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Abstract

With recent advances in network ar-
chitectures for Neural Machine Transla-
tion (NMT) recurrent models have effec-
tively been replaced by either convolu-
tional or self-attentional approaches, such
as in the Transformer. While the main in-
novation of the Transformer architecture
is its use of self-attentional layers, there
are several other aspects, such as attention
with multiple heads and the use of many
attention layers, that distinguish the model
from previous baselines. In this work we
take a fine-grained look at the different ar-
chitectures for NMT. We introduce an Ar-
chitecture Definition Language (ADL) al-
lowing for a flexible combination of com-
mon building blocks. Making use of this
language, we show in experiments that
one can bring recurrent and convolutional
models very close to the Transformer per-
formance by borrowing concepts from the
Transformer architecture, but not using
self-attention. Additionally, we find that
self-attention is much more important for
the encoder side than for the decoder side,
where it can be replaced by a RNN or
CNN without a loss in performance in
most settings. Surprisingly, even a model
without any target side self-attention per-
forms well.

1 Introduction

Since the introduction of attention mecha-
nisms (Bahdanau et al., 2014; Luong et al., 2015)
Neural Machine Translation (NMT) (Sutskever
et al., 2014) has shown some impressive results.
Initially, approaches to NMT mainly relied on
Recurrent Neural Networks (RNNs) (Kalchbren-

ner and Blunsom, 2013; Bahdanau et al., 2014;
Luong et al., 2015; Wu et al., 2016) such as Long
Short-Term Memory (LSTM) networks (Hochre-
iter and Schmidhuber, 1997) or the Gated Recti-
fied Unit (GRU) (Cho et al., 2014).

Recently, other approaches relying on con-
volutional networks (Kalchbrenner et al., 2016;
Gehring et al., 2017) and self-attention (Vaswani
et al., 2017) have been introduced. These ap-
proaches remove the dependency between source
language time steps, leading to considerable
speed-ups in training time and improvements in
quality. The Transformer, however, contains other
differences besides self-attention, including layer
normalization across the entire model, multiple
source attention mechanisms, a multi-head dot at-
tention mechanism, and the use of residual feed-
forward layers. This raises the question of how
much each of these components matters.

To answer this question we first introduce a
flexible Architecture Definition Language (ADL)
(§2). In this language we standardize existing
components in a consistent way making it eas-
ier to compare structural differences of architec-
tures. Additionally, it allows us to efficiently per-
form a granular analysis of architectures, where
we can evaluate the impact of individual compo-
nents, rather than comparing entire architectures
as a whole. This ability leads us to the following
observations:

• Source attention on lower encoder layers
brings no additional benefit (§4.2).

• Multiple source attention layers and residual
feed-forward layers are key (§4.3).

• Self-attention is more important for the
source than for the target side (§4.4).
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2 Flexible Neural Machine Translation
Architecture Combination

In order to experiment easily with different ar-
chitecture variations we define a domain specific
NMT Architecture Definition Language (ADL),
consisting of combinable and nestable building
blocks.

2.1 Neural Machine Translation
NMT is formulated as a sequence to sequence
prediction task in which a source sentence X =
x1, ..., xn is translated auto-regressively into a tar-
get sentence Y = y1, ..., ym one token at a time
as

p(yt|Y1:t−1, X;θ) = softmax(Woz
L + bo),

(1)

where bo is a bias vector, Wo projects a model de-
pendent hidden vector zL of the Lth decoder layer
to the dimension of the target vocabulary Vtrg and
θ denotes the model parameters. Typically, during
training Y1:t−1 consists of the reference sequence
tokens, rather then the predictions produced by the
model, which is known as teacher-forcing. Train-
ing is done by minimizing the cross-entropy loss
between the predicted and the reference sequence.

2.2 Architecture Definition Language
In the following we specify the ADL which can be
used to define any standard NMT architecture and
combinations thereof.

Layers The basic building block of the ADL
is a layer l. Layers can be nested, mean-
ing that a layer can consist of several sub-
layers. Layers optionally take set of named ar-
guments l(k1=v1, k2=v2, ...) with names k1, k2,
... and values v1, v2, ... or positional arguments
l(v1, v2, ...).

