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Abstract
Lexical entailment (LE; also known as
hyponymy-hypernymy or is-a relation) is a core
asymmetric lexical relation that supports tasks
like taxonomy induction and text generation.
In this work, we propose a simple and effec-
tive method for fine-tuning distributional word
vectors for LE. Our Generalized Lexical EN-
tailment model (GLEN) is decoupled from the
word embedding model and applicable to any
distributional vector space. Yet – unlike exist-
ing retrofitting models – it captures a general
specialization function allowing for LE-tuning
of the entire distributional space and not only
the vectors of words seen in lexical constraints.
Coupled with a multilingual embedding space,
GLEN seamlessly enables cross-lingual LE de-
tection. We demonstrate the effectiveness of
GLEN in graded LE and report large improve-
ments (over 20% in accuracy) over state-of-
the-art in cross-lingual LE detection.

1 Background and Motivation
Lexical entailment (LE; hyponymy-hypernymy or
is-a relation), is a fundamental asymmetric lexico-
semantic relation (Collins and Quillian, 1972;
Beckwith et al., 1991) and a key building block
of lexico-semantic networks and knowledge bases
(Fellbaum, 1998; Navigli and Ponzetto, 2012). Rea-
soning about word-level entailment supports a mul-
titude of tasks such as taxonomy induction (Snow
et al., 2006; Navigli et al., 2011; Gupta et al.,
2017), natural language inference (Dagan et al.,
2013; Bowman et al., 2015; Williams et al., 2018),
metaphor detection (Mohler et al., 2013), and text
generation (Biran and McKeown, 2013).

Due to their distributional nature (Harris, 1954),
embedding models (Mikolov et al., 2013; Levy and
Goldberg, 2014; Pennington et al., 2014; Melamud
et al., 2016; Bojanowski et al., 2017; Peters et al.,
2018, inter alia) conflate paradigmatic relations
(e.g., synonymy, antonymy, LE, meronymy) and

the broader topical (i.e., syntagmatic) relatedness
(Schwartz et al., 2015; Mrkšić et al., 2017). Con-
sequently, distributional vectors (i.e., embeddings)
cannot be directly used to reliably detect LE.

Embedding specialization methods remedy for
the semantic vagueness of distributional spaces,
forcing the vectors to conform to external linguis-
tic constraints (e.g., synonymy or LE word pairs)
in order to emphasize the lexico-semantic relation
of interest (e.g., semantic similarity of LE) and di-
minish the contributions of other types of semantic
association. Lexical specialization models gener-
ally belong to one of the two families: (1) joint op-
timization models and (2) retrofitting (also known
as fine-tuning or post-processing) models. Joint
models incorporate linguistic constraints directly
into the objective of an embedding model, e.g.,
Skip-Gram (Mikolov et al., 2013), by modifying
the prior or regularization of the objective (Yu and
Dredze, 2014; Xu et al., 2014; Kiela et al., 2015) or
by augmenting the objective with additional factors
reflecting linguistic constraints (Ono et al., 2015;
Osborne et al., 2016; Nguyen et al., 2017). Joint
models are tightly coupled to a concrete embed-
ding model – any modification to the underlying
embedding models warrants a modification of the
whole joint model, along with the expensive retrain-
ing. Conversely, retrofitting models (Faruqui et al.,
2015; Wieting et al., 2015; Nguyen et al., 2016;
Mrkšić et al., 2017; Vulić and Mrkšić, 2018, in-
ter alia) change the distributional spaces post-hoc,
by fine-tuning word vectors so that they conform
to external linguistic constraints. Advantageously,
this makes retrofitting models more flexible, as
they can be applied to any pre-trained distributional
space. On the downside, retrofitting models spe-
cialize only the vectors of words seen in constraints,
leaving vectors of unseen words unchanged.

