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Abstract

We present a model and methodology for
learning paraphrastic sentence embeddings
directly from bitext, removing the time-
consuming intermediate step of creating para-
phrase corpora. Further, we show that the re-
sulting model can be applied to cross-lingual
tasks where it both outperforms and is orders
of magnitude faster than more complex state-
of-the-art baselines.1

1 Introduction

Measuring sentence similarity is a core task in
semantics (Cer et al., 2017), and prior work has
achieved strong results by training similarity mod-
els on datasets of paraphrase pairs (Dolan et al.,
2004). However, such datasets are not produced
naturally at scale and therefore must be created ei-
ther through costly manual annotation or by lever-
aging natural annotation in specific domains, like
Simple English Wikipedia (Coster and Kauchak,
2011) or Twitter (Lan et al., 2017).

One of the most promising approaches for in-
ducing paraphrase datasets is via manipulation of
large bilingual corpora. Examples include bilin-
gual pivoting over phrases (Callison-Burch et al.,
2006; Ganitkevitch et al., 2013), and automatic
translation of one side of the bitext (Wieting et al.,
2017; Wieting and Gimpel, 2018; Hu et al., 2019).
However, this is costly – Wieting and Gimpel
(2018) report their large-scale database of sen-
tential paraphrases required 10,000 GPU hours to
generate.

In this paper, we propose a method that trains
highly performant sentence embeddings (Pham
et al., 2015; Hill et al., 2016; Pagliardini et al.,
2017; McCann et al., 2017; Conneau et al., 2017)
directly on bitext, obviating these intermediate

1Code and data to replicate results are available at
https://www.cs.cmu.edu/˜jwieting.

steps and avoiding the noise and error propaga-
tion from automatic dataset preparation methods.
This approach eases data collection, since bitext
occurs naturally more often than paraphrase data
and, further, has the additional benefit of creat-
ing cross-lingual representations that are useful for
tasks such as mining or filtering parallel data and
cross-lingual retrieval.

Most previous work for cross-lingual repre-
sentations has focused on models based on en-
coders from neural machine translation (Espana-
Bonet et al., 2017; Schwenk and Douze, 2017;
Schwenk, 2018) or deep architectures using a con-
trastive loss (Grégoire and Langlais, 2018; Guo
et al., 2018; Chidambaram et al., 2018). How-
ever, the paraphrastic sentence embedding liter-
ature has observed that simple models such as
pooling word embeddings generalize significantly
better than complex architectures (Wieting et al.,
2016b). Here, we find a similar effect in the
bilingual setting. We propose a simple model
that not only produces state-of-the-art monolin-
gual and bilingual sentence representations, but
also encode sentences hundreds of times faster –
an important factor when applying these represen-
tations for mining or filtering large amounts of bi-
text. Our approach forms the simplest method to
date that is able to achieve state-of-the-art results
on multiple monolingual and cross-lingual seman-
tic textual similarity (STS) and parallel corpora
mining tasks.2

Lastly, since bitext is available for so many
language pairs, we analyze how the choice of
language pair affects the performance of English
paraphrastic representations, finding that using re-
lated languages yields the best results.

2In fact, we show that for monolingual similarity, we can
devise random encoders that outperform some of this work.

https://www.cs.cmu.edu/~jwieting
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2 Learning Sentence Embeddings

We first describe our objective function and then
describe our encoder, in addition to several base-
line encoders. The methodology proposed here
borrows much from past work (Wieting and Gim-
pel, 2018; Guo et al., 2018; Grégoire and Langlais,
2018; Singla et al., 2018), but this specific combi-
nation has not been explored and, as we show in
experiments, is surprisingly effective.

Training. The training data consists of a se-
quence of parallel sentence pairs (si, ti) in source
and target languages respectively. For each sen-
tence pair, we randomly choose a negative target
sentence t′i during training that is not a translation
of si. Our objective is to have source and target
sentences be more similar than source and nega-
tive target examples by a margin δ:

min
θsrc,θtgt

∑
i

[
δ−fθ(si, ti) + fθ(s, t

′
i))
]
+
.

