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Abstract
The inability to quantify key aspects of creat-
ive language is a frequent obstacle to natural
language understanding. To address this, we
introduce novel tasks for evaluating the cre-
ativeness of language—namely, scoring and
ranking text by humorousness and metaphor
novelty. To sidestep the difficulty of assigning
discrete labels or numeric scores, we learn from
pairwise comparisons between texts. We intro-
duce aBayesian approach for predicting humor-
ousness and metaphor novelty using Gaussian
process preference learning (GPPL), which
achieves a Spearman’s ρ of 0.56 against gold
using word embeddings and linguistic features.
Our experiments show that given sparse, crowd-
sourced annotation data, ranking using GPPL
outperforms best–worst scaling. We release
a new dataset for evaluating humour contain-
ing 28,210 pairwise comparisons of 4030 texts,
and make our software freely available.

1 Introduction
Creative language, such as humour and metaphor,
is an essential part of everyday communication,
yet remains a challenge for computational meth-
ods. Unlike much literal language, humour and
figurative language require complex linguistic and
background knowledge to understand, which are dif-
ficult to integrate with NLPmethods (Hempelmann,
2008; Shutova, 2010).
An important step in processing creative lan-

guage is to recognise its presence in a piece of text.
Humour and metaphors are two of the most fre-
quently used types of creative language whose use
most obscures the true meaning of a piece of text
from its surface interpretation (Raskin, 1985, pp. 1–
5, 100–104; Black, 1955) andwhose attributes, such
as funniness and novelty, may be present or per-
ceived to varying degrees (Bell, 2017; Dunn, 2010).
For example, the level of appreciation (i.e., humor-
ousness or equivalently funniness) of jokes can vary

according to their content and structural features,
such as nonsense or disparagement (Carretero-Dios
et al., 2010) or, in the case of puns, contextual coher-
ence (Lippman and Dunn, 2000) and the cognitive
effort required to recover the target word (Hempel-
mann, 2003, pp. 123–124).

With metaphors, the literal meaning of frequently
used metaphors can drop out of everyday usage,
leaving the metaphorical sense as the expected
one (Shutova, 2015). For such conventionalised
metaphors, NLP methods may identify the meta-
phorical sense from training data or resources such
as WordNet, whereas novel metaphors require the
ability to recognise the analogy being made.
While previous work (see §2) has considered

mainly binary classification approaches to humour
or metaphor recognition, this paper focuses on
quantifying humorousness and metaphor novelty.
These tasks are important for downstream applic-
ations such as conversational agents or machine
translation, which must choose the correct tone in
response to humour, or find appropriate metaphors
or wordplay in a target language. The degree of cre-
ativeness may also inform an application whether
the semantics of a metaphor or joke can be inferred
from similar examples.
The examples in Tables 1 and 2 illustrate the

difficulty of classifying text as humorous or meta-
phorical: in both cases, the examples are at least
somewhat humorous or somewhat metaphorical,
which makes it harder to assign discrete labels such
as “funny”/“not funny” or “metaphor”/“literal”. Al-
ternatively, we could assign numerical scores to
quantify the humorousness or novelty. However,
this can present problems for establishing a gold
standard, as human annotators can assign scores
inconsistently over time or interpret scores differ-
ently to one another (Ovadia, 2004; Yannakakis and
Hallam, 2011; Kiritchenko and Mohammad, 2017).
For example, if assigning scores between zero and
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Money is the Root of All Evil. For more info, send $10.

“Have you seen my collection of ancient Chinese artifacts?”
asked Tom charmingly.

Table 1: Examples from the SemEval-2017 Task 7 data-
set (Miller et al., 2017). The upper example was among
those rated funniest by our annotators, while the lower
examplewas among those rated least funny (presumably
due to its very tortured pun on “Ming”).

girls often produce responses like ‘often go through a bad
patch for a year’

‘when you tried to read the book, there was nothing there,
because the words started as a coat-hanger to hang pictures
on.’

Table 2: Examples of statements from the Metaphor
Novelty dataset (Do Dinh et al., 2018) containing high-
lightedmetaphors. The upper example is highly conven-
tionalised, while the lower is more novel and creative.

ten, some annotators may choose middling values
while others may prefer extremes.

