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Abstract

Embedding models for entities and rela-
tions are extremely useful for recovering
missing facts in a knowledge base. In-
tuitively, a relation can be modeled by
a matrix mapping entity vectors. How-
ever, relations reside on low dimension
sub-manifolds in the parameter space of
arbitrary matrices – for one reason, com-
position of two relations M1,M2 may
match a third M3 (e.g. composition
of relations currency of country
and country of film usually matches
currency of film budget), which
imposes compositional constraints to be
satisfied by the parameters (i.e. M1 ·M2 ≈
M3). In this paper we investigate a dimen-
sion reduction technique by training rela-
tions jointly with an autoencoder, which is
expected to better capture compositional
constraints. We achieve state-of-the-art on
Knowledge Base Completion tasks with
strongly improved Mean Rank, and show
that joint training with an autoencoder
leads to interpretable sparse codings of rela-
tions, helps discovering compositional con-
straints and benefits from compositional
training. Our source code is released at
github.com/tianran/glimvec.

1 Introduction

Broad-coverage knowledge bases (KBs) such as
Freebase (Bollacker et al., 2008) and DBPe-
dia (Auer et al., 2007) store a large amount of facts
in the form of 〈head entity, relation, tail entity〉
triples (e.g. 〈The Matrix, country of film,
Australia〉), which could support a wide range
of reasoning and question answering applications.
The Knowledge Base Completion (KBC) task aims

Figure 1: In joint training, relation parameters (e.g.
M1) receive updates from both a KB-learning ob-
jective, trying to predict entities in the KB; and a re-
construction objective from an autoencoder, trying
to recover relations from low dimension codings.

to predict the missing part of an incomplete triple,
such as 〈Finding Nemo, country of film, ?〉,
by reasoning from known facts stored in the KB.

As a most common approach (Wang et al., 2017),
modeling entities and relations to operate in a low
dimension vector space helps KBC, for three con-
ceivable reasons. First, when dimension is low,
entities modeled as vectors are forced to share pa-
rameters, so “similar” entities which participate
in many relations in common get close to each
other (e.g. Australia close to US). This could im-
ply that an entity (e.g. US) “type matches” a re-
lation such as country of film. Second, rela-
tions may share parameters as well, which could
transfer facts from one relation to other similar
relations, for example from 〈x, award winner,
y〉 to 〈x, award nominated, y〉. Third, spa-
tial positions might be used to implement com-
position of relations, as relations can be regarded

github.com/tianran/glimvec
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as mappings from head to tail entities, and the
composition of two maps can match a third (e.g.
the composition of currency of country
and country of film matches the relation
currency of film budget), which could be
captured by modeling composition in a space.

However, modeling relations as mappings natu-
rally requires more parameters – a general linear
map between d-dimension vectors is represented by
a matrix of d2 parameters – which are less likely to
be shared, impeding transfers of facts between sim-
ilar relations. Thus, it is desired to reduce dimen-
sionality of relations; furthermore, the existence of
a composition of two relations (assumed to be mod-
eled by matrices M1,M2) matching a third (M3)
also justifies dimension reduction, because it im-
plies a compositional constraint M1 ·M2 ≈M3

that can be satisfied only by a lower dimension
sub-manifold in the parameter space1.

Previous approaches reduce dimensionality of
relations by imposing pre-designed hard con-
straints on the parameter space, such as constrain-
ing that relations are translations (Bordes et al.,
2013) or diagonal matrices (Yang et al., 2015),
or assuming they are linear combinations of a
small number of prototypes (Xie et al., 2017).
However, pre-designed hard constraints do not
seem to cope well with compositional constraints,
because it is difficult to know a priori which
two relations compose to which third relation,
hence difficult to choose a pre-design; and com-
positional constraints are not always exact (e.g.
the composition of currency of country
and headquarter location usually matches
business operation currency but not al-
ways), so hard constraints are less suited.

In this paper, we investigate an alternative ap-
proach by training relation parameters jointly with
an autoencoder (Figure 1). During training, the au-
toencoder tries to reconstruct relations from low di-
mension codings, with the reconstruction objective
back-propagating to relation parameters as well.
We show this novel technique promotes parame-
ter sharing between different relations, and drives
them toward low dimension manifolds (Sec.6.2).
Besides, we expect the technique to cope better
with compositional constraints, because it discov-
ers low dimension manifolds posteriorly from data,
and it does not impose any explicit hard constraints.

1It is noteworthy that similar compositional constraints
apply to most modeling schemes of relations, not just matrices.

Yet, joint training with an autoencoder is not
simple; one has to keep a subtle balance between
gradients of the reconstruction and KB-learning
objectives throughout the training process. We
are not aware of any theoretical principles directly
addressing this problem; but we found some im-
portant settings after extensive pre-experiments
(Sec.4). We evaluate our system using standard
KBC datasets, achieving state-of-the-art on several
of them (Sec.6.1), with strongly improved Mean
Rank. We discuss detailed settings that lead to the
performance (Sec.4.1), and we show that joint train-
ing with an autoencoder indeed helps discovering
compositional constraints (Sec.6.2) and benefits
from compositional training (Sec.6.3).