The similarity function is defined as:

fθ(s, t) = cos
(
g(s; θsrc), g(t; θtgt)

)
where g is the sentence encoder with parameters
for each language θ = (θsrc, θtgt). To select t′i we
choose the most similar sentence in some set ac-
cording to the current model parameters, i.e., the
one with the highest cosine similarity.

Negative Sampling. The described objective
can also be applied to monolingual paraphrase
data, which we explore in experiments. The
choice of negative examples differs whether we
are using a monolingual parallel corpus or a bilin-
gual parallel corpus. In the monolingual case, we
select from all examples in the batch except the
current pair. However, in the bilingual case, nega-
tive examples are only selected from the sentences
in the batch from the opposing language. To select
difficult negative examples that aid training, we
use the mega-batching procedure of Wieting and
Gimpel (2018), which aggregates M mini-batches
to create one mega-batch and selects negative ex-
amples therefrom. Once each pair in the mega-
batch has a negative example, the mega-batch is
split back up into M mini-batches for training.

Encoders. Our primary sentence encoder sim-
ply averages the embeddings of subword units
generated by sentencepiece (Kudo and

Richardson, 2018); we refer to it as SP. This
means that the sentence piece embeddings them-
selves are the only learned parameters of this
model. As baselines we explore averaging char-
acter trigrams (TRIGRAM) (Wieting et al., 2016a)
and words (WORD). SP provides a compromise
between averaging words and character trigrams,
combining the more distinct semantic units of
words with the coverage of character trigrams.

We also use a bidirectional LSTM en-
coder (Hochreiter and Schmidhuber, 1997), with
LSTM parameters fully shared between languages
, as well as LSTM-SP, which uses sentence pieces
instead of words as the input tokens. For all en-
coders, when the vocabularies of source and target
languages overlap, the corresponding encoder em-
bedding parameters are shared. As a result, lan-
guages pairs with more lexical overlap share more
parameters.

We utilize several regularization meth-
ods (Wieting and Gimpel, 2017) including
dropout (Srivastava et al., 2014) and shuffling the
words in the sentence when training the LSTM-
SP. Additionally, we find that annealing the
mega-batch size by increasing it during training
improved performance by a significant margin for
LSTM-SP.

3 Experiments

Experiments are split into two groups. First, we
compare training on parallel data to training on
back-translated parallel data. We evaluate these
models on the 2012-2016 SemEval Semantic Tex-
tual Similarity (STS) shared tasks (Agirre et al.,
2012, 2013, 2014, 2015, 2016), which predict the
degree to which sentences have the same mean-
ing as measured by human judges. The evaluation
metric is Pearson’s r with the gold labels. We use
the small STS English-English dataset from Cer
et al. (2017) for model selection. Second, we com-
pare our best model, SP, on two semantic cross-
lingual tasks: the 2017 SemEval STS task (Cer
et al., 2017) which consists of monolingual and
cross-lingual datasets and the 2018 Building and
Using Parallel Corpora (BUCC) shared bitext min-
ing task (Zweigenbaum et al., 2018).

3.1 Hyperparameters and Optimization

Unless otherwise specified, we fix the hyperpa-
rameters in our model to the following: mega-
batch size to 120, margin δ to 0.4, annealing rate to
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Model En-En En-Cs (1M) En-Cs (2M)
LSTM-SP (20k) 66.7 65.7 66.6
SP (20k) 68.3 68.6 70.0
WORD 66.0 63.8 65.9
TRIGRAM 69.2 68.6 69.9

Table 1: Comparison between training on 1 million ex-
amples from a backtranslated English-English corpus
(En-En) and the original bitext corpus (En-Cs) sam-
pling 1 million and 2 million sentence pairs (the latter
equalizes the amount of English text with the En-En
setting). Performance is the average Pearson’s r over
the 2012-2016 STS datasets.