To improve the reliability of annotations, we ask
annotators to compare pairs of texts and choose the
funniest or most metaphorically novel of the two.
Unlike categorical labels, pairwise labels allow a
total sorting of the texts since they avoid items hav-
ing the same value, and can reduce the time taken
to label a dataset (Yang and Chen, 2011; Kings-
ley and Brown, 2010; Kendall, 1948). Pairwise
labels can be used to infer scores or rankings us-
ing techniques such as learning-to-rank (Joachims,
2002), preference learning (Thurstone, 1927), or
best–worst scaling (Flynn and Marley, 2014). A
drawback of pairwise labelling is that the number
of possible pairs scales with O(n2), which becomes
impractical for large datasets. To reduce annotation
costs and enable quicker learning in new domains,
it is therefore desirable to learn from sparse datasets
rather than exhaustive pairwise labels.

We establish four new tasks for scoring and rank-
ing texts with both sparse and extensive sets of
pairwise training labels. We apply these tasks to
datasets for humorousness and metaphor novelty,
which extend the datasets of Miller et al. (2017)
and Do Dinh et al. (2018), respectively, and contain
crowdsourced pairwise labels. As a baseline scor-
ing method, we employ the scoring technique for
best–worst scaling (BWS; Flynn and Marley, 2014),
an established method that can also be applied to
pairwise labels to estimate scores very efficiently.
Our use of sparse, unreliable crowdsourced data

motivates a second, Bayesian approach: Gaussian
process preference learning (GPPL; Simpson and
Gurevych, 2018), which exploits text features to
boost performance when labels are sparse and make
predictions for items not compared in the training
set.
Our main contributions are (1) four novel tasks

for quantifying aspects of creative language, (2) an
annotated dataset containing pairwise comparisons
of humorousness between sentences, (3) a Bayesian
approach for scoring short texts by humorousness
and metaphor novelty given sparse pairwise annota-
tions, and (4) an empirical investigation showing
that word embeddings and linguistic features can be
used to predict humorousness andmetaphor novelty,
and that GPPL outperforms BWS when faced with
sparse data. We publish the datasets and software1
to encourage further research on these tasks, and to
serve the needs of qualitative humanities research
into humour and metaphor.

2 Background and Related Work
2.1 Humorousness
The automatic processing of verbal humour has
applications in human–computer interaction, ma-
chine and machine-assisted translation, and the
digital humanities (Miller et al., 2017). To give just
one example, an intelligent conversational agent
should ideally detect and respond appropriately
to comments made in jest. The vast majority of
past approaches to the automatic recognition of
humour (e.g., Mihalcea and Strapparava, 2006; Pur-
andare andLitman, 2006; Sjöbergh andAraki, 2007;
Mihalcea et al., 2010; Zhang and Liu, 2014; Yang
et al., 2015; Miller et al., 2017; Mikhalkova and
Karyakin, 2017; Chen and Soo, 2018) have framed
the problem as a binary classification task, which
is sufficient for the detection step of our example.
However, the ability to assess the degree of humour
embodied in an utterance may be necessary for the
agent to make a contextually appropriate, human-
like response – for example, a groan for a terrible
joke, a chuckle for a middling one, or uproarious
laughter for a clever one.
Only a few studies have dealt with determin-

ing the (relative) funniness of texts. Shahaf et al.
(2015) presented a supervised system for determ-
ining which of a given pair of cartoon captions is
funnier, using features such as sentiment, perplex-

1 https://github.com/ukplab/
acl2019-GPPL-humour-metaphor

https://github.com/ukplab/acl2019-GPPL-humour-metaphor
https://github.com/ukplab/acl2019-GPPL-humour-metaphor
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ity, readability, and keyword descriptions of the
cartoon image and its anomalies. While the method
achieves promising results (64% accuracy, versus
55% for a bag-of-words baseline), it cannot quantify
humorousness on a continuum; multiple captions
can be ranked only tournament-style. Moreover,
the keyword features are specific to visual rather
than verbal humour, and must be manually sourced
at great expense, making the method unsuitable
for classifying unseen examples. In parallel work,
Radev et al. (2016) tested various heuristics for
ranking pairs or sets of the same captions by fun-
niness. Such heuristics included tf–idf, n-gram
frequency, syntactic complexity, and references to
objects in the cartoon (which, again, is specific to
this multimodal form of humour and depends on
manual annotation). The heuristics were evaluated
in isolation, rather than as part of a supervised or en-
semble classifier. This, combined with the study’s
unusual evaluation metrics, precludes a meaningful
comparison with Shahaf et al. (2015).