In this work, we propose an LE-specialization
framework that combines the strengths of both
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Figure 1: High-level illustration of GLEN. Row #1:
LE-retrofitting – specializes only vectors of constraint
words (from languageL1); Row #2: GLEN – learns the
specialization function f using constraints (fromL1) as
supervision; Row #3: Cross-lingual GLEN: LE-tuning
of vectors from language L2 – f applied to L2 vectors
projected (function g) to the L1 embedding space.

model families: unlike joint models, our gener-
alized LE specialization (dubbed GLEN) is easily
applicable to any embedding space. Yet, unlike the
retrofitting models, it LE-specializes the entire dis-
tributional space and not just the vectors of words
from external constraints. GLEN utilizes linguistic
constraints as training examples in order to learn
a general LE-specialization function (instantiated
simply as a feed-forward neural net), which can
then be applied to the entire distributional space.
The difference between LE-retrofitting and GLEN
is illustrated in Figure 1. Moreover, with GLEN’s
ability to LE-specialize unseen words we can seam-
lessly LE-specialize word vectors of another lan-
guage (L2), assuming we previously project them
to the distributional space of L1 for which we had
learned the specialization function. To this end, we
can leverage any from the plethora of resource-lean
methods for learning the cross-lingual projection
(function g in Figure 1) between monolingual distri-
butional vector spaces (Smith et al., 2017; Conneau
et al., 2018; Artetxe et al., 2018, inter alia).1

Conceptually, GLEN is similar to the explicit
retrofitting model of Glavaš and Vulić (2018), who
focus on the symmetric semantic similarity rela-
tion. In contrast, GLEN has to account for the
asymmetric nature of the LE relation. Besides joint
(Nguyen et al., 2017) and retrofitting (Vulić and
Mrkšić, 2018) models for LE, there is a number of
supervised LE detection models that employ dis-
tributional vectors as input features (Tuan et al.,
2016; Shwartz et al., 2016; Glavaš and Ponzetto,

1See (Ruder et al., 2018b; Glavaš et al., 2019) for a compre-
hensive overview of models for inducing cross-lingual word
embedding spaces.

2017; Rei et al., 2018). These models, however,
predict LE for pairs of words, but do not produce
LE-specialized word vectors, which are directly
pluggable into downstream models.

2 Generalized Lexical Entailment
Following LEAR (Vulić and Mrkšić, 2018), the
state-of-the-art LE-retrofitting model, we use three
types of linguistic constraints to learn the gen-
eral specialization f : synonyms, antonyms, and
LE (i.e., hyponym-hypernym) pairs. Similarity-
focused specialization models tune only the direc-
tion of distributional vectors (Mrkšić et al., 2017;
Glavaš and Vulić, 2018; Ponti et al., 2018). In LE-
specialization we need to emphasize similarities
but also reflect the hierarchy of concepts offered
by LE relations (e.g., car should be similar to both
Ferrari and vehicle but is a hyponym only of ve-
hicle). GLEN learns a specialization function f
that rescales vector norms in order to reflect the
hierarchical LE relation. To this end, we use the
following asymmetric distance between vectors de-
fined in terms of their Euclidean norms:

dN (x1,x2) =
‖x1‖ − ‖x2‖
‖x1‖+ ‖x2‖

(1)

Simultaneously, GLEN aims to bring closer to-
gether in direction vectors for synonyms and LE
pairs and to push vectors of antonyms further apart.
We use the cosine distance dC as a symmetric mea-
sure of direction (dis)similarity between vectors.
We combine the asymmetric distance dN and sym-
metric dC in different objective functions that we
optimize to learn the LE-specialization function f .

Lexical Constraints as Training Instances.
For each constraint type – synonyms, antonyms,
and LE pairs – we create separate batches of train-
ing instances. Let {xE

1 ,x
E
2 }K , {xS

1 ,x
S
2 }K , and

{xA
1 ,x

A
2 }K be the batches of K LE, synonymy,

and antonymy pairs, respectively. For each con-
straint (x1,x2) we create a pair of negative vectors
(y1,y2) such that y1 is the vector within the batch
(except x2), closest to x1 and y2 the vector clos-
est to x2 (but not x1) in terms of some distance or
similarity metric. For LE constraints, we find y1

and y2 that minimize dN (x1,y1)+dC(x1,y1) and
dN (y2,x2) + dC(x2,y2), respectively. Intuitively,
we want our model to predict a smaller LE distance
dN+dC for a positive LE pair (x1,x2) than for neg-
ative pairs (x1,y1) and (x2,y2) in the specialized
space. By choosing the most-challenging negative
pairs, i.e., y1 and y2 that are respectively closest
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to x1 and x2 in terms of LE distance in the distri-
butional space, we force our model to learn a more
robust LE specialization function (this is further
elaborated in the description of the objective func-
tion). Analogously, for positive synonym pairs, y1

