIREMENT 

tsubncme SATISFY 

tterm2 <term?.>) 

Figure 3-6: Sample Satisfaction Schema 

natural language text. One of the premises of this work on 

explanation generation is that the relations, or links, that are 

embodied in the inference rules of a successful reasoning system 

are the same ones that give coherence to natural language 

explanations. An immediate goal of this research is to identity 

those relations. At the present time only twenty.six different 

reasoning relations, have been identified in XSEL. As more types 

of reasoning relations are identified and corresponding links are 

added to XSEL's rules, more of XSEL's reasoning will be 

explainable. A long term goal of this work is to continue to 

identify and add reasoning links and schemas until we see some 

generalities begin to emerge. Perhaps some domain- 

independent set of reasoning relations and schemas might be 

found. Furthermore. such relations and schemas might facilitate 

the design of a knowledge acquisition system that would elicit 

knowledge from an expert, represent it as relations, and generate 

inference rules from relations. We realize that this could be a 

very long term goal, but it aJse has the short term benefit of 

providing useful explanations. 

4 ~  ~ l d ~  [91 for another ~ ot intermediate 
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