More recently, the #HashtagWars evaluation cam-
paign (Potash et al., 2017) defined two humour rank-
ing tasks for Twitter data. The organisers compiled
data from a TV game show whose producers solicit
funny tweets for a given hashtag and then parti-
tion them into three sets: the funniest tweet, nine
runners-up, and the remainder. The campaign had
two computational tasks: (a) given a pair of tweets
from different sets, determine which tweet is fun-
nier; and (b) classify all tweets according to their set.
As with Shahaf et al. (2015), the determination of
humour here was coarse-grained, with no attempt to
quantify it. A similar corpus (but no classification
experiment) was presented by Castro et al. (2018b)
and later developed into a shared task (Castro et al.,
2018a). The dataset’s crowd annotators were asked
to classify the humorousness of tweets on a Likert
scale, grouping them into five sets versus Potash
et al.’s (2017) three. Mindful of psychological
studies on subjective evaluations (Thurstone, 1927),
Shahaf et al. (2015) reject the idea that such ordinal
rating data can be treated as interval data, and argue
that direct comparisons are preferable for humour
judgements.

2.2 Metaphor Novelty

Most previous work on metaphor detection has
been conducted with a binary classification in mind
(metaphor vs. literal). This dichotomy is reflected
in more widely used datasets, such as the VU Am-

sterdam Metaphor Corpus (VUAMC; Steen et al.,
2010) or the datasets in multiple languages created
by Tsvetkov et al. (2014). Advantages include the
wide variety of approaches that can be (and have
been) employed for automatic detection and a rather
straightforward annotation process. This usually
also entails a high interannotator agreement, mean-
ing that the annotations are reliable. In the case
of VUAMC, this amounts to a Cohen’s κ of 0.80.
However, the two-class modelling of metaphor has
certain limits. These become obvious when looking
at examples from the aforementioned datasets (see
Table 2, which includes an example from VUAMC).
In particular, many metaphors annotated in the bin-
ary datasets differ widely in their metaphoricity –
i.e., their degree of being a metaphor. Thus, while
the annotations might be reliable, they might not
be very meaningful. A graded approach to meta-
phor better accommodates its subjective and fuzzy
nature, but previous work taking such a fine-grained
approach is less common.

Dunn (2014) conducted experiments regarding
the notion of metaphoricity on a sentence basis.
Using crowdsourcing, he obtained a small corpus
of 60 sentences with metaphoricity scores between
0 (non-metaphoric) and 1 (highlymetaphoric). This
dataset was then used to determine various features
from which a metaphoricity measure could be com-
puted. Due to the lack of a large, graded evaluation
corpus, the measure was tested on VUAMC along
with a threshold relative to the number of contained
metaphors. Haagsma and Bjerva (2016) employed
clustering and neural network approaches using
selectional preferences to detect novel metaphors.
While the violation of selectional preferences had
been used in general metaphor detection before,
Haagsma and Bjerva (2016) argue that they are spe-
cifically indicative of novel metaphors as opposed
to conventionalised ones. However, the authors
also struggled with the lack of graded annotations
to test their approach.

More recently, Parde and Nielsen (2018) and
Do Dinh et al. (2018) created graded metaphor-
icity layers for VUAMC using crowdsourcing, with
the former approach labelling grammatical con-
structions and the latter labelling tokens. However,
manually labelling larger amounts of data is costly,
even with crowdsourcing. Further, while VUAMC
covers multiple domains, it is still limited in scope,
size, and language. Thus, an approach is needed
to generalise from few graded or ranked metaphor
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annotations to a larger corpus or different domains.