2 Base Model

A knowledge base (KB) is a set T of triples
of the form 〈h, r, t〉, where h, t ∈ E are enti-
ties and r ∈ R is a relation (e.g. 〈The Matrix,
country of film, Australia〉). A relation r has
its inverse r−1 ∈ R so that for every 〈h, r, t〉 ∈ T ,
we regard 〈t, r−1, h〉 as also in the KB. Under this
assumption and given T as training data, we con-
sider the Knowledge Base Completion (KBC) task
that predicts candidates for a missing tail entity in
an incomplete 〈h, r, ?〉 triple.

Most approaches tackle this problem by train-
ing a score function measuring the plausibility of
triples being facts. The model we implement in
this work represents entities h, t as d-dimension
vectors uh,vt respectively, and relation r as a d×d
matrix Mr. If uh,vt are one-hot vectors with di-
mension d = |E| corresponding to each entity, one
can take Mr as the adjacency matrix of entities
joined by relation r, so the set of tail entities filling
into 〈h, r, ?〉 is calculated by u>hMr (with each
nonzero entry corresponds to an answer). Thus,
we have u>hMrvt > 0 if and only if 〈h, r, t〉 ∈ T .
This motivates us to use u>hMrvt as a natural pa-
rameter to model plausibility of 〈h, r, t〉, even in
a low dimension space with d � |E|. Thus, we
define the score function as

s(h, r, t) := exp(u>hMrvt) (1)

for the basic model. This is similar to the bilinear
model of Nickel et al. (2011), except that we distin-
guish uh (the vector for head entities) from vt (the
vector for tail entities). It has also been proposed
in Tian et al. (2016), but for modeling dependency
trees rather than KBs.
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More generally, we consider composition of re-
lations r1/ . . . /rl to model paths in a KB (Guu
et al., 2015), as defined by r1, . . . , rl participating
in a sequence of facts such that the head entity
of each fact coincides with the tail of its previous.
For example, a sequence of two facts 〈The Matrix,
country of film, Australia〉 and 〈Australia,
currency of country, Australian Dollar〉
form a path of composition country of film /
currency of country, because the head of
the second fact (i.e. Australia) coincides with the
tail of the first. Using the previous d = |E| ana-
logue, one can verify that composition of relations
is represented by multiplication of adjacency ma-
trices, so we accordingly define

s(h, r1/ . . . /rl, t) := exp(u>hMr1 · · ·Mrlvt)

to measure the plausibility of a path. It is explored
in Guu et al. (2015) to learn a score function not
only for single facts but also for paths. This compo-
sitional training scheme is shown to bring valuable
information about the structure of the KB and may
help KBC. In this work, we conduct experiments
both with and without compositional training.

In order to learn parameters uh,vt,Mr of the
score function, we follow Tian et al. (2016) using
a Noise Contrastive Estimation (NCE) (Gutmann
and Hyvärinen, 2012) objective. For each path (or
triple) 〈h, r1/ . . . , t〉 taken from the KB, we gener-
ate negative samples by replacing the tail entity t
with some random noise t∗. Then, we maximize

L1 :=
∑
path

ln
s(h, r1/ . . . , t)

k + s(h, r1/ . . . , t)

+
∑
noise

ln
k

k + s(h, r1/ . . . , t∗)

as our KB-learning objective. Here, k is the num-
ber of noises generated for each path. When the
score function is regarded as probability, L1 rep-
resents the log-likelihood of “〈h, r1/ . . . , t〉 being
actual path and 〈h, r1/ . . . , t∗〉 being noise”. Max-
imizing L1 increases the scores of actual paths and
decreases the scores of noises.

3 Joint Training with an Autoencoder

Autoencoders learn efficient codings of high-
dimensional data while trying to reconstruct the
original data from the coding. By joint training
relation matrices with an autoencoder, we also ex-
pect it to help reducing the dimensionality of the
original data (i.e. relation matrices).

Formally, we define a vectorization mr for each
relation matrix Mr, and use it as input to the au-
toencoder. mr is defined as a reshape of Mr flat-
tened into a d2-dimension vector, and normalized
such that ‖mr‖ =

√
d. We define

cr := ReLU(Amr) (2)

as the coding. Here A is a c × d2 matrix with
c � d2, and ReLU is the Rectified Linear Unit
function (Nair and Hinton, 2010). We reconstruct
the input from cr by multiplying a d2×cmatrix B.
We want Bcr to be more similar to mr than other
relations. For this purpose, we define a similarity

g(r1, r2) := exp(
1√
dc

m>r1Bcr2), (3)

which measures the length of Bcr2 projected to the
direction of mr1 . In order to learn the parameters
A,B, we adopt the Noise Contrastive Estimation
scheme as in Sec.2, generate random noises r∗ for
each relation r and maximize

L2 :=
∑
r∈R

ln
g(r, r)

k + g(r, r)
+

∑
r∗∼R

ln
k

k + g(r, r∗)

as our reconstruction objective. Maximizing L2
increases mr’s similarity with Bcr, and decreases
it with Bcr∗ .