and y2 are the vectors closest to x1 and x2, respec-
tively, but in terms of only the (symmetric) cosine
distance dC . Finally, for antonyms, y1 is the vec-
tor maximizing dC(x1,y1) and y2 the vector that
maximizes dC(x2,y2). In this case, we want the
vectors of antonyms x1 and x2 after specialization
to be further apart from one another (according to
dC) than from, respectively, the vectors y1 and y2

that are most distant to them in the original distribu-
tional space. A training batch, with K entailment
(E), synonymy (S), or antonymy (A) instances,
is obtained by coupling constraints (x1,x2) with
their negative vectors (y1,y2): {x1,x2,y1,y2}K .

Specialization Function. The parametrized spe-
cialization function f(x; θ) : Rd → Rd (with d
being the embedding size), transforms the distri-
butional space to the space that better captures the
LE relation. Once we learn the specialization func-
tion f (i.e., we tune the parameters θ), we can
LE-specialize the entire distributional embedding
space X (i.e., the vectors of all vocabulary words):
X′ = f(X; θ). For simplicity, we define f to be a
(fully-connected) feed-forward net with H hidden
layers of size dh and non-linear activation ψ. The
i-th hidden layer (i ∈ {1, . . . ,H}) is parametrized
by the weight matrix Wi and the bias vector bi:2

hi(x; θi) = ψ
(
hi−1(x, θi−1)W

i + bi
)

(2)

Objectives and Training. We define four losses
which we combine into training objectives for dif-
ferent constraint types (E, S, and A). The asym-
metric loss la forces the asymmetric margin-based
distance dN to be larger for negative pairs (x1,y1)
and (y2,x2) than for the positive (true LE) pair
(x1,x2) by at least the margin δa :

la=

K∑
k=1

τ
(
δa − dN

(
f(xk

1), f(y
k
1)
)
+ dN

(
f(xk

1), f(x
k
2)
))

+ τ
(
δa − dN

(
f(yk

2), f(x
k
2)
)
+ dN

(
f(xk

1), f(x
k
2)
))

(3)

where τ(x) = max(0, x) is the ramp function. The
similarity loss ls pushes the vectors x1, and x2 to be
direction-wise closer to each other than to negative
vectors y1 and y2, by margin δs:

2The 0-th “hidden layer” is the input distributional vector:
h0(x; θ0) = x and θ0 = ∅, following the notation of Eq. (2).

ls=

K∑
k=1

τ
(
δs − dC

(
f(xk

1), f(y
k
1)
)
+ dC

(
f(xk

1), f(x
k
2)
))

+ τ
(
δs − dC

(
f(xk

2), f(y
k
2)
)
+ dN

(
f(xk

1), f(x
k
2)
))

(4)

The dissimilarity loss ld pushes vectors x1 and x2

further away from each other than from respective
negative vectors y1 and y2, by the margin δd:

ld=

K∑
k=1

τ
(
δd − dC

(
f(xk

1), f(x
k
2)
)
+ dC

(
f(xk

1), f(y
k
1)
))

+ τ
(
δd − dC

(
f(xk

1), f(x
k
2)
)
+ dN

(
f(xk

2), f(y
k
2)
))

(5)

We also define the regularization loss lr, preventing
f from destroying the useful semantic information
contained in distributional vectors:

lr =

K∑
k=1

dC
(

xk
1 , f(x

k
1)
)
+ dC

(
xk
2 , f(x

k
2)
)

+ dC
(

yk
1 , f(y

k
1)
)
+ dC

(
yk
2 , f(y

k
2)
)
. (6)

Finally, we define different objectives for different
constraints types (E, S, and A):

JE = ls(E) + λa · la(E) + λr · lr(E);

JS = ls(S) + λr · lr(S);
JA = ld(A) + λr · lr(A), (7)

where λa and λr scale the contributions of the
asymmetric and regularization losses, respectively.
JE pushes LE vectors to be similar in direction
(loss ls) and different in norm (loss la) after special-
ization. JS forces vectors of synonyms to be closer
together (loss ls) and JA vectors of antonyms to
be further apart (loss ld) in direction after special-
ization, both without affecting vector norms. We
tune hyperparameters (δa, δs, δd, λa, and λr) via
cross-validation, with train and validation portions
containing randomly shuffled E, S, and A batches.