2.3 Learning from Pairwise Comparisons

Pairwise comparisons can be used to infer rankings
or ratings by assuming a random utility model (Thur-
stone, 1927), meaning that the annotator chooses an
instance with probability p, where p is a func-
tion of the utility of the instance. Therefore,
when instances in a pair have similar utilities,
the annotator selects one with a probability close
to 0.5, while for instances with very different
utilities, the instance with higher utility will be
chosen consistently. The random utility model
forms the core of two popular preference learning
models, the Bradley–Terry model (Bradley and
Terry, 1952; Luce, 1959; Plackett, 1975), and the
Thurstone–Mosteller model (Thurstone, 1927;Mos-
teller, 1951). Given this model and a set of pairwise
annotations, probabilistic inference can be used to
retrieve the latent utilities of the instances.
Besides pairwise comparisons, a random util-

ity model is also employed by MaxDiff (Marley
and Louviere, 2005), a model for best–worst scal-
ing (BWS), in which the annotator chooses the best
and worst instances from a set. While the term
“best–worst scaling” originally applied to the data
collection technique (Finn and Louviere, 1992), it
now also refers to models such as MaxDiff that
describe how annotators make discrete choices.
Empirical work on BWS has shown that MaxDiff
scores (instance utilities) can be inferred using
either maximum likelihood or a simple counting
procedure that produces linearly scaled approxima-
tions of the maximum likelihood scores (Flynn and
Marley, 2014). The counting procedure defines the
score for an instance as the fraction of times the
instance was chosen as best, minus the fraction of
times the instance was chosen as worst, out of all
comparisons including that instance (Kiritchenko
and Mohammad, 2016). From this point on, we
refer to the counting procedure as BWS, and apply
it to the tasks of inferring scores from both best–
worst scaling annotations for metaphor novelty and
pairwise annotations for funniness.
To make predictions for unlabelled instances

and cope better with sparse pairwise labels, Chu
and Ghahramani (2005) proposed Gaussian pro-
cess preference learning (GPPL), a Thurstone–
Mosteller–based model that accounts for the fea-
tures of the instances when inferring their scores.
GPPL uses Bayesian inference, which has been

shown to cope better with sparse and noisy
data (Xiong et al., 2011; Titov and Klementiev,
2012; Beck et al., 2014; Lampos et al., 2014),
including disagreements between multiple annot-
ators (Cohn and Specia, 2013; Simpson et al.,
2015; Felt et al., 2016; Kido and Okamoto, 2017).
Through the random utility model, GPPL is able to
handle disagreements between annotators as noise,
since no label has a probability of one of being
selected.

Given a set of pairwise labels, and the features of
labelled instances, GPPL can estimate the posterior
distribution over the utilities of any instances given
their features. Relationships between instances are
modelled by a Gaussian process (GP), which com-
putes the covariance between instance utilities as
a function of their features (see Rasmussen and
Williams, 2006). Since typical methods for pos-
terior inference (Nickisch and Rasmussen, 2008)
are not scalable (O(n3), where n is the number of in-
stances), Simpson and Gurevych (2018) introduced
a scalable method for GPPL that permits arbitrarily
large numbers of instances and pairs. This method
uses stochastic variational inference (Hoffman et al.,
2013), which limits computational complexity by
substituting the instances for a fixed number of
inducing points during inference.
Simpson and Gurevych (2018) applied GPPL

to ranking arguments by convincingness, which,
like funniness and metaphor novelty, is an abstract
linguistic property that is hard to quantify directly.
They found that GPPL outperformed SVM and Bi-
LSTM regression models that were trained directly
on gold-standard scores. Regression approaches are
also unsuitable for our scenario, since utilities for
training the regression model would first need to be
estimated from pairwise labels using, for example,
BWS. This type of pipeline approach often suffers
from error propagation, which integrated methods
such as GPPL avoid (Finkel et al., 2006). We
therefore propose the use of GPPL for our creative
language tasks to provide a strong baseline that,
unlike BWS, can exploit textual features as well as
pairwise labels.

3 Data

Humour dataset. Our humour dataset is an ex-
tension of the data provided for the SemEval-2017
pun recognition challenge (Miller et al., 2017). Sev-
eral factors motivated our selection of this dataset:
(1) Unlike the multimodal datasets of Shahaf et al.