During joint training, both L1 and L2 are si-
multaneously maximized, and the gradient ∇L2
propagates to relation matrices as well. Since ∇L2
depends on A and B, and A,B interact with all
relations, they promote indirect parameter sharing
between different relation matrices. In Sec.6.2, we
further show that joint training drives relations to-
ward a low dimension manifold.

4 Optimization Tricks

Joint training with an autoencoder is not simple.
Relation matrices receive updates from both∇L1
and ∇L2, but if they update ∇L1 too much, the
autoencoder has no effect; conversely, if they up-
date∇L2 too often, all relation matrices crush into
one cluster. Furthermore, an autoencoder should
learn from genuine patterns of relation matrices
that emerge from fitting the KB, but not the re-
verse – in which the autoencoder imposes arbitrary
patterns to relation matrices according to random
initialization. Therefore, it is not surprising that a
naive optimization of L1 + L2 does not work.

After extensive pre-experiments, we have found
some crucial settings for successful training. The
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most important “magic” is the scaling factor 1√
dc

in definition of the similarity function (3), perhaps
being combined with other settings as we discuss
below. We have tried different factors 1, 1√

d
, 1√

c

and 1
dc instead, with various combinations of d and

c; but the autoencoder failed to learn meaningful
codings in other settings. When the scaling factor
is too small (e.g. 1

dc ), all relations get almost the
same coding; conversely if the factor is too large
(e.g. 1), all codings get very close to 0.

The next important rule is to keep a balance be-
tween the updates coming from∇L1 and∇L2. We
use Stochastic Gradient Descent (SGD) for opti-
mization, and the common practice (Bottou, 2012)
is to set the learning rate as

α(τ) :=
η

1 + ηλτ
. (4)

Here, η, λ are hyper-parameters and τ is a counter
of processed data points. In this work, in order
to control the updates in detail to keep a balance,
we modify (4) to use a a step counter τr for each
relation r, counting “number of updates” instead of
data points2. That is, whenever Mr gets a nonzero
update from a gradient calculation, τr increases by
1. Furthermore, we use different hyper-parameters
for different “types of updates”, namely η1, λ1 for
updates coming from∇L1, and η2, λ2 for updates
coming from ∇L2. Thus, let ∆1 be the partial
gradient of ∇L1, and ∆2 the partial gradient of
∇L2, we update Mr by α1(τr)∆1 + α2(τr)∆2 at
each step, where

α1(τr) :=
η1

1 + η1λ1τr
, α2(τr) :=

η2
1 + η2λ2τr

.

The rule for setting η1, λ1 and η2, λ2 is that, η2
should be much smaller than η1, because η1, η2
control the magnitude of learning rates at the early
stage of training, with the autoencoder still largely
random and ∆2 not making much sense; on the
other hand, one has to choose λ1 and λ2 such that
‖∆1‖/λ1 and ‖∆2‖/λ2 are at the same scale, be-
cause the learning rates approach 1/(λ1τr) and
1/(λ2τr) respectively, as the training proceeds. In
this way, the autoencoder will not impose random
patterns to relation matrices according to its ini-
tialization at the early stage, and a balance is kept
between α1(τr)∆1 and α2(τr)∆2 later.

But how to estimate ‖∆1‖ and ‖∆2‖? It seems
that we can approximately calculate their scales

2Similarly, we set separate step counters for all head and
tail entities, and the autoencoder as well.

from initialization. In this work, we use i.i.d. Gaus-
sians of variance 1/d to initialize parameters, so the
initial Euclidean norms are ‖uh‖ ≈ 1, ‖vt‖ ≈ 1,
‖Mr‖ ≈

√
d, and ‖BAmr‖ ≈

√
dc. Thus, by

calculating ∇L1 and ∇L2 using (1) and (3), we
have approximately

‖∆1‖ ≈ ‖uhv
>
t ‖ ≈ 1, and

‖∆2‖ ≈ ‖
1√
dc

Bcr‖ ≈
1√
dc
‖BAmr‖ ≈ 1.

It suggests that, because of the scaling factor 1√
dc

in (3), we have ‖∆1‖ and ‖∆2‖ at the same scale,
so we can set λ1 = λ2. This might not be a mere
coincidence.