150,3 dropout to 0.3, shuffling rate for BLSTM-
SP to 0.3, and the size of the SentencePiece vo-
cabulary to 20,000. For WORD and TRIGRAM,
we limited the vocabulary to the 200,000 most fre-
quent types in the training data. We optimize our
models using Adam (Kingma and Ba, 2014) with
a learning rate of 0.001 and trained the models for
10 epochs.

3.2 Back-Translated Text vs. Parallel Text

We first compare sentence encoders and sentence
embedding quality between models trained on
backtranslated text and those trained on bitext di-
rectly. As our bitext, we use the Czeng1.6 English-
Czech parallel corpus (Bojar et al., 2016). We
compare it to training on ParaNMT (Wieting and
Gimpel, 2018), a corpus of 50 million paraphrases
obtained from automatically translating the Czech
side of Czeng1.6 into English. We sample 1 mil-
lion examples from ParaNMT and Czeng1.6 and
evaluate on all 25 datasets from the STS tasks from
2012-2016. Since the models see two full En-
glish sentences for every example when training
on ParaNMT, but only one when training on bi-
text, we also experiment with sampling twice the
amount of bitext data to keep fixed the number of
English training sentences.

Results in Table 1 show two observations. First,
models trained on En-En, in contrast to those
trained on En-CS, have higher correlation for all
encoders except SP. However, when the same
number of English sentences is used, models
trained on bitext have greater than or equal per-
formance across all encoders. Second, SP has the
best performance in the En-CS setting. It also
has fewer parameters and is therefore faster to
train than LSTM-SP and TRIGRAM. Further, it

3Annealing rate is the number of minibatches that are pro-
cessed before the megabatch size is increased by 1.

is much faster at encoding new sentences at test
time.

3.3 Monolingual and Cross-Lingual
Similarity

We evaluate on the cross-lingual STS tasks from
SemEval 2017. This evaluation contains Arabic-
Arabic (Ar), Arabic-English, Spanish-Spanish
(Es), Spanish-English, and Turkish-English STS
datsets. These datasets were created by translat-
ing one or both pairs of an English STS pair into
Arabic, Spanish, or Turkish.

Baselines. We compare to several models from
prior work (Guo et al., 2018; Chidambaram et al.,
2018). A fair comparison to other models is diffi-
cult due to different training setups. Therefore, we
perform a variety of experiments at different scales
to demonstrate that even with much less data, our
method has the best performance. In the case of
Schwenk (2018), we replicate their setting in or-
der to do a fair comparison.4

As another baseline, we analyze the perfor-
mance of averaging randomly initialized embed-
dings. We experiment with SP having Sentence-
Piece vocabulary sizes of 20,000 and 40,000 as
well as TRIGRAM. The embeddings have 300 di-
mensions and are initialized from a normal distri-
bution with mean 0 and variance 1.

Results. The results are shown in Table 2. We
make several observations. The first is that the
1024 dimension SP model has the top perfor-
mance on 4 of the 6 STS datasets. Our results
also show that performance increases substantially
from using 1 million to using 10 million sentence
pairs and is also correlated positively with dimen-
sion and size of the SP vocabulary. This result
outperforms the baselines from the literature as
well, all of which use deep architectures.5 Our
SP model trained on Europarl (EP) also surpasses
the model from Schwenk (2018) which is trained
on the same corpus. Since that model is based on
many-to-many translation, Schwenk (2018) trains

4Two follow-up papers (Artetxe and Schwenk, 2018a,b)
use essentially the same underlying model, but we compare to
Schwenk (2018) because it was the only one of these papers
where the model has been made available when this paper
was written.