5720

(2015) and Radev et al. (2016), the humour in
Miller et al. (2017) is purely verbal. (2) Unlike the
cartoon caption and Twitter datasets used in previ-
ous studies, the SemEval-2017 jokes were sourced
largely from professional humorists and curated
joke collections, providing a better a priori expecta-
tion of their quality and use of standard language.
(3) The dataset has seen use even outside the ori-
ginal shared task (e.g., Mikhalkova and Karyakin,
2017; Cai et al., 2018; Poliak et al., 2018). (4) The
jokes have been pre-classified according to their
type (homographic puns, heterographic puns, and
non-puns), so our extension of it could serve the
needs of future qualitative research into humour.

The original dataset consists of 4030 short texts
averaging about 11 words in length. Of the texts,
3398 contain humour (mostly, but not exclusively,
punning jokes) and 632 do not (proverbs and aph-
orisms). Our examination of the data revealed
three duplicate instances in the humour class; to
preserve the size of the dataset, we replaced these
with three new punning jokes provided to us by the
dataset’s original compilers. We applied humor-
ousness annotations using a crowdsourcing setup.
First, we randomly paired the texts such that each
text appeared in exactly 14 unique pairs. Each of
these 28,210 unique pairs was then presented to
five annotators who were asked to judge which text
(if either) was funnier. Annotators were recruited
from American users of the Amazon Mechanical
Turk crowdsourcing platform and paid at a rate
commensurate with the US federal minimum wage.

To generate gold-standard scores, we apply BWS
to the complete dataset. To evaluate whether the
number of annotations is sufficient to produce a
reliable gold standard, we randomly subsampled
the annotations to produce subsamples with one to
four annotators per pair. We then computed Spear-
man’s rank correlation coefficient, ρ, between the
gold-standard ranking and BWS scores computed
for each subsample. The results averaged over ten
random repeats (see Table 3) show that the rankings
are very similar even when fewer annotators label
each pair. We also computed the mean interannot-
ator agreement (Krippendorff’s α) across instances.
The result, 0.80, indicates a satisfactory level of
agreement among the crowd workers (Artstein and
Poesio, 2008). Taken together, these results suggest
that five annotators per pair is more than sufficient
to reach a consensus ranking using BWS.

# annotators 1 2 3 4

Spearman’s ρ 0.81 0.92 0.97 0.99

Table 3: Agreement measures for the humour dataset.

humour metaphor

# instances 4,030 15,181
# unique pairs 28,210 65,323
# unique pairs for each instance 14 (avg) 8.6
annotations/pair 5 (avg) 1.55

Table 4: Statistics for the humour and metaphor novelty
datasets.

Metaphor Novelty Dataset. We use the meta-
phor novelty dataset of Do Dinh et al. (2018), which
contains novelty scores for metaphors (i.e., meta-
phoric tokens) from the VU Amsterdam Metaphor
Corpus (Steen et al., 2010) across four genres: news,
fiction, conversation transcripts, and academic texts.
The metaphors were compared by crowd workers
using best–worst scaling tuples of four randomly
chosen metaphors – that is to say, annotators were
presented with random selections of four sentences
with the metaphoric tokens highlighted, and they
selected the most novel and most conventionalised
metaphors from this set. The tuples were chosen
such that each metaphor appeared in six different
comparisons, and each comparison was labelled by
three annotators.
For the new tasks proposed in this paper, we

extract from each of these four-tuples, for each
annotator, the pair comparing the most novel to the
most conventionalised metaphor token in context.
Since we create only those pairs containing the most
and least novel instances in each tuple, each tuple
generates only one pairwise comparison per worker.
Because not all pairs are unique, and different
pairs were extracted for different annotators, the
number of unique pairs decreases, and the number
of annotations per unique pair is less than three.
We also use the gold standard provided by Do Dinh
et al. (2018), which was obtained by applying BWS
to the complete dataset.
Table 4 presents some statistics on the humour

and metaphor novelty datasets.