4.1 Training the Base Model

Besides the tricks for joint training, we also found
settings that significantly improve the base model
on KBC, as briefly discussed below. In Sec.6.3,
we will show performance gains by these settings
using the FB15k-237 validation set.

Normalization It is better to normalize relation
matrices to ‖Mr‖ =

√
d during training. This

might reduce fluctuations in entity vector updates.

Regularizer It is better to minimize ‖M>
r Mr−

1
d tr(M>

r Mr)I‖ during training. This regularizer
drives Mr toward an orthogonal matrix (Tian et al.,
2016) and might reduce fluctuations in entity vector
updates. As a result, all relation matrices trained in
this work are very close to orthogonal.

Initialization Instead of pure Gaussian, it is bet-
ter to initialize matrices as (I + G)/2, where G
is random. The identity matrix I helps passing
information from head to tail (Tian et al., 2016).

Negative Sampling Instead of a unigram distri-
bution, it is better to use a uniform distribution
for generating noises. This is somehow counter-
intuitive compared to training word embeddings.

5 Related Works

KBs have a wide range of applications (Berant
et al., 2013; Hixon et al., 2015; Nickel et al., 2016a)
and KBC has inspired a huge amount of research
(Bordes et al., 2013; Riedel et al., 2013; Socher
et al., 2013; Wang et al., 2014b,a; Xiao et al., 2016;
Nguyen et al., 2016; Toutanova et al., 2016; Das
et al., 2017; Hayashi and Shimbo, 2017).
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Among the previous works, TransE (Bordes
et al., 2013) is the classic method which repre-
sents a relation as a translation of the entity vector
space, and is partially inspired by Mikolov et al.
(2013)’s vector arithmetic method of solving word
analogy tasks. Although competitive in KBC, it
is speculated that this method is well-suited for 1-
to-1 relations but might be too simple to represent
N -to-N relations accurately(Wang et al., 2017).
Thus, extensions such as TransR (Lin et al., 2015b)
and STransE (Nguyen et al., 2016) are proposed
to map entities into a relation-specific vector space
before translation. The ITransF model (Xie et al.,
2017) further enhances this approach by imposing
a hard constraint that the relation-specific maps
should be linear combinations of a small number
of prototypical matrices. Our work inherits the
same motivation with ITransF in terms of promot-
ing parameter-sharing among relations.

On the other hand, the base model used in
this work originates from RESCAL (Nickel et al.,
2011), in which relations are naturally represented
as analogue to the adjacency matrices (Sec.2). Fur-
ther developments include HolE (Nickel et al.,
2016b) and ConvE (Dettmers et al., 2018) which
improve this approach in terms of parameter-
efficiency, by introducing low dimension factoriza-
tions of the matrices. We inherit the basic model of
RESCAL but draw additional training techniques
from Tian et al. (2016), and show that the base
model already can achieve near state-of-the-art per-
formance (Sec.6.1,6.3). This sends a message sim-
ilar to Kadlec et al. (2017), saying that training
tricks might be as important as model designs.

Nevertheless, we emphasize the novelty of this
work in that the previous models mostly achieve di-
mension reduction by imposing some pre-designed
hard constraints (Bordes et al., 2013; Yang et al.,
2015; Trouillon et al., 2016; Nickel et al., 2016b;
Xie et al., 2017; Dettmers et al., 2018), whereas the
constraints themselves are not learned from data; in
contrast, our approach by jointly training an autoen-
coder does not impose any explicit hard constraints,
so it leads to more flexible modeling.

Moreover, we additionally focus on leveraging
composition in KBC. Although this idea has been
frequently explored before (Guu et al., 2015; Nee-
lakantan et al., 2015; Lin et al., 2015a), our discus-
sion about the concept of compositional constraints
and its connection to dimension reduction has not
been addressed similarly in previous research. In

experiments, we will show (Sec.6.2,6.3) that joint
training with an autoencoder indeed helps finding
compositional constraints and benefits from com-
positional training.

Autoencoders have been used solo for learn-
ing distributed representations of syntactic trees
(Socher et al., 2011), words and images (Silberer
and Lapata, 2014), or semantic roles (Titov and
Khoddam, 2015). It is also used for pretraining
other deep neural networks (Erhan et al., 2010).
However, when combined with other models, the
learning of autoencoders, or more generally sparse
codings (Rubinstein et al., 2010), is usually con-
veyed in an alternating manner, fixing one part of
the model while optimizing the other, such as in
Xie et al. (2017). To our knowledge, joint training
with an autoencoder is not widely used previously
for reducing dimensionality.

Jointly training an autoencoder is not simple be-
cause it takes non-stationary inputs. In this work,
we modified SGD so that it shares traits with some
modern optimization algorithms such as Adagrad
(Duchi et al., 2011), in that they both set differ-
ent learning rates for different parameters. While
Adagrad sets them adaptively by keeping track of
gradients for all parameters, our modification of
SGD is more efficient and allows us to grasp a
rough intuition about which parameter gets how
much update. We believe our techniques and find-
ings in joint training with an autoencoder could be
helpful to reducing dimensionality and improving
interpretability in other neural network architec-
tures as well.