Layer definitions For each layer we have a cor-
responding layer definition based on the hidden
states of the previous layer and any additional ar-
guments. Specifically, each layer takes T hid-
den states hi

1, ...,h
i
T , which in matrix form are

Hi ∈ RT×di , and produces a new set of hidden
states hi+1

1 , ...,hi+1
T or Hi+1. While each layer

can have a different number of hidden units di,
in the following we assume them to stay constant
across layers and refer to the model dimensionality
as dmodel. We distinguish the hidden states on the
source side U0, ...,ULs from the hidden states of

the target side Z0, ...,ZL. These are produced by
the source and target embeddings and Ls source
layers and L target layers.

Source attention layers play a special role in that
their definition additionally makes use of any of
the source hidden states U0, ...,ULs .

Layer chaining Layers can be chained, feeding
the output of one layer as the input to the next. We
denote this as l1 → l2� ...�lL. This is equivalent
to writing lL(... l2(l1(H0))) if none of the layers
is a source attention layer.

In layer chains layers may also contain lay-
ers that themselves take arguments. As an ex-
ample l1(k=v) → l2 � ... � lL is equivalent
to lL(... l2(l1(H

0, k=v))). Note that unlike in
the layer definition hidden states are not explic-
itly stated in the layer chain, but rather implicitly
defined through the preceding layers.

Encoder/Decoder structure A NMT model is
fully defined through two layer chains, namely one
describing the encoder and another describing the
decoder. The first layer hidden states on the source
U0 are defined through the source embedding as

u0
t = Esrcxt (2)

where xt ∈ {0, 1}|Vsrc | is the one-hot represen-
tation of xt and ESxt ∈ Re×|Vsrc | an embedding
matrix with embedding dimensionality e. Simi-
larly, Z0 is defined through the target embedding
matrix Etgt.

Given the final decoder hidden state ZL the
next word predictions are done according to Equa-
tion 1.

Layer repetition Networks often consist of sub-
structures that are repeated several times. In order
to support this we define a repetition layer as

repeat(n, l) = l1�l2�...�ln,

where l represents a layer chain and each one of
l1, ..., ln an instantiation of that layer chain with a
separate set of weights.

2.3 Layer Definitions

In this section we will introduce the concrete lay-
ers and their definitions, which are available for
composing NMT architectures. They are based
on building blocks common to many current NMT
models.
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Dropout A dropout (Srivastava et al., 2014)
layer, denoted as dropout(ht), can be applied to
hidden states as a form of regularization.

Fixed positional embeddings Fixed positional
embeddings (Vaswani et al., 2017) add informa-
tion about the position in the sequence to the hid-
den states. With ht ∈ Rd the positional embed-
ding layer is defined as

pos(ht) = dropout(
√
d · ht + pt)

pt,j = sin(t/100002j/d)

pt,2j+1 = cos(t/100002j/d).

Linear We define a linear projection layer as

linear(ht, do) = Wht + b,

where W ∈ Rdo×din .

Feed-forward Making use of the linear projec-
tion layer a feed-forward layer with ReLU activa-
tion and dropout is defined as

ff(ht, do) = dropout(max(0, linear(ht, do)))

and a version which temporarily upscales the num-
ber of hidden units, as done by Vaswani et al.
(2017), can be defined as

ffl(ht) = ff(4din)�linear(din)

where ht ∈ Rdin .

Convolution Convolutions run a small feed-
forward network on a sliding window over the in-
put. Formally, on the encoder side this is defined
as

cnn(H, v, k) = v(W[hi−bk/2c; ...;hi+bk/2c] + b)

where k is the kernel size, and v is a non-linearity.
The input is padded so that the number of hidden
states does not change.

To preserve the auto-regressive property of the
decoder we need to make sure to never take fu-
ture decoder time steps into account, which can
be achieved by adding k − 1 padding vectors
h−k+1 = 0, . . . ,h−1 = 0 such that the decoder
convolution is given as

cnn(H, v, k) = v(W[ht−k+1; ...;ht] + b).

The non-linearity v can either be a ReLU or a
Gated Linear Unit (GLU) (Dauphin et al., 2016).
With the GLU we set di = 2d such that we can
split h = [hA;hB] ∈ R2d and compute the non-
linearity as

glu([hA;hB]) = hA ⊗ σ(hB).