Inference. We infer the strength of the LE rela-
tion between vectors x′1 = f(x1) and x′2 = f(x2)
with an asymmetric LE distance combining dC
and dN : ILE(x′1,x

′
2) = dC(x

′
1,x
′
2) + dN (x′1,x

′
2).

True LE pairs should have a small dC and negative
dN . We thus rank LE candidate word pairs accord-
ing to their ILE scores, from smallest to largest.
For the binary LE detection, ILE is binarized via
threshold t: if ILE < t, we predict that LE holds.

Cross-Lingual (CL) LE Specialization. After
learning the generalized LE-specialization function
f , we can apply it to specialize any vector that
comes from the same distributional vector space
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that we used in training. Let L1 be the language
for which we have the linguistic constraints and
let XL1 be its corresponding distributional space.
Let XL2 be the distributional space of another lan-
guage L2. Assuming a function g : RdL2 → RdL1

that projects vectors from XL2 to XL1, we can
straightforwardly LE-specialize the distributional
space of L2 by composing functions f and g:
X′L2 = f (g(XL2)). Recently, a large number
of projection-based models have been proposed for
inducing bilingual word embedding spaces (Smith
et al., 2017; Conneau et al., 2018; Artetxe et al.,
2018; Ruder et al., 2018a; Joulin et al., 2018, inter
alia), most of them requiring limited (word-level)
or no bilingual supervision. Based on a few thou-
sand (manually created or automatically induced)
word-translation pairs, these models learn a linear
mapping Wg that projects the vectors from XL2

to the space XL1: g(XL2) = XL2Wg. The cross-
lingual space is then given as: XL1 ∪ XL2Wg.
Due to simplicity and robust downstream perfor-
mance,3 we opt for the simple supervised learning
of the cross-lingual projection matrix Wg (Smith
et al., 2017) based on (closed-form) solution of
the Procrustes problem (Schönemann, 1966). Let
XS ⊂ XL2 and XT ⊂ XL1 be the subsets of
the two monolingual embedding spaces, contain-
ing (row-aligned) vectors of word translations. We
then obtain the projection matrix as Wg = UV>,
where UΣV> is the singular value decomposition
of the product matrix XTXS

>.

3 Evaluation
Experimental Setup. We work with Wikipedia-
trained FASTTEXT embeddings (Bojanowski et al.,
2017). We take English constraints from previ-
ous work – synonyms and antonyms were created
from WordNet and Roget’s Thesaurus (Zhang et al.,
2014; Ono et al., 2015); LE constraints were col-
lected from WordNet by Vulić and Mrkšić (2018)
and contain both direct and transitively obtained
LE pairs. We retain the constraints for which
both words exist in the trimmed (200K) FASTTEXT

vocabulary, resulting in a total of 1,493,686 LE,
521,037 synonym, and 141,311 antonym pairs. We
reserve 4,000 constraints (E: 2k, S: 1k, A: 1k) for
validation and use the rest for training. We identify
the following best hyperparameter configuration
via grid search: H = 5, dh = 300, ψ = tanh,
δa = 1, δs = δd = 0.5, λa = 2, and λr = 1.

3For a comprehensive downstream comparison of different
cross-lingual embedding models, see (Glavaš et al., 2019).

Setup 0% 10% 30% 50% 70% 90% 100%

LEAR .174 .188 .273 .438 .548 .634 .682
GLEN .481 .485 .478 .474 .506 .504 .520

Table 1: Spearman correlation for GLEN, compared
with LEAR (Vulić and Mrkšić, 2018), on HyperLex,
for different word coverage settings (i.e., percentages
of Hyperlex words seen in constraints in training).

We apply a dropout (keep rate 0.5) to each hidden
layer of f . We train in mini-batches of K = 50
constraints and learn with the Adam algorithm
(Kingma and Ba, 2015): initial learning rate 10−4.