4 Task Definitions
We introduce tasks to evaluate models for ranking
instances by humorousness and metaphor novelty
given pairwise comparisons. For the humorousness
dataset, an instance is represented by a short text
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(typically 1–2 sentences) that possibly forms a joke.
For the metaphor novelty dataset, an instance is
represented by a metaphoric token and its sentential
context. The tasks are designed to test the following
hypotheses regarding our proposed Bayesian ap-
proach, GPPL, and other ranking models proposed
in future: (a) given a sufficient number of pairwise
labels, the proposed model converges close to the
gold standard; (b) the proposed model is able to
generalise to unseen instances using a combination
of embeddings and linguistic features; (c) with a
sparser set of pairwise training labels, the proposed
model can exploit feature data to produce more
accurate predictions than BWS; and (d) obtaining
the same number of annotations for each pair to
mitigate annotator disagreement is less effective
than randomly choosing pairs to be annotated. To
test these hypotheses, we devise a number of tasks
that can be tested on both datasets.
Task 1: Test (a) the convergence of the pro-

posed model to the gold standard. First, train the
model on all available annotations without using
any feature data – that is, learn a ranking from
pairwise comparisons only. Using this model, es-
timate scores for all instances and rank the instances
according to these scores. Compare this ranking
to the gold BWS ranking using Spearman’s rank
correlation coefficient (ρ).

Task 2: Evaluate (b) the predictive ability of
the proposed model. Randomly select 60% of the
instances as a training set. Train the model on only
those annotations that compare instances in the
training set, then predict scores for instances in the
test set (20%). Rank the test instances according to
those scores and evaluate the ranking against BWS
gold using ρ.
Task 3: Test (c) predictions for test instances

when annotation data is sparse. Subsample the
training set from Task 2 by randomly selecting 5%,
10%, 20%, 33%, and 66% of the original training
annotations. To test hypothesis (d), we compare
two subsamplingmethods: annotation subsampling
(choose a random subset of pairwise annotations)
and pair subsampling (first choose unique random
pairs of instances, then take all annotations asso-
ciated with those pairs). Pair sampling ensures
that all selected pairs have multiple annotations
from different annotators, which may help to mitig-
ate noise, while annotation subsampling provides
a more diverse coverage of possible pairs of in-
stances. For each subsample, train the model and

rank the instances in the test set. Evaluate against
the gold-standard ranking using ρ.
Task 4: Test (c) the estimated scores for train-

ing instances when the pairwise annotation data
is sparse. Repeat the same setup as Task 3, but
evaluate the rankings for instances in the training set.
This allows us to evaluate how many annotations
are required to reliably rank a set of instances with
each scoring method and subsampling method (d).

5 Experiments
5.1 Experimental Setup
We use the tasks defined in the previous section to
evaluate the suitability of our proposed Bayesian ap-
proach, GPPL. For both datasets, the GPPL model
is tested with 300-dimensional average word embed-
dings, using the word2vec model trained on Google
News (Mikolov et al., 2013). For the metaphor task,
the embedding for the token used metaphorically
is concatenated with the average word embeddings
that represent the subsuming context sentence.
For Task 2 on both datasets, we augment the

average word embeddings with linguistic features:
average token frequency (taken from a 2017 Wiki-
pedia dump), a polysemy measure represented by
the average number of synsets (taken from Word-
Net 3.0), and average bigram frequency (taken from
Google Books Ngrams). Again for the metaphor
task, we additionally append the metaphor token
frequency if the frequency feature is selected. We
repeat Task 2 with different subsets of these fea-
tures to determine the most effective combination.
The token frequency feature has previously been
shown to distinguish betweenmetaphoric and literal
use (Beigman Klebanov et al., 2014), but also to
be indicative of metaphor novelty (Do Dinh et al.,
2018). By incorporating the polysemy feature we
seek to increase performance especially for the fun-
niness dataset, which includes many puns. The
bigram feature reinforces the frequency feature by
highlighting instances that include rare bigrams.
For best–worst scaling, we use the implement-

ation provided by Kiritchenko and Mohammad
(2016). We use the GPPL implementation provided
by Simpson and Gurevych (2018). To ensure a
reasonable computation time, we follow the au-
thors’ recommendations for hyperparameters and
set the number of inducing points to M = 500
and the length-scales using the median heuristic.
In future work, it may be possible to tune these
hyperparameters further; however, M is a trade-off
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instances humour metaphor

all 0.917 0.736
no tied BWS scores 0.951 0.737

Table 5: Task 1. Spearman’s ρ between GPPL and
gold-standard scores produced by BWS when trained
without features.

between computation time and model accuracy, as
the training time scales with O(M3) computational
cost. With our current setup, the combined training
and prediction time was approximately 2 hours for
the metaphor novelty dataset and 2.5 hours for the
funniness dataset running on a 24-core cluster with
2GHz CPU cores.