Identity We define an identity layer as

id(ht) = ht.

Concatenation To concatenate the output of p
layer chains we define

concat(ht, l1, ..., lp) = [l1(ht); ...; lp(ht)].

Recurrent Neural Network An RNN layer is
defined as

rnn(ht) = frnn o(ht, st−1)

st = frnn h(ht, st−1)

where frnn o and frnn h could be defined
through either a GRU (Cho et al., 2014) or a
LSTM (Hochreiter and Schmidhuber, 1997) cell.
In addition, a bidirectional RNN layer birnn is
available, which runs one rnn in forward and an-
other in reverse direction and concatenates both re-
sults.

Attention All attention mechanisms take a set of
query vectors q0, ...,qM , key vectors k0, ...,kN

and value vectors v0, ...,vN in order to produce
one context vector per query, which is a linear
combination of the value vectors. We define Q ∈
RM×d, V ∈ RN×d and K ∈ RN×d as the con-
catenation of these vectors. What is used as the
query, key and value vectors depends on attention
type and is defined below.

Dot product attention The scaled dot prod-
uct attention (Vaswani et al., 2017) is defined as

dot att(Q,K,V, s) = softmax

(
QK>√

s

)
V,

where the scaling factor s is implicitly set to d un-
less noted otherwise. Adding a projection to the
queries, keys and values we get the projected dot
attention as

proj dot att(Q,K,V, dp, s) =

dot att(QWQ,KWK ,VWV , s)

where dp is dimensionality of the projected vec-
tors such that WQ ∈ Rdq×dp , WK ∈ Rdk×dp and
WV ∈ Rdv×dp .

Vaswani et al. (2017) further introduces a multi-
head attention, which applies multiple attentions
at a reduced dimensionality. With h heads multi-
head attention is computed as

mh dot att(Q,K,V, h, s) = [C0; ...;Ch],
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Ci = proj dot att(Q,K,V, d/h, s).

Note that with h = 1 we recover the projected dot
attention.

MLP attention The MLP attention (Bah-
danau et al., 2014) computes the scores with a one-
layer neural network as

mlp att(Q,K,V) = softmax (S)V,

Sij = wT
o tanh(Wqqi +Wkkj).

Source attention Using the source hidden
vectors U, the source attentions are computed as

mh dot src att(H,U, h, s) =

mh dot att(H,U,U, h, s),

mlp src att(H,U) = mlp att(H,U,U),

dot src att(H,U, s) = mh dot att(H,U,U, 1, s).

Self-attention Self-attention (Vaswani et al.,
2017) uses the hidden states as queries, keys and
values such that

mh dot self att(H, s) = mh dot att(H,H,H, s).

Please note that on the target side one needs to
make sure to preserve the auto-regressive property
by only attending to hidden states at the current or
past steps h < t, which is achieved by masking
the attention mechanism.

Layer normalization Layer normalization (Ba
et al., 2016) uses the mean and standard deviation
for normalization. It is computed as

norm(ht) =
g

σt
⊗ (ht − µt) + b

µt =
1

d

d∑
i=1

ht,j σt =

√√√√1

d

d∑
i=1

(ht,j − µj)2

where g and b are learned scale and shift parame-
ters with the same dimensionality as h.

Residual layer A residual layer adds the output
of an arbitrary layer chain l to the current hidden
states. We define this as

res(ht, l) = ht + l(ht).

For convenience we also define

res d(ht, l) = res(l(ht)�dropout) and

res nd(ht, l) = res(norm�l(ht)�dropout).

2.4 Standard Architectures

Having defined the common building blocks we
now show how standard NMT architectures can be
constructed.

RNMT As RNNs have been around the longest
in NMT, several smaller architecture variations
exist. Similar to Wu et al. (2016) in the following
we use a bi-directional RNN followed by a stack
of uni-directional RNNs with residual connections
on the encoder side. Using the ADL an n layer en-
coder can be expressed as

ULs = dropout�birnn�repeat(n− 1, res d(rnn)).

