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Abstract

In this paper, we introduce NeuralClassifier,
a toolkit for neural hierarchical multi-label text
classification. NeuralClassifier is designed
for quick implementation of neural models
for hierarchical multi-label classification task,
which is more challenging and common in
real-world scenarios. A salient feature is that
NeuralClassifier currently provides a variety
of text encoders, such as FastText, TextCNN,
TextRNN, RCNN, VDCNN, DPCNN, DRNN,
AttentiveConvNet and Transformer encoder,
etc. It also supports other text classification
scenarios, including binary-class and multi-
class classification. Built on PyTorch1, the
core operations are calculated in batch, mak-
ing the toolkit efficient with the acceleration
of GPU. Experiments show that models built
in our toolkit achieve comparable performance
with reported results in the literature.

1 Introduction

Text classification is an important task in Natu-
ral Language Processing with many applications,
such as web search, information retrieval, rank-
ing and document classification (Deerwester et al.,
1990; Pang et al., 2008). As a result of the great
success of deep neural networks, a series of clas-
sification models based on neural networks that
achieve very good performance in practice have
been proposed (Kim, 2014; Lai et al., 2015; Joulin
et al., 2016; Conneau et al., 2016; Liu et al., 2016;
Johnson and Zhang, 2017; Vaswani et al., 2017;
Yin and Schütze, 2017; Wang, 2018; Qiao et al.,
2018; Guo et al., 2019).

The problem of Hierarchical Multi-label Classi-
fication (HMC) is a branch of classification prob-
lem. It is a more challenging classification prob-
lem in real-world scenarios. Unlike traditional flat

∗Equal contribution
1https://pytorch.org/

Figure 1: Configuration file segment.

and single-label text classification, it aims at con-
sidering the interrelationships among labels and
classifying the text document into multiple labels,
which are organized into a hierarchical structure
of tree or DAG (Directed Acyclic Graph). Regu-
larizing the deep architecture with the dependency
among labels adopted by the existing solutions
(Gopal and Yang, 2013; Peng et al., 2018) is more
naturally for solving hierarchical multi-label text
classification problem, especially for large scale
datasets. It has a wide variety of real-world ap-
plications such as question answering (Qu et al.,
2012), online advertising (Agrawal et al., 2013),
and scientific literature organization (Peng et al.,
2016).

There exist several open-source statistical hier-
archical or multi-label text classification toolkits,
such as scikit-multilearn2, sklearn-hierarchical-
classification3, which provide users with various
hierarchical or multi-label classification modules
based on scikit-learn’s interfaces and conventions.
On the other hand, there is limited choice for
neural hierarchical multi-label text classification
toolkits. Although many researchers have released
their codes along with their hierarchical or multi-

2https://github.com/scikit-multilearn/scikit-multilearn
3https://github.com/globality-corp/sklearn-hierarchical-

classification
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Toolkits Neural Multi-label Hierarchical Feature Richness Model Richness
scikit-multilearn × X × × X

sklearn-hierarchical-classification × X X × X
HDLTex X × X × ×

HR-DGCNN X X X × ×
NeuralClassifier X X X X X

Table 1: Toolkit Comparison.

Figure 2: An illustration of evaluation outputs. “level
1” to “4” are the results of each level in hierarchical
classification. Evaluation metrics are macro and micro.

label text classification papers (Kowsari et al.,
2017; Peng et al., 2018), but the implementations
are mostly focused on specific model structures
and specific tasks, which greatly limit their exten-
sions for other similar tasks.

In this paper, we introduce an open-source
toolkit, NeuralClassifier4, a neural hierarchical
multi-label text classification toolkit based on
PyTorch. It is designed for solving the hier-
archical multi-label text classification problem
with effective and efficient neural models. It
provides a variety of models and features, users
can utilize a comfortable configuration file with
neural feature design and utilization. We take the
layerwise implementation, which includes input
layer, embedding layer, encoder layer and output
layer. To our best knowledge, our work is the first
neural hierarchical multi-label text classification
toolkit with rich models. For the details, we give
a summary comparison with existing toolkits in
Table 1. NeuralClassifier is:

• Rich in models and features: An important
feature of our work is that, compared with existing
toolkits, NeuralClassifier reimplements a very
large number of the state-of-the-art text encoders,
including FastText (Joulin et al., 2016), TextCNN

4Code is available at https://github.com/
liqunhit/NeuralClassifier

(Kim, 2014), TextRNN (Liu et al., 2016), RCNN
(Lai et al., 2015) , VDCNN (Conneau et al.,
2016), DPCNN (Johnson and Zhang, 2017)
, AttentiveConvNet (Yin and Schütze, 2017),
DRNN (Wang, 2018), Transformer encoder
(Vaswani et al., 2017), Star-Transformer encoder
(Guo et al., 2019). Meanwhile, NeuralClassifier
involves a variety of useful features or widgets,
i.e., word-based and char-based input, optimizers,
loss functions, embedding methods and attention
mechanisms, etc. All those above can be config-
ured through a configuration file. Figure 1 shows
a segment of configuration file. Note that users
can configure different text encoders and features
through the configuration file, and can easily
modify the source code to achieve more advanced
developments.

• Suitable for almost all text classification
tasks: NeuralClassifier is designed for hierarchi-
cal and multi-label classification, which naturally
also supports binary-class and multi-class clas-
sification, so it can be considered a universal
toolkit for text classification tasks. Especially
in hierarchical multi-label classification task, the
taxonomy can be organized in the form of a tree
or DAG, and instances are multi-labeled during
training and testing. It also provides a complete
evaluation mechanism. An illustration with results
is shown in Figure 2. Users can choose their task
types only through a comfortable configuration
file without any code work.

• Effective and efficient: We conduct the ex-
periments based on a variety of models and fea-
tures provided by NeuralClassifier. Experiments
show models built in our toolkit output compara-
ble performance with reported results in the lit-
erature. Furthermore, NeuralClassifier is imple-
mented using batch calculation that can be accel-
erated using GPU. Our experiments demonstrate
that NeuralClassifier is an effective and efficient
toolkit.

The rest of this paper is organized as follows:
Section 2 describes the detail of architecture of

https://github.com/liqunhit/NeuralClassifier
https://github.com/liqunhit/NeuralClassifier
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Figure 3: Architecture of NeuralClassifier. There are four layers: an input layer, an embedding layer, an encoder
layer and output layer.

NeuralClassifier. The experimental evaluations
and results are discussed in Section 3. Finally,
Section 4 concludes this paper.

2 NeuralClassifier Architecture

The framework of NeuralClassifier is shown in
Figure 3. It is composed of four layers: input
layer, embedding layer, encoder layer and output
layer. At the first layer (input layer), the input
word sequence will be organized and processed as
words, characters, or corresponding n-grams. For
FastText, custom features such as keywords and
topics are also supported. The embedding of in-
put data will be generated at the embedding layer,
subsequently be encoded at encoder layer. On
top of the system, the different loss functions are
constructed in the output layer to serve the differ-
ent real-world tasks, i.e., binary-class, multi-class,
multi-label and hierarchical multi-label classifica-
tion. The user can deploy it through a comfortable
configuration file without any code work. Note
that a salient feature is that users can easily utilize
and integrate any widgets in the NeuralClassifier
to construct their own structure to satisfy any re-
quirements.

The following will describe the pertinent details
of the four layers and the user interface.

2.1 Layer Units

• Input Layer. The input text sequence will be
processed at input layer. Input text sequence in
the form of token (word) can be processed into

Figure 4: An example of input data. Multiple levels of
hierarchy are separated with ’--’.

words and characters, along with their n-grams.
Custom feature inputs such as keywords and top-
ics are also supported when the text encoder is
FastText. All the above can be flexibly configured
by the users. Besides, reading input data can be
accelerated with multiple processes. See Figure 4
for an example of input data.