5Including a 3-layer transformer trained on a constructed
parallel corpus (Chidambaram et al., 2018), a bidirectional
gated recurrent unit network trained on a collection of parallel
corpora using En-Es, En-Ar, and Ar-Es bitext (Espana-Bonet
et al., 2017), and a 3 layer bidirectional LSTM trained on 9
languages in Europarl (Schwenk, 2018).
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Model Data N Dim. Ar-Ar Ar-En Es-Es Es-En En-En Tr-En
Random TRIGRAM OS 1M 300 67.9 1.8 77.3 2.8 73.7 18.6
Random SP (20k) OS 1M 300 61.9 17.5 68.8 6.5 67.0 23.1
Random SP (40k) OS 1M 300 58.3 16.1 68.2 10.4 66.6 22.2
SP (20k) OS 1M 300 70.0 64.9 82.0 71.6 82.2 68.9
SP (20k) OS 10M 300 72.4 74.9 85.0 77.0 83.3 74.6
SP (20k) OS 10M 1024 75.4 73.2 85.0 78.2 83.2 75.7
SP (80k) OS 10M 1024 76.3 75.0 86.2 78.2 84.0 77.5
SP (20k) EP 2M 300 - - 78.6 53.5 78.9 -
SP (20k) EP 2M 1024 - - 80.6 54.0 80.0 -
Schwenk (2018) EP 18M 1024 - - 64.4 40.8 66.0 -
Espana-Bonet et al. (2017) MIX 32.8M 2048 59 44 78 49 76 -
Chidambaram et al. (2018) MIX 470M/500M 512 - - 64.2 58.7 - -
2017 STS 1st Place - - - 75.4 74.9 85.6 83.0 85.5 77.1
2017 STS 2nd Place - - - 75.4 71.3 85.0 81.3 85.4 74.2
2017 STS 3rd Place - - - 74.6 70.0 84.9 79.1 85.4 73.6

Table 2: Comparison of our models with those in the literature and random encoder baselines. All models are
evaluated on cross-lingual STS where performance is measured in Pearson’s r (%). N refers to the number of
examples in the training data. OS stands for OpenSubtitles, EP for Europarl, and MIX for a variety of domains.

on nine (related) languages in Europarl. We only
train on the splits of interest (En-Es for STS and
En-De/En-Fr for the BUCC tasks) in our experi-
ments

Secondly, random encoders, especially random
TRIGRAM, perform strongly in the monolingual
setting. In fact, the random encoders are com-
petitive or outperform all three models from the
literature in these cases. For cross-lingual similar-
ity, however, random encoders lag behind because
they are essentially measuring the lexical overlap
in the two sentences and there is little lexical over-
lap in the cross-lingual setting, especially for dis-
tantly related languages like Arabic and English.

3.4 Mining Bitext

Lastly, we evaluate on the BUCC shared task on
mining bitext. The task consists of finding the gold
aligned parallel sentences given two large corpora
in two distinct languages. Typically, only about
2.5% of the sentences are aligned. Following
Schwenk (2018), we train our models on Europarl
and evaluate on the publicly available BUCC data.

Results in Table 3 on the French and German
mining tasks demonstrate the proposed model out-
performs Schwenk (2018), although the gap is
substantially smaller than on the STS tasks. The
reason for this is likely the domain mismatch be-
tween the STS data (image captions) and the train-
ing data (Europarl). We suspect that the deep
NMT encoders of Schwenk (2018) overfit to the
domain more than the simpler SP model, and the
BUCC task uses news data which is closer to Eu-
roparl than image captions.

Model En-De En-Fr
Schwenk (2018) 76.1 74.9
SP (20k) 76.9 76.3
SP (40k) 77.5 76.8

Table 3: F1 scores for bitext mining on BUCC.

Model Dim Sentences/Sec.
Schwenk (2018) 1024 2,601
Chidambaram et al. (2018) 512 3,049
SP (20k) 300 855,571
SP (20k) 1024 683,204

Table 4: A comparison of encoding times for our
model compared to two models from prior work.

4 Analysis

We next conduct experiments on encoding speed
and analyze the effect of language choice.