For the decoder we use the architecture by Luong
et al. (2015), which first runs a stacked RNN and
then combines the context provided by a single at-
tention mechanism with the hidden state provided
by the RNN. This can be expressed by

ZL = dropout�repeat(n, res d(rnn))�
concat(id,mlp att)�ff.

If input feeding (Luong et al., 2015) is used the
first layer hidden states are redefined as

z0t = [zLt−1;Etgtyt].

Note that this inhibits any parallelism across de-
coder time steps. This is only an issue when using
models other than RNNs, as RNNs already do not
allow for parallelizing over decoder time steps.

ConvS2S Gehring et al. (2017) introduced a
NMT model that fully relies on convolutions, both
on the encoder and on the decoder side. The en-
coder is defined as

ULs = pos�repeat(n, res(cnn(glu)�dropout))

and the decoder, which uses an unscaled single
head dot attention is defined as

ZL = pos�res(dropout�cnn(glu)�dropout

�res(dot src att(s=1))).

Note that unlike (Gehring et al., 2017) we do not
project the query vectors before the attention and
do not add the embeddings to the attention values.
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Transformer The Transformer (Vaswani et al.,
2017) makes use of self-attention, instead of
RNNs or Convolutional Neural Networks (CNNs),
as the basic computational block. Note that we
use a slightly updated residual structure as im-
plemented by tensor2tensor1 than proposed origi-
nally. Specifically, layer normalization is applied
to the input of the residual block instead of ap-
plying it between blocks. The Transformer uses
a combination of self-attention and feed-forward
layers on the encoder and additionally source at-
tention layers on the decoder side. When defining
the Transformer encoder block as

tenc = res nd(mh dot self att)�res nd(ffl),

and the decoder block as

tdec = res nd(mh dot self att)�
res nd(mh dot src att)�res nd(ffl).

the Transformer encoder is given as

ULs = pos�repeat(n, tenc)�norm

and the decoder as

ZL = pos�repeat(n, tdec)�norm.

3 Related Work

The dot attention mechanism, now heavily used in
the Transformer models, was introduced by (Lu-
ong et al., 2015) as part of an exploration of dif-
ferent attention mechanisms for RNN based NMT
models.

Britz et al. (2017) performed an extensive ex-
ploration of hyperparameters of RNN based NMT
models. The variations explored include different
attention mechanisms, RNN cells types and model
depth.

Similar to our work, Schrimpf et al. (2017) de-
fine a language for exploring architectures. In
this case the architectures are defined for RNN
cells and not for the higher level model architec-
ture. Using the language they perform an auto-
matic search of RNN cell architectures.

For the application of image classification there
have been several recent successful efforts of
automatically searching for successful architec-
tures (Zoph and Le, 2016; Negrinho and Gordon,
2017; Liu et al., 2017).

1https://github.com/tensorflow/tensor2tensor

4 Experiments

What follows is an extensive empirical analysis of
current NMT architectures and how certain sub-
layers as defined through our ADL affect perfor-
mance.

4.1 Setup
All experiments were run with an adapted ver-
sion of SOCKEYE (Hieber et al., 2017), which
can parse arbitrary model definitions that are ex-
pressed in the language described in Section 2.3.
The code and configuration are available at
https://github.com/awslabs/sockeye/tree/acl18 al-
lowing researchers to easily replicate the experi-
ments and to quickly try new NMT architectures
by either making use of existing building blocks
in novel ways or adding new ones.

In order to get data points on corpora of differ-
ent sizes we ran experiments on both WMT and
IWSLT data sets. For WMT we ran the majority
of our experiments on the most recent WMT’17
data consisting of roughly 5.9 million training
sentences for English-German (EN→DE) and 4.5
million sentences for Latvian-English (LV→EN).
We used newstest2016 as validation data and re-
port metrics calculated on newstest2017. For the
smaller IWSLT’16 English-German corpus, which
consists of roughly 200 thousand training sen-
tences, we used TED.tst2013 as validation data
and report numbers for TED.tst2014.

For both WMT’17 and IWSLT’16 we prepro-
cessed all data using the Moses2 tokenizer and
apply Byte Pair Encoding (BPE) (Sennrich et al.,
2015) with 32,000 merge operations. Unless noted
otherwise we run each experiment three times
with different random seeds and report the mean
and standard deviation of the BLEU and ME-
TEOR (Lavie and Denkowski, 2009) scores across
runs. Evaluation scores are based on tokenized
sequences and calculated with MultEval (Clark
et al., 2011).