5.2 Results
Task 1. We compare the BWS gold-standard rank-
ing to the GPPL ranking produced when trained
on all available pairwise annotations. We ignore
feature data, representing instances solely by an ID
instead of a feature vector. This is feasible because
we train and test on the same instances, and so do
not need features to generalise from training to test
instances.
The resulting correlations are shown in the first

line of Table 5. While the rankings for the humor-
ousness dataset have high correlation, there is still
some discrepancy for metaphor novelty. We note
that the BWS scoring method means that multiple
instances receive the same scores, while GPPL as-
signs unique values to all instances. To investigate
whether these ties affect the rank correlations, we
computed new rankings without ties by randomly
sampling one instance for each tie, then computing
Spearman’s ρ for the subsampled instances. The
mean over ten subsamples is shown in the second
row of Table 5. For the humorousness dataset,
the correlation increases when ties are excluded,
suggesting that ties contribute to the difference
between the BWS and GPPL rankings. The differ-
ences caused by tied BWS scores do not indicate
errors but show a small difference due to the nature
of BWS and GPPL scores.
However, for metaphor novelty, the difference

when tied scores are removed is negligible. Instead,
the lower correlation compared to the humour data-
set hints at the more uneven annotation of the meta-
phors – that is, there aremany very conventionalised
instances, so each one was chosen less frequently as
the least novel instance in a four-tuple, whereas the
smaller number of novel metaphors means that each

one is selected multiple times as the most novel
instance in a four-tuple. This results in few pairs
containing the highly-conventionalised instances,
which introduces noise into the BWS and GPPL
rankings. In contrast to the humour dataset, which
is roughly balanced between funny and non-funny
texts, the metaphor dataset is much more skewed
towards one class, the conventionalised metaphors.

Unlike GPPL, the BWS score for a given instance
does not take into account the scores of the instances
that it was compared against. We investigate this
effect by computing, for each instance s, the total
rank cs of instances compared against s, where cs
is the sum of GPPL ranks of instances that were
annotated as funnier or more novel than s, minus the
sum of ranks of instances that were annotated as less
funny or novel than s. We then compute correlations
between cs and the difference in ranking between
GPPL and BWS, obtaining both Spearman’s ρ and
Pearson’s r = 0.21 for the humorousness dataset,
and ρ and r = 0.22 for metaphor novelty. This
indicates that the choice of instances to compare
against contributed to the difference between GPPL
and BWS rankings: the GPPL score for an instance
is estimated relative to the scores of instances that
it was compared against, while BWS scores are not.
This difference may be greater for the metaphor
dataset, since there are fewer pairs per instance and
hence potentially noisier rankings.

The distributions of differences between rankings
are shown in Figure 1, showing that the majority of
differences are small for both datasets. This indic-
ates that our proposed GPPL model can capture the
gold-standard ranking adequately given a sufficient
amount of pairwise training data.

For the humour dataset, we also used the original
classifications from Miller et al. (2017) to evaluate
howwell the BWS andGPPL rankings separate non-
pun instances from puns using the area under the
receiver operating characteristic curve (AUROC;
Fawcett, 2006). This area represents the probability
that a randomly chosen pun will be ranked higher
than a randomly chosen non-pun. Note, however,
that some non-puns may contain other types of
humour, so we do not expect to achieve a perfect
score. We find that both BWS and GPPL achieve
AUROC = 0.8, which reflects a good separation of
the two classes.

Task 2. The results for predicting unseen in-
stances in Task 2 are shown in Table 6. For both
datasets, the combination of word2vec embeddings
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Figure 1: Task 1. Distribution of rank differences
between BWS and GPPL scores for humorousness (left)
and metaphor novelty (right).

features humour metaphor

w2v 0.531 0.551
w2v, freq., polysemy 0.552 0.540
w2v, freq., bigrams 0.561 0.562
w2v, polysemy, bigrams 0.537 0.523
w2v, freq., polysemy, bigrams 0.542 0.516

Table 6: Task 2. Predicting rankings on unseen test
instances: Spearman’s ρ against BWS gold standard
(p≪ 0.01).