6 Experiments

We evaluate on standard KBC datasets, including
WN18 and FB15k (Bordes et al., 2013), WN18RR
(Dettmers et al., 2018) and FB15k-237 (Toutanova
and Chen, 2015). The statistical information of
these datasets are shown in Table 1.

WN18 collects word relations from WordNet
(Miller, 1995), and FB15k is taken from Free-
base (Bollacker et al., 2008); both have filtered
out low frequency entities. However, it is reported
in Toutanova and Chen (2015) that both WN18
and FB15k have information leaks because the in-
verses of some test triples appear in the training
set. FB15k-237 and WN18RR fix this problem by
deleting such triples from training and test data. In
this work, we do evaluate on WN18 and FB15k,
but our models are mainly tuned on FB15k-237.
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Dataset |E| |R| #Train #Valid #Test

WN18 40,943 18 141,442 5,000 5,000
FB15k 14,951 1,345 483,142 50,000 59,071
WN18RR 40,943 11 86,835 3,034 3,134
FB15k-237 14,541 237 272,115 17,535 20,466

Table 1: Statistical information of the KBC datasets.
|E| and |R| denote the number of entities and rela-
tion types, respectively; #Train, #Valid, and #Test
are the numbers of triples in the training, validation,
and test sets, respectively.

For all datasets, we set the dimension d = 256
and c = 16, the SGD hyper-parameters η1 = 1/64,
η2 = 2−14 and λ1 = λ2 = 2−14. The training
batch size is 32 and the triples in each batch share
the same head entity. We compare the base model
(BASE) to our joint training with an autoencoder
model (JOINT), and the base model with compo-
sitional training (BASE+COMP) to our joint model
with compositional training (JOINT+COMP). When
compositional training is enabled (BASE+COMP,
JOINT+COMP), we use random walk to sample
paths of length 1 + X , where X is drawn from
a Poisson distribution of mean λ = 1.0.

For any incomplete triple 〈h, r, ?〉 in KBC test,
we calculate a score s(h, r, e) from (1), for every
entity e ∈ E such that 〈h, r, e〉 does not appear in
any of the training, validation, or test sets (Bordes
et al., 2013). Then, the calculated scores together
with s(h, r, t) for the gold triple is converted to
ranks, and the rank of the gold entity t is used for
evaluation. Evaluation metrics include Mean Rank
(MR), Mean Reciprocal Rank (MRR), and Hits at
10 (H10). Lower MR, higher MRR, and higher
H10 indicate better performance.

We consult MR and MRR on validation sets to
determine training epochs; we stop training when
both MR and MRR have stopped improving.

6.1 KBC Results
The results are shown in Table 2. We found
that joint training with an autoencoder mostly
improves performance, and the improvement be-
comes more clear when compositional training is
enabled (i.e., JOINT ≥ BASE and JOINT+COMP >
BASE+COMP). This is convincing because gener-
ally, joint training contributes with its regulariz-
ing effects, and drastic improvements are less ex-
pected3. When compositional training is enabled,

3The source code and trained models are publicly released
at https://github.com/tianran/glimvec, where

profession
profession−1

film_crew_role−1

film_release_region−1

film_language−1

nationality

currency_of_country
currency_of_company

currency_of_university
currency_of_film_budget

2 4 6 8 10 12 14 16

currency_of_film_budget
release_region_of_film

corporation_of_film
producer_of_film

writer_of_film

Figure 2: Examples of relation codings learned
from FB15k-237. Each row shows a 16 dimension
vector encoding a relation. Vectors are normalized
such that their entries sum to 1.

the system usually achieves better MR, though not
always improves in other measures. The perfor-
mance gains are more obvious on the WN18RR
and FB15k-237 datasets, possibly because WN18
and FB15k contain a lot of easy instances that can
be solved by a simple rule (Dettmers et al., 2018).

Furthermore, the numbers demonstrated by our
joint and base models are among the strongest in
the literature. We have conducted re-experiments
of several representative algorithms, and also com-
pare with state-of-the-art published results. For
re-experiments, we use Lin et al. (2015b)’s imple-
mentation4 of TransE (Bordes et al., 2013) and
TransR, which represent relations as vector transla-
tions; and Nickel et al. (2016b)’s implementation5

of RESCAL (Nickel et al., 2011) and HolE, where
RESCAL is most similar to the BASE model and
HolE is a more parameter-efficient variant. We ex-
perimented with the default settings, and found that
our models outperform most of them.