Model WMT’14
Vaswani et al. (2017) 27.3
Our Transformerbase impl. 27.5

Table 1: BLEU scores on WMT’14 EN→DE.

In order to compare to previous work, we
also ran an additional experiment on WMT’14
using the same data as Vaswani et al. (2017)

2https://github.com/moses-smt/mosesdecoder/

https://github.com/tensorflow/tensor2tensor
https://github.com/awslabs/sockeye/tree/acl18
https://github.com/moses-smt/mosesdecoder/
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as provided in preprocessed form through ten-
sor2tensor.3 This data set consists of WMT’16
training data, which has been tokenized and byte
pair encoded with 32,000 merge operations. Eval-
uation is done on tokenized and compound split
newstest2014 data using multi-bleu.perl in order
to get scores comparable to Vaswani et al. (2017).
As seen in Table 1, our Transformer implementa-
tion achieves a score equivalent to the originally
reported numbers.

On the smaller IWSLT data we use dmodel =
512 and on WMT dmodel = 256 for all mod-
els. Models are trained with 6 encoder and 6 de-
coder blocks, where in the Transformer model a
layer refers to a full encoder or decoder block. All
convolutional layers use a kernel of size 3 and a
ReLU activation, unless noted otherwise. RNNs
use LSTM cells. For training we use the Adam
optimizer (Kingma and Ba, 2014) with a learning
rate of 0.0002. The learning rate is decayed by a
factor of 0.7, whenever the validation perplexity
does not improve for 8 consecutive checkpoints,
where a checkpoint is created every 4,000 updates
on WMT and 1,000 updates on IWSLT. All mod-
els use label smoothing (Szegedy et al., 2016) with
εls = 0.1.

4.2 What to attend to?

Source attention is typically based on the top en-
coder block. With multiple source attention lay-
ers one could hypothesize that it could be benefi-
cial to allow attention encoder blocks other than
the top encoder block. It might for example be
beneficial for lower decoder blocks to use encoder
blocks from the same level as they represent the
same level of abstraction. Inversely, assuming that
the translation is done in a coarse to fine manner
it might help to first use the uppermost encoder
block and use gradually lower level representa-
tions.

Encoder block IWSLT WMT’17
upper 25.4± 0.2 27.6± 0.0
increasing 25.4± 0.1 27.3± 0.1
decreasing 25.3± 0.2 27.1± 0.1

Table 2: BLEU scores when varying the en-
coder block used in the source attention mecha-
nism of a Transformer on the EN→DE IWSLT and
WMT’17 datasets.

3https://github.com/tensorflow/tensor2tensor/blob/
765d33bb/tensor2tensor/data generators/translate ende.py

The result of modifying the source attention
mechanism to use different encoder blocks is
shown in Table 2. The variations include using
the result of the encoder Transformer block at
the same level as the decoder Transformer block
(increasing) and using the upper encoder Trans-
former block in the first decoder block and then
gradually using the lower blocks (decreasing).

We can see that attention on the upper encoder
block performs best and no gains can be observed
by attention on different encoder layers in the
source attention mechanism.

4.3 Network Structure
The Transformer sets itself apart from both
standard RNN models and convolutional model
by more than just the multi-head self-attention
blocks.

RNN to Transformer The differences to the
RNN include the multiple source attention layers,
multi-head attention, layer normalization and the
residual upscaling feed-forward layers. Addition-
ally, RNN models typically use single head MLP
attention instead of the dot attention. This raises
the question of what aspect contributes most to the
performance of the Transformer.

Table 3 shows the result of taking an RNN and
step by step changing the architecture to be simi-
lar to the Transformer architecture. We start with
a standard RNN architecture with MLP attention
similar to Luong et al. (2015) as described in Sec-
tion 2.4 with and without input feeding denoted as
RNMT.

Next, we take a model with a residual connec-
tion around the encoder bi-RNN such that the en-
coder is defined as

dropout�res d(birnn)�repeat(5, res d(rnn)).