3.1 Graded Lexical Entailment

We use ILE to predict the strength of LE between
words. We evaluate GLEN against the state-of-the-
art LE-retrofitting model LEAR (Vulić and Mrkšić,
2018) on the HyperLex dataset (Vulić et al., 2017)
which contains 2,616 word pairs (83% nouns, 17%
verbs) judged (0-6 scale) by human annotators for
the degree to which the LE relation holds. We eval-
uate the models in a deliberately controlled setup:
we (randomly) select a subset of HyperLex words
(0%, 10%, 30%, 50%, 70%, 90%, and 100%) that
we allow models to “see” in the constraints, remov-
ing constraints with any other HyperLex word.4

Results and Discussion. The graded LE perfor-
mance is shown in Table 1 for all seven setups.
Graded LE results suggest that GLEN is robust and
generalizes well to unseen words: the drop in per-
formance between the 0% and 100% setups is mere
4% for GLEN (compared to a 50% drop for LEAR).
Results in the 0% setting, in which GLEN improves
over the distributional space by more than 30 points
most clearly demonstrate its effectiveness.5 GLEN,
however, lags behind LEAR in setups where LEAR
has seen 70% or more of test words. This is intu-
itive: LEAR specializes the vector of each par-
ticular word using only the constraints containing
that word; this gives LEAR higher specialization
flexibility at the expense of generalization ability.
In contrast, GLEN’s specialization function is af-
fected by all constraints and has to work for all
words; GLEN trades the effectiveness of LEAR’s
word-specific updates for seen words, for the ability
to generalize over unseen words. In a sense, there
is a trade-off between the ability to generalize the

4In the 0% setting we remove all constraints containing
any HyperLex word; in the 100% we use all constraints. The
full set of constraints contains 99.8% of all HyperLex words.

5LEAR’s performance in the 0% setup corresponds to the
performance of input distributional vectors.
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LE-specialization over unseen words and the per-
formance for seen words. Put differently, by learn-
ing a general specialization function – i.e., by using
linguistic constraints merely as training instances
– GLEN is prevented from “overfitting” to seen
words. Evaluation settings like our 90% or 100%
settings, in which GLEN is outperformed by a pure
retrofitting model, are however unrealistic in view
of downstream tasks: for any concrete downstream
task (e.g., textual entailment or taxonomy induc-
tion), it is highly unlikely that the LE-specialization
model will have seen almost all of the test words
(words for which LE inference is required) in its
training linguistic constraints; this is why GLEN’s
ability to generalize LE-specialization to unseen
words (as indicated by 0%-50% settings) is partic-
ularly important.

3.2 Cross-Lingual LE Detection

Neither joint (Nguyen et al., 2017) nor retrofitting
models (Vulić and Mrkšić, 2018) can predict LE
across languages in a straightforward fashion. Cou-
pled with a CL space, GLEN can seamlessly pre-
dict LE across language boundaries.

Experimental Setup. We evaluate GLEN on
datasets from Upadhyay et al. (2018), encompass-
ing two binary cross-lingual LE detection tasks: (1)
HYPO task test model’s ability to determine the di-
rection of the LE relation, i.e., to discern hyponym-
hypernym pairs from hypernym-hyponym pairs;
(2) COHYP tasks tests whether the models are
able to discern true LE pairs from cohyponyms
(e.g., car and boat, cohyponyms of vehicle). We re-
port results for three language pairs: English (EN) –
{French (FR), Russian (RU), Arabic (AR)}. Upad-
hyay et al. (2018) divided each dataset into train
(400-500 word pairs) and test portions (900-1000
word pairs): we use the train portions to tune the
threshold t that binarizes GLEN’s predictions ILE .

We induce the CL embeddings (i.e., learn the
projections Wg, see Section §2) by projecting AR,
FR, and RU embeddings to the EN space in a su-
pervised fashion, by finding the optimal solution to
the Procrustes problem for given 5K word transla-
tion pairs (for each language pair). 6 We compare
GLEN with more complex models from (Upadhyay
et al., 2018): they couple two methods for inducing
syntactic CL embeddings – CL-DEP (Vulić, 2017)
and BI-SPARSE (Vyas and Carpuat, 2016) – with

6We automatically translated 5K most frequent EN words
to AR, FR, and RU with Google Translate.

Model EN-FR EN-RU EN-AR Avg

HYPO
CL-DEP .538 .602 .567 .569
BI-SPARSE .566 .590 .526 .561
GLEN .792 .811 .816 .806

COHYP
CL-DEP .610 .562 .631 .601
BI-SPARSE .667 .636 .668 .657
GLEN .779 .849 .821 .816

Table 2: CL LE detection results (accuracy) on CL
datasets (HYPO, COHYP) (Upadhyay et al., 2018).

an LE scorer based on the distributional inclusion
hypothesis (Geffet and Dagan, 2005).