Among the published results, STransE (Nguyen
et al., 2016) and ITransF (Xie et al., 2017) are more
complicated versions of TransR, achieving the pre-
vious highest MR on WN18 but are outperformed
by our JOINT+COMP model. ITransF is most simi-
lar to our JOINT model in that they both learn sparse
codings for relations. On WN18RR and FB15k-
237, Dettmers et al. (2018)’s report of ComplEx

we also show the mean performance and deviations of multiple
random initializations, to give a more complete picture.

4https://github.com/thunlp/KB2E
5https://github.com/mnick/

holographic-embeddings

https://github.com/tianran/glimvec
https://github.com/thunlp/KB2E
https://github.com/mnick/holographic-embeddings
https://github.com/mnick/holographic-embeddings
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Model WN18 FB15k WN18RR FB15k-237

MR H10 MR H10 MR MRR H10 MR MRR H10

JOINT 277 95.8 53 82.5 4233 .461∗ 53.4 212 .336 52.3∗

BASE 286 95.8 53 82.5 4371 .459 52.9 215 .337∗ 52.3∗

JOINT+COMP 191∗ 94.8 53 69.7 2268∗ .343 54.8∗ 197∗ .331 51.6
BASE+COMP 195 94.8 54 69.4 2447 .310 54.1 203 .328 51.5

TransE (Bordes et al., 2013) 292 92.0 66 70.4 4311 .202 45.6 278 .236 41.6
TransR (Lin et al., 2015b) 281 93.6 76 74.4 4222 .210 47.1 320 .282 45.9
RESCAL (Nickel et al., 2011) 911 58.0 163 41.0 9689 .105 20.3 457 .178 31.9
HolE (Nickel et al., 2016b) 724 94.3 293 66.8 8096 .376 40.0 1172 .169 30.9

STransE (Nguyen et al., 2016) 206 93.4 69 79.9 - - - - - -
ITransF (Xie et al., 2017) 205 94.2 65 81.0 - - - - - -
ComplEx (Trouillon et al., 2016) - 94.7 - 84.0 5261 .44 51 339 .247 42.8
Ensemble DistMult (Kadlec et al., 2017) 457 95.0 35.9 90.4 - - - - - -
IRN (Shen et al., 2017) 249 95.3 38 92.7∗ - - - - - -
ConvE (Dettmers et al., 2018) 504 95.5 64 87.3 5277 .46 48 246 .316 49.1
R-GCN+ (Schlichtkrull et al., 2017) - 96.4∗ - 84.2 - - - - .249 41.7
ProjE (Shi and Weninger, 2017) - - 34∗ 88.4 - - - - - -

Table 2: KBC results on the WN18, FB15k, WN18RR, and FB15k-237 datasets. The first and second
sectors compare our joint to the base models with and without compositional training, respectively; the
third sector shows our re-experiments and the fourth shows previous published results. Bold numbers are
the best in each sector, and (∗) indicates the best of all.

(Trouillon et al., 2016) and ConvE were previously
the best results. Our models mostly outperform
them. Other results include Kadlec et al. (2017)’s
simple but strong baseline and several recent mod-
els (Schlichtkrull et al., 2017; Shi and Weninger,
2017; Shen et al., 2017) which achieve best results
on FB15k or WN18 in some measure. Our models
have comparable results.

6.2 Intuition and Insight

What does the autoencoder look like? How does
joint training affect relation matrices? We address
these questions by analyses showing that (i) the
autoencoder learns sparse and interpretable codings
of relations, (ii) the joint training drives relation
matrices toward a low dimension manifold, and
(iii) it helps discovering compositional constraints.

Sparse Coding and Interpretability
Due to the ReLU function in (2), our autoencoder
learns sparse coding, with most relations having
large code values at only two or three dimensions.
This sparsity makes it easy to find patterns in the
model that to some extent explain the semantics of
relations. Figure 2 shows some examples.

In the first group of Figure 2, we show a small
number of relations that are almost always assigned
a near one-hot coding, regardless of initialization.
These are high frequency relations joining two
large categories (e.g. film and language), which

probably constitute the skeleton of a KB.
In the second group, we found the 12th di-

mension strongly correlates with currency; and
in the third group, we found the 4th dimension
strongly correlates with film. As for the relation
currency of film budget, it has large code
values at both dimensions. This kind of relation
clustering also seems independent of initialization.
Intuitively, it shows that the autoencoder may dis-
cover similarities between relations and promote
indirect parameter sharing among them. Yet, as
the autoencoder only reconstructs approximations
of relation matrices but never constrain them to
be exactly equal to the original, relation matrices
with very similar codings may still differ consid-
erably. For example, producer of film and
writer of film have codings of cosine simi-
larity 0.973, but their relation matrices only have6

a cosine similarity 0.338.

Low dimension manifold

In order to visualize the relation matrices learned
by our joint and base models, we use UMAP7

(McInnes and Healy, 2018) to embed Mr into a
2D plane8. We use relation matrices trained on

6Cosine similarity 0.338 is still high for matrices, due to
the high dimensionality of their parameter space.