The decoder uses a residual single head dot atten-
tion and no input feeding and is defined as

dropout�repeat(6, res d(rnn))�
res d(dot src att)�res d(ffl).

We denote this model as RNN in Table 3. This
model is then changed to use multi-head attention
(mh), positional embeddings (pos), layer normal-
ization on the inputs of the residual blocks (norm),
an attention mechanism in a residual block after
every RNN layer with multiple (multi-att) and a
single head (multi-add-1h), and finally a residual

https://github.com/tensorflow/tensor2tensor/blob/765d33bb/tensor2tensor/data_generators/translate_ende.py
https://github.com/tensorflow/tensor2tensor/blob/765d33bb/tensor2tensor/data_generators/translate_ende.py


1805

IWSLT EN→DE WMT’17 EN→DE WMT’17 LV→EN
Model BLEU BLEU METEOR BLEU METEOR
Transformer 25.4± 0.1 27.6± 0.0 47.2± 0.1 18.5± 0.0 51.3± 0.1

RNMT 23.2± 0.2 25.5± 0.2 45.1± 0.1 - -
- input feeding 23.1± 0.2 24.6± 0.1 43.8± 0.2 - -

RNN 22.8± 0.2 23.8± 0.1 43.3± 0.1 15.2± 0.1 45.9± 0.1
+ mh 23.7± 0.4 24.4± 0.1 43.9± 0.1 16.0± 0.1 47.1± 0.1
+ pos 23.9± 0.2 24.1± 0.1 43.5± 0.2 - -
+ norm 23.7± 0.1 24.0± 0.2 43.2± 0.1 15.2± 0.1 46.3± 0.2
+ multi-att-1h 24.5± 0.0 25.2± 0.1 44.9± 0.1 16.6± 0.2 49.1± 0.2
/ multi-att 24.4± 0.3 25.5± 0.0 45.3± 0.0 17.0± 0.2 49.4± 0.1
+ ff 25.1± 0.1 26.7± 0.1 46.4± 0.2 17.8± 0.1 50.5± 0.1

Table 3: Transforming an RNN into a Transformer style architecture. + shows the incrementally added
variation. / denotes an alternative variation to which the subsequent + is relative to.

upscaling feed-forward layer is added after each
attention block (ff). The final architecture of the
encoder after applying these variations is

pos�res nd(birnn)�res nd(ffl)�
repeat(5, res nd(rnn)�res nd(ffl)�norm

and of the decoder

pos�repeat(6, res nd(rnn)�
res nd(mh dot src att)�res nd(ffl))�norm.

Comparing this to the Transformer as defined in
Section 2.4 we note that the model is identical
to the Transformer, except that each self-attention
has been replaced by an RNN or bi-RNN.

Table 3 shows that not using input feeding has
a negative effect on the result, which however can
be compensated by the explored model variations.
With just a single attention mechanism the model
benefits from multiple attention heads. The gains
are even larger when an attention mechanism is
added to every layer. With multiple source atten-
tion mechanisms the benefit of multiple heads de-
creases. Layer normalization on the inputs of the
residual blocks has a small negative effect in all
settings and metrics. As RNNs can learn to encode
positional information positional embeddings are
not strictly necessary. Indeed, we can observe
no gains but rather even a small drop in BLEU
and METEOR for WMT’17 EN→DE when using
them. Adding feed-forward layers leads to large
and consistent performance boost. While the fi-
nal model, which is a Transformer model where
each self-attention has been replaced by an RNN,
is able to make up for a large amount of the dif-
ference between the baseline and the Transformer,

it is still outperformed by the Transformer. The
largest gains come from multiple attention mech-
anisms and residual feed-forward layers.

CNN to Transformer While the convolutional
models have much more in common with the
Transformer than the RNN based models, there
are still some notable differences. Like the Trans-
former, convolutional models have no dependency
between decoder time steps during training, use
multiple source attention mechanisms and use a
slightly different residual structure, as seen in Sec-
tion 2.4. The Transformer uses a multi-head scaled
dot attention while the ConvS2S model uses an un-
scaled single head dot attention. Other differences
include the use of layer normalization as well as
residual feed-forward blocks in the Transformer.