Results. GLEN’s cross-lingual LE detection per-
formance is shown in Table 2. GLEN dramatically
outperforms CL LE detection models from (Upad-
hyay et al., 2018), with an average edge of 24% on
HYPO datasets and 16% on the COHYP datasets.7

This accentuates GLEN’s generalization ability: it
robustly predicts CL LE, although trained only on
EN constraints. GLEN performs better for EN-
AR and EN-RU than for EN-FR: we believe this
to merely be an artifact of the (rather small) test
sets. We find GLEN’s CL performance for more
distant language pairs (EN-AR, EN-RU) especially
encouraging as it holds promise of successful trans-
fer of LE-specialization to resource-lean languages
lacking external linguistic resources.

4 Conclusion
We presented GLEN, a general framework for spe-
cializing word embeddings for lexical entailment.
Unlike existing LE-specialization models (Nguyen
et al., 2017; Vulić and Mrkšić, 2018), GLEN learns
an explicit specialization function using linguis-
tic constraints as training examples. The learned
LE-specialization function is then applied to vec-
tors of words (1) unseen in constraints and (2)
from different languages. GLEN displays robust
graded LE performance and yields massive im-
provements over state-of-the-art in cross-lingual
LE detection. We next plan to evaluate GLEN on
multilingual and cross-lingual graded LE datasets
(Vulić et al., 2019) and release a large multilin-
gual repository of LE-specialized embeddings. We
make GLEN (code and resources) available at:
https://github.com/codogogo/glen.
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Stiftung, within the scope of the AGREE grant.

7All differences are statistically significant at α = 0.01,
according to the non-parametric shuffling test (Yeh, 2000)

https://github.com/codogogo/glen


4829

References
Mikel Artetxe, Gorka Labaka, and Eneko Agirre. 2018.

A robust self-learning method for fully unsupervised
cross-lingual mappings of word embeddings. In Pro-
ceedings of ACL, pages 789–798.

Richard Beckwith, Christiane Fellbaum, Derek Gross,
and George A. Miller. 1991. WordNet: A lexical
database organized on psycholinguistic principles.
Lexical acquisition: Exploiting on-line resources to
build a lexicon, pages 211–231.

Or Biran and Kathleen McKeown. 2013. Classifying
taxonomic relations between pairs of Wikipedia arti-
cles. In Proceedings of IJCNLP, pages 788–794.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2017. Enriching word vectors with
subword information. Transactions of the ACL,
5:135–146.

Samuel R. Bowman, Gabor Angeli, Christopher Potts,
and Christopher D. Manning. 2015. A large anno-
tated corpus for learning natural language inference.
In Proceedings of EMNLP, pages 632–642.

Allan M. Collins and Ross M. Quillian. 1972. Exper-
iments on semantic memory and language compre-
hension. Cognition in Learning and Memory.

Alexis Conneau, Guillaume Lample, Marc’Aurelio
Ranzato, Ludovic Denoyer, and Hervé Jégou. 2018.
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retrofitting of distributional word vectors. In Pro-
ceedings of ACL, pages 34–45.
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Goran Glavaš and Simone Paolo Ponzetto. 2017.
Dual tensor model for detecting asymmetric lexico-
semantic relations. In Proceedings of EMNLP,
pages 1758–1768.
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ing lexical entailment with a supervised directional
similarity network. In Proceedings of ACL, pages
638–643.

Sebastian Ruder, Ryan Cotterell, Yova Kementched-
jhieva, and Anders Søgaard. 2018a. A discrimina-
tive latent-variable model for bilingual lexicon in-
duction. In Proceedings of EMNLP, pages 458–468.

Sebastian Ruder, Anders Søgaard, and Ivan Vulić.
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Ivan Vulić, Daniela Gerz, Douwe Kiela, Felix Hill, and
Anna Korhonen. 2017. Hyperlex: A large-scale eval-
uation of graded lexical entailment. Computational
Linguistics, 43(4):781–835.

Ivan Vulić and Nikola Mrkšić. 2018. Specialising word
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