7https://github.com/lmcinnes/umap
8UMAP is a recently proposed manifold learning algo-

rithm based on the fuzzy topological structure. We also tried

https://github.com/lmcinnes/umap
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(a) BASE (b) JOINT

(c) BASE+COMP (d) JOINT+COMP

Figure 3: By UMAP, relation matrices are embed-
ded into a 2D plane. Colors show frequencies of
relations; and lighter color means more frequent.

FB15k-237, and compare models trained by the
same number of epochs. The results are shown in
Figure 3.

We can see that Figure 3a and Figure 3c are
mostly similar, with high frequency relations scat-
tered randomly around a low frequency cluster, sug-
gesting that they come from various directions of a
high dimension space, with frequent relations prob-
ably being pulled further by the training updates.
On the other hand, in Figure 3b and Figure 3d we
found less frequent relations being clustered with
frequent ones, and multiple traces of low dimen-
sion structures. It suggests that joint training with
an autoencoder indeed drives relations toward a
low dimension manifold. In addition, Figure 3d
shows different structures against Figure 3b, which
we conjecture could be related to compositional
constraints discovered by compositional training.

Compositional constraints
In order to directly evaluate a model’s ability to
find compositional constraints, we extracted from
FB15k-237 a list of (r1/r2, r3) pairs such that
r1/r2 matches r3. Formally, the list is constructed
as below. For any relation r, we define a content
set C(r) as the set of (h, t) pairs such that 〈h, r, t〉
is a fact in the KB. Similarly, we define C(r1/r2)

t-SNE (van der Maaten and Hinton, 2008) but found UMAP
more insightful.

Model MR MRR

JOINT+COMP 130±27 .0481±.0090
BASE+COMP 150±3 .0280±.0010
RANDOMM2 181±19 .0356±.0100

Table 3: Performance at discovering compositional
constraints extracted from FB15k-237

as the set of (h, t) pairs such that 〈h, r1/r2, t〉 is
a path. We regard (r1/r2, r3) as a compositional
constraint if their content sets are similar; that
is, if |C(r1/r2) ∩ C(r3)| ≥ 50 and the Jaccard
similarity between C(r1/r2) and C(r3) is ≥ 0.4.
Then, after filtering out degenerated cases such as
r1 = r3 or r2 = r−11 , we obtained a list of 154
compositional constraints, e.g.
(currency of country/country of film,
currency of film budget).

For each compositional constraint (r1/r2, r3) in
the list, we take the matrices M1, M2 and M3

corresponding to r1, r2 and r3 respectively, and
rank M3 according to its cosine similarity with
M1M2, among all relation matrices. Then, we cal-
culate MR and MRR for evaluation. We compare
the JOINT+COMP model to BASE+COMP, as well
as a randomized baseline where M2 is selected ran-
domly from the relation matrices in JOINT+COMP

instead (RANDOMM2). The results are shown in
Table 3. We have evaluated 5 different random
initializations for each model, trained by the same
number of epochs, and we report the mean and
standard deviation. We verify that JOINT+COMP

performs better than BASE+COMP, indicating that
joint training with an autoencoder indeed helps dis-
covering compositional constraints. Furthermore,
the random baseline RANDOMM2 tests a hypothe-
sis that joint training might be just clustering M3

and M1 here, to the extent that M3 and M1 are so
close that even a random M2 can give the correct
answer; but as it turns out, JOINT+COMP largely
outperforms RANDOMM2, excluding this possibil-
ity. Thus, joint training performs better not simply
because it clusters relation matrices; it learns com-
positions indeed.

6.3 Losses and Gains

In the KBC task, where are the losses and what are
the gains of different settings? With additional eval-
uations, we show (i) some crucial settings for the
base model, and (ii) joint training with an autoen-
coder benefits more from compositional training.
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Settings MR MRR H10

BASE 214 .338 52.5

no normalization 309 .326 49.9
no regularizer 400 .328 51.3
pure Gaussian 221 .336 52.1

unigram distribution 215 .324 50.6

Table 4: Ablation of the four settings of the base
model as described in Sec.4.1

Crucial settings for the base model
It is noteworthy that our base model already
achieves strong results. This is due to several
detailed but crucial settings as we discussed in
Sec.4.1; Table 4 shows their gains on the FB15k-
237 validation data. The most dramatic improve-
ment comes from the regularizer that drives matri-
ces to orthogonal.

Gains with compositional training
One can force a model to focus more on (longer)
compositions of relations, by sampling longer paths
in compositional training. Since joint training with
an autoencoder helps discovering compositional
constraints, we expect it to be more helpful when
the sampled paths are longer. In this work, path
lengths are sampled from a Poisson distribution,
we thus vary the mean λ of the Poisson to control
the strength of compositional training. The results
on FB15k-237 are shown in Table 5.