(w2v), average token frequency (freq.), and average
bigram frequency performs best. Additionally in-
cluding the polysemy feature generally decreased
performance for the metaphor novelty dataset, but
improved performance on the funniness dataset
when compared to the word2vec-only experiment.
The improvement due to token and bigram fre-
quency suggests that the average word embeddings
do not capture all word-level information.
We compare the scores produced by BWS and

GPPL for the best feature combination in Figures 2
and 3. In the metaphor novelty dataset, the GPPL
scores are contained mainly in the range −2 to

G
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L
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e

Gold (BWS) scores

Figure 2: Gold vs. GPPL scores for the best Task 2
model for humour.
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L
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Figure 3: Gold vs. GPPL scores for the best Task 2
model for metaphor novelty.
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Figure 4: Task 3. Spearman’s ρ for rank prediction
on test instances (subsampled by pair or by annotation)
with decreasing data sparsity (p≪ 0.01).

2, with a few extreme outliers. In contrast, the
BWS scores are all between −0.8 and 0.8. The ten
largest outliers include two occurrences each of
the metaphor tokens “fit” and “let”, which are
both rated correctly as highly conventionalised
(e.g., in the sentence “How many times must I
tell you that if you let things go too far, nobody
can stop what will undoubtedly happen?”). The
extreme outliers for GPPL scores are, however, not
present in the humorousness dataset. In GPPL,
the scores reflect confidence: the larger number of
pairwise annotations in the metaphor dataset may
increase the range of scores; smaller values may
also correspond to noisier or more contradicting
annotations.

Task 3. Figure 4 shows the results of Task 3,
with the rightmost points corresponding to the
Task 2 results. The results show that GPPL handles
smaller training set sizes down to 5% with a much
smaller decrease in performance compared to BWS.
The annotation sampling strategy appears to be
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Figure 5: Task 4. Spearman’s ρ for rank prediction on
training instances (subsampled by pair or by annota-
tion) with decreasing data sparsity (p≪ 0.01).

beneficial when data is sparse: it provides a greater
diversity of pairs, so may provide better coverage
over the set of instances, and therefore the feature
space.

Task 4. In Figure 5, we show the results for
Task 4, comparing GPPL against BWS for instances
in the training set. Gold-standard rankings were
not used in training, and the ranks were inferred by
BWS and GPPL from the pairwise labels; hence,
reducing the amount of pairwise data available
reduces the quality of the rankings. For GPPL, we
see that the ranking performance with sparse data is
substantially higher than BWS. This is particularly
notable for metaphor novelty, while for funniness,
using the annotation strategy, the performance of
BWS converges to that of GPPL as the dataset
is increased. While GPPL performance with the
pair strategy is highest with the small training set
size for humour, it falls below that of BWS as the
dataset increases. The results further suggest that
the annotation strategy is preferable, which may
inform future crowdsourcing efforts, and that while
GPPL performs best with small training data, there
are situations where BWS may have an advantage.

6 Conclusion

This paper has introduced new tasks for evaluating
the degree of humorousness of a short text and
the novelty of a metaphor within a short text. For
humorousness, we have provided a new set of crowd-
sourced pairwise comparisons, while for metaphor
novelty we extracted pairwise labels from existing
best–worst scaling data. We have introduced a
Bayesian approach, Gaussian process preference

learning, that can use sparse pairwise annotations
to estimate humorousness or novelty scores given
word embeddings and linguistic features. Our ex-
periments showed that GPPL outperforms BWS
at ranking instances in the training set when few
pairwise labels are available, and generalises well
to ranking test instances that were not compared in
the training set.

Given that our model achieves good results with
rudimentary, task-agnostic linguistic features, in fu-
ture work we plan to investigate the use of humour-
and metaphor-specific features, including some
of those used in past work (see §2) as well as
those inspired by the prevailing linguistic theories
of humour (Attardo, 1994) and metaphor (Black,
1955; Lakoff and Johnson, 1980). The benefits of
including word and bigram frequency also point
to possible further improvements using n-grams,
tf–idf, or other task-agnostic linguistic features. Fi-
nally, we plan to further extend and use the humour
dataset to investigate open questions on the lin-
guistics of humour, such as what relationships hold
between a pun’s phonology and its “successfulness”
or humorousness (Lagerquist, 1980; Hempelmann
and Miller, 2017).
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