4.1 Encoding Speed

In addition to outperforming more complex mod-
els (Schwenk, 2018; Chidambaram et al., 2018),
the simple SP models proposed here are much
faster at encoding sentences. Since implementa-
tions to encode sentences are publicly available
several baselines, we are able to test their encod-
ing speed and compare. To do so, we randomly se-
lect 128,000 English sentences from the English-
Spanish Europarl corpus. We then encode these
sentences in batches of 128 on an Nvidia Quadro
GP100 GPU. The number of sentences encoded
per second is shown in Table 4, showing that SP is
hundreds of times faster.
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Figure 1: Plot of average performance on the 2012-
2016 STS tasks compared to SP overlap and language
distance as defined by Littell et al. (2017).

4.2 Does Language Choice Matter?

We next investigate the impact of the non-English
language in the bitext when training English para-
phrastic sentence embeddings. We took all 46 lan-
guages with at least 100k parallel sentence pairs in
the 2016 OpenSubtitles Corpus (Lison and Tiede-
mann, 2016) and made a plot of their average STS
performance on the 2012-2016 English datasets
compared to their SP overlap6 and language dis-
tance.7 We segmented the languages separately
and trained the models for 10 epochs using the
2017 STS task for model selection.

The plot, shown in Figure 1, shows that
SentencePieces (SP) overlap is highly correlated
with STS score. There are also two clusters in
the plot, languages that have a similar alphabet to
English and those that do not. In each cluster we
find that performance is negatively correlated with
language distance. Therefore, languages similar
to English yield better performance. The Spear-
man’s correlations (multiplied by 100) for all lan-
guages and these two clusters are shown in Ta-
ble 5. When choosing a language to pair up with
English for learning paraphrastic embeddings, ide-
ally there will be a lot of SP overlap. However, be-
yond or below a certain threshold (approximately
0.3 judging by the plot), the linguistic distance to
English is more predictive of performance. Of the

6We define SP overlap as the percentage of SPs in the
English corpus that also appear in the non-English corpus.

7We used the feature distance in URIEL (Littell et al.,
2017) which accounts for a number of factors when calculat-
ing distance like phylogeny, geography, syntax, and phonol-
ogy.

Model SP Ovl. Lang. Distance
All Lang. 71.5 -22.8
Lang. (SP Ovl. ≤ 0.3) 23.6 -63.8
Lang. (SP Ovl. > 0.3) 18.5 -34.2

Table 5: Spearman’s ρ× 100 between average perfor-
mance on the 2012-2016 STS tasks compared to SP
overlap (SP Ovl.) and language distance as defined
by Littell et al. (2017). We included correlations for
all languages as well as those with low and high SP
overlap with English.

factors in URIEL, syntactic distance was the fea-
ture most correlated with STS performance in the
two clusters with correlations of -56.1 and -29.0
for the low and high overlap clusters respectively.
This indicates that languages with similar syntax
to English helped performance. One hypothesis
to explain this relationship is that translation qual-
ity is higher for related languages, especially if
the languages have the same syntax, resulting in
a cleaner training signal.

We also hypothesize that having high SP over-
lap is correlated with improved performance be-
cause the English SP embeddings are being up-
dated more frequently during training. To inves-
tigate the effect, we again learned segmentations
separately for both languages then prefixed all to-
kens in the non-English text with a marker to en-
sure that there would be no shared parameters be-
tween the two languages. Results showed that SP
overlap was still correlated (correlation of 24.9)
and language distance was still negatively corre-
lated with performance albeit significantly less so
at -10.1. Of all the linguistic features, again the
syntactic distance was the highest correlated at -
37.5.

5 Conclusion

We have shown that using automatic dataset
preparation methods such as pivoting or back-
translation are not needed to create higher per-
forming sentence embeddings. Moreover by us-
ing the bitext directly, our approach also produces
strong paraphrastic cross-lingual representations
as a byproduct. Our approach is much faster than
comparable methods and yields stronger perfor-
mance on cross-lingual and monolingual semantic
similarity and cross-lingual bitext mining tasks.
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