We can see that, as λ gets larger, MR improves
much but MRR slightly drops. It suggests that in
FB15k-237, composition of relations might mainly
help finding more appropriate candidates for a miss-
ing entity, rather than pinpointing a correct one.
Yet, joint training improves base models even more
as the paths get longer, especially in MR. It further
supports our conjecture that joint training with an
autoencoder may strongly interact with composi-
tional training.

7 Conclusion

We have investigated a dimension reduction tech-
nique which trains a KB embedding model jointly
with an autoencoder. We have developed new train-
ing techniques and achieved state-of-the-art results
on several KBC tasks with strong improvements
in Mean Rank. Furthermore, we have shown that
the autoencoder learns low dimension sparse cod-
ings that can be easily explained; the joint training
technique drives high-dimensional data toward low

Model λ
Valid Test

MR MRR H10 MR MRR H10

BASE 0 209 .341 52.9 215 .337 52.3
JOINT 0 +1 -.001 -.2 -3 -.001 0

BASE 0.5 204 .337 52.2 211 .332 51.7
JOINT 0.5 -3 +.002 +.1 +1 +.002 +.2

BASE 1.0 191 .334 52.0 203 .328 51.5
JOINT 1.0 -5 +.002 -.1 -6 +.003 +.1

Table 5: Evaluation of BASE and gains by JOINT,
on FB15k-237 with different strengths of composi-
tional training. Bold numbers are improvements.

dimension manifolds; and the reduction of dimen-
sionality may interact strongly with composition,
help discovering compositional constraints and ben-
efit from compositional training. We believe these
findings provide insightful understandings of KB
embedding models and might be applied to other
neural networks beyond the KBC task.
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Sören Auer, Christian Bizer, Georgi Kobilarov, Jens

Lehmann, Richard Cyganiak, and Zachary G. Ives.
2007. Dbpedia: A nucleus for a web of open data.
In The Semantic Web, 6th International Semantic
Web Conference, 2nd Asian Semantic Web Confer-
ence, ISWC 2007 + ASWC 2007, Busan, Korea,
November 11-15, 2007., pages 722–735.

Jonathan Berant, Andrew Chou, Roy Frostig, and Percy
Liang. 2013. Semantic parsing on Freebase from
question-answer pairs. In Proceedings of the 2013
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1533–1544, Seattle, Wash-
ington, USA. Association for Computational Lin-
guistics.

Kurt D. Bollacker, Colin Evans, Praveen Paritosh, Tim
Sturge, and Jamie Taylor. 2008. Freebase: a collab-
oratively created graph database for structuring hu-
man knowledge. In Proceedings of the ACM SIG-
MOD International Conference on Management of
Data, SIGMOD 2008, Vancouver, BC, Canada, June
10-12, 2008, pages 1247–1250.

Antoine Bordes, Nicolas Usunier, Alberto Garcı́a-
Durán, Jason Weston, and Oksana Yakhnenko.
2013. Translating embeddings for modeling multi-
relational data. In Advances in Neural Information

https://doi.org/10.1007/978-3-540-76298-0_52
http://www.aclweb.org/anthology/D13-1160
http://www.aclweb.org/anthology/D13-1160
https://doi.org/10.1145/1376616.1376746
https://doi.org/10.1145/1376616.1376746
https://doi.org/10.1145/1376616.1376746
http://papers.nips.cc/paper/5071-translating-embeddings-for-modeling-multi-relational-data
http://papers.nips.cc/paper/5071-translating-embeddings-for-modeling-multi-relational-data


2157

Processing Systems 26: 27th Annual Conference on
Neural Information Processing Systems 2013. Pro-
ceedings of a meeting held December 5-8, 2013,
Lake Tahoe, Nevada, United States., pages 2787–
2795.
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A Out-of-vocabulary Entities in KBC

Occasionally, a KBC test set may contain entities
that never appear in the training data. Such out-of-
vocabulary (OOV) entities pose a challenge to KBC
systems; while some systems address this issue by
explicitly learn an OOV entity vector (Dettmers
et al., 2018), our approach is described below. For
an incomplete triple 〈h, r, ?〉 in the test, if h is OOV,
we replace it with the most frequent entity that has
ever appeared as a head of relation r in the training
data. If the gold tail entity is OOV, we use the zero
vector for computing the score and the rank of the
gold entity.

Usually, OOV entities are rare and negligible
in evaluation; except for the WN18RR test data
which contains about 6.7% triples with OOV en-
tities. Here, we also report adjusted scores on
WN18RR in the setting that all triples with OOV
entities are removed from the test. The results are
shown in Table 6.

Model MR MRR H10

JOINT 3317 .493 57.2
BASE 3435 .492 56.7

JOINT+COMP 1507 .367 58.7
BASE+COMP 1629 .332 58.0

Table 6: Adjusted scores on WN18RR.
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