• Embedding Layer. Various embeddings are
processed at this layer. There are four embedding
types can be chosen, which are random embed-
ding, pre-trained embedding, region embedding
and position embedding. Embedding can be ini-
tialized randomly or from a pre-trained embedding
input. Region embedding (Qiao et al., 2018) is a
supervised enhanced word embedding method that
the representation of a word or char has two parts,
the embedding of the word itself, and a weight-
ing matrix to interact with the local context, re-
ferred to as local context unit. Position embedding
(Vaswani et al., 2017) is an embedding method
that considers position information in the input se-
quence.
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• Encoder Layer. We reimplement a very large
number of state-of-the-art text encoders at en-
coder layer, including FastText, TextCNN, Tex-
tRNN, RCNN, VDCNN, DPCNN, DRNN, Trans-
former encoder, Star-Transformer encoder and At-
tentiveConvNet. Each encoder has its own hyper-
parameters that can be configured by users.
• Output Layer. This layer determines the spe-
cific classification tasks, including binary-class,
multi-class, multi-label and hierarchical-class.
For the single-label (binary-class and multi-class)
classification task, we provide three candidate loss
functions, which are SoftmaxCrossEntopy,
BCLoss and SoftmaxFocalLoss (Lin
et al., 2017). For the hierarchical multi-
label classification task, we use BCELoss or
SigmodFocalLoss as the loss function for
multi-label classification and add a recursive
regularization (Gopal and Yang, 2013; Peng et al.,
2018) for hierarchical classification. Using this
regularization framework, we can incorporate
the hierarchical dependencies between the class-
labels into the regularization structure of the
parameters thereby encouraging classes nearby in
the hierarchy to share similar model parameters.
In addition, such a regularization approach is more
suitable for large-scale hierarchical multi-label
classification task. Users can easily use above
functions through the configuration file.

2.2 User Interface

NeuralClassifier provides abundant configura-
tion interfaces, including the common settings,
input settings, training settings and network
structure settings. Through the configuration file,
users can construct most state-of-the-art neural
hierarchical multi-label text classification models.
JSON is used as the configuration file format.

The configuration file has four major parts:

• Common settings include the type of classifi-
cation tasks, which are single-labeled and multi-
labeled, whether it is hierarchical (task info),
which running device to use (device), the spec-
ified model (model name), directories of input
and output data (data), how many subprocesses
to use for data loading (num worker), etc.
• Input settings include various configura-
tions about input data, such as maximum input
sequence length (max token len), mini-
mum input token count (min token count),
dictionary size (max token dict size),

pre-trained embeddings of input data
(token pretrained file), etc.
• Training settings include the batch
size (batch size), type of loss function
(loss type), optimizer (optimizer type),
learning rate (learning rate), number of
epochs (num epochs), which GPUs to use
(visible device list), etc.
• Network structure settings specify which text
encoders to use, such as TextCNN, TextRNN,
RCNN, Transformer, etc. For each text encoder,
there are corresponding hyperparameters that can
be configured. Take TextCNN as an example,
users can configure the size and number of
convolution kernels and the number of tops in
the pooling (kernel sizes, num kernels,
top k max pooling).

2.3 Extension
Users can write their own custom modules on all
those layers, and self-defined modules can be inte-
grated into the toolkit easily. For example, if a user
wants to implement a new classifier model, he/she
only needs to implement the part at encoder layer.
All the other network structures can be used and
controlled through the configuration file.

3 Evaluation

In this section, we conduct several experiments to
evaluate the performance of NeuralClassifier us-
ing datasets from two public benchmarks, namely,
RCV1 (Lewis et al., 2004) and Yelp5. The exper-
iments consist of three parts: (1) Results of using
rich models and features in Section 3.1; (2) influ-
ence of hierarchical information in Section 3.2; (3)
speed with batch size in Section 3.3.

3.1 Results of using rich models and features
We use the ability of various models and features
provided by our toolkit to illustrate the perfor-
mance of NeuralClassifier on hierarchical multi-
label text classification problem. Concretely, we
select a best model through coarse-grained exper-
iments on each of the two benchmarks and fix it,
and then fine-tune the features and hyperparam-
eters, such as model structures, input represen-
tations, activation functions, optimizers, learning
rate, etc. The best performance models6 are as

5https://www.yelp.com/dataset/challenge
6Note that the released settings are preliminary attempt so

far, we will continue to update the optimization of parameter
selection.
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Models RCV1 Yelp
Micro-F1 Micro-F1

HR-DGCNN (Peng et al., 2018) 0.7610 –
HMCN (Wehrmann et al., 2018) 0.8080 0.6640

Our best models 0.8099 0.6704

Table 2: Results on the two benchmarks.

Encoders
RCV1 Yelp

Micro-F1 Macro-F1 Micro-F1 Macro-F1

TextCNN 0.7608 0.4649 0.6179 0.3851
TextRNN 0.7883 0.4972 0.6704 0.4059

RCNN 0.8099 0.5332 0.6569 0.3951
FastText 0.6887 0.2701 0.5386 0.1817
DRNN 0.7601 0.4523 0.6174 0.3835

DPCNN 0.7439 0.4141 0.5671 0.2393
VDCNN 0.7263 0.3860 0.6079 0.3427

AttentiveConvNet 0.7533 0.4373 0.6367 0.4040
Region embedding 0.7780 0.4888 0.6601 0.4514

Transformer 0.7603 0.4274 0.6533 0.4121
Star-Transformer 0.7668 0.4840 0.6293 0.3977

Table 3: Results of different text encoders.

follows: (1) RCNN with two-layers Bi-GRU and
one-layer CNN for RCV1 dataset (input = word,
optimizer = Adam, learning rate = 0.008); (2) Tex-
tRNN with one-layer Bi-GRU for Yelp dataset (in-
put = word, optimizer = Adam, learning rate =
0.008). Table 2 shows the results of the best mod-
els on the two benchmarks. The best models can
achieve comparable results with the state-of-the-
art HMC models. The results shows the effective-
ness of our implementation, and usability of a va-
riety of models and features. Table 3 shows per-
formances of different text encoders. In particular,
we can use different combinations of strategies to
guide the setup of model for better performance in
the real applications.

3.2 Influence of hierarchical information

Hierarchical classification problems can also be
solving by flat methods, which regard the hier-
archical classification as a flat classification, re-
gardless of the hierarchical relationship between
labels. As mentioned before, our toolkit is config-
urable, we can easily set different loss functions by
configuration. In this section, we discuss the in-
fluence of hierarchical information. Table 4 shows
the results of setting the HMC loss function (Hier-
archical) and the traditional multi-label loss func-
tion (Flat). As can been seen from the results, hi-
erarchical information can greatly improve perfor-
mance. It also demonstrates the effectiveness of

Encoders
Hierarchical Flat

Micro-F1 Macro-F1 Micro-F1 Macro-F1

TextCNN 0.7608 0.4649 0.7367 0.4224
TextRNN 0.7883 0.4972 0.7546 0.4505

RCNN 0.8099 0.5332 0.7955 0.5123
FastText 0.6887 0.2701 0.6865 0.2816
DRNN 0.7601 0.4523 0.7506 0.4450

DPCNN 0.7439 0.4141 0.7423 0.4261
VDCNN 0.7263 0.3860 0.7110 0.3593

AttentiveConvNet 0.7533 0.4373 0.7511 0.4286
Region embedding 0.7780 0.4888 0.7640 0.4617

Transformer 0.7603 0.4274 0.7602 0.4339
Star-Transformer 0.7668 0.4840 0.7618 0.4745

Table 4: Results of hierarchical and flat classification
on RCV1.

Figure 5: Results of speed with batch size.

our implementation.

3.3 Speed with Batch Size

As NeuralClassifier is implemented on bathed
calculation, it can be greatly accelerated through
parallel computing through GPU. We test the sys-
tem speed on training process on RCV1 using a
Nvidia Tesla P40 GPU. As shown in Figure 5,
the training speed can be significantly accelerated
through a large batch size, demonstrating the effi-
ciency of our implementation.

4 Conclusion

This paper presents NeuralClassifier, an open-
source neural hierarchical multi-label text classi-
fication toolkit. NeuralClassifier provides a large
variety of text encoders and features. Users can
design their models for different text classifica-
tion tasks easily through the configuration file. We
conduct a series of experiments and the results
show that models built on NeuralClassifier can
achieve state-of-the-art results with an efficient
running speed.
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