The result of making a CNN based architecture
more and more similar to the Transformer can be
seen in Table 4. As a baseline we use a simple
residual CNN structure with a residual single head
dot attention. This is denoted as CNN in Table 4.
On the encoder side we have

pos�repeat(6, res d(cnn))

and for the decoder

pos�repeat(6, res d(cnn)�res d(dot src att)).

This is similar to, but slightly simpler than, the
ConvS2S model described in Section 2.4. In the
experiments we explore both the GLU and ReLU
as non-linearities for the CNN.

Adding layer normalization (norm), multi-head
attention (mh) and upsampling residual feed-
forward layers (ff) we arrive at a model that is
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IWSLT EN-DE WMT’17 EN→DE WMT’17 LV→EN
Model BLEU BLEU METEOR BLEU METEOR
Transformer 25.4± 0.1 27.6± 0.0 47.2± 0.1 18.5± 0.0 51.3± 0.1

CNN GLU 24.3± 0.4 25.0± 0.3 44.4± 0.2 16.0± 0.5 47.4± 0.4
+ norm 24.1± 0.1 - - - -
+ mh 24.2± 0.2 25.4± 0.1 44.8± 0.1 16.1± 0.1 47.6± 0.2
+ ff 25.3± 0.1 26.8± 0.1 46.0± 0.1 16.4± 0.2 47.9± 0.2

CNN ReLU 23.6± 0.3 23.9± 0.1 43.4± 0.1 15.4± 0.1 46.4± 0.3
+ norm 24.3± 0.1 24.3± 0.2 43.6± 0.1 16.0± 0.2 47.1± 0.5
+ mh 24.2± 0.2 24.9± 0.1 44.4± 0.1 16.1± 0.1 47.5± 0.2
+ ff 25.3± 0.3 26.9± 0.1 46.1± 0.0 16.4± 0.2 47.9± 0.1

Table 4: Transforming a CNN based model into a Transformer style architecture.

identical to a Transformer where the self-attention
layers have been replaced by CNNs. This means
that we have the following architecture on the en-
coder

pos�repeat(6, res nd(cnn)�res nd(ffl))�norm.

Whereas for the decoder we have

pos�repeat(6, res nd(cnn)

�res nd(mh dot src att)�res nd(ffl))�norm.

While in the baseline the GLU activation works
better than the ReLU activation, when layer
normalization, multi-head attention attention and
residual feed-forward layers are added, the perfor-
mance is similar. Except for IWSLT multi-head
attention gives consistent gains over single head
attention. The largest gains can however be ob-
served by the addition of residual feed-forward
layers. The performance of the final model, which
is very similar to a Transformer where each self-
attention has been replaced by a CNN, matches
the performance of the Transformer on IWSLT
EN→DE but is still 0.7 BLEU points worse on
WMT’17 EN→DE and two BLEU points on
WMT’17 LV→EN.

4.4 Self-attention variations

At the core of the Transformer are self-attentional
layers, which take the role previously occupied by
RNNs and CNNs. Self-attention has the advantage
that any two positions are directly connected and
that, similar to CNNs, there are no dependencies
between consecutive time steps so that the com-
putation can be fully parallelized across time. One
disadvantage is that relative positional information
is not directly represented and one needs to rely

on the different heads to make up for this. In a
CNN information is constrained to a local window
which grows linearly with depth. Relative posi-
tions are therefore taken into account. While an
RNN keeps an internal state, which can be used
in future time steps, it is unclear how well this
works for very long range dependencies (Koehn
and Knowles, 2017; Bentivogli et al., 2016). Addi-
tionally, having a dependency on the previous hid-
den state inhibits any parallelization across time.

Given the different advantages and disadvan-
tages we selectively replace self-attention on the
encoder and decoder side in order to see where the
model benefits most from self-attention.

We take the encoder and decoder block defined
in Section 2.4 and try out different layers in place
of the self-attention. Concretely, we have

tenc = res nd(xenc)�res nd(ffl),

on the encoder side and

tdec = res nd(xdec)�
res nd(mh dot src att)�res nd(ffl).

on the decoder side. Table 5 shows the result of
replacing xenc and xdec with either self-attention,
a CNN with ReLU activation or an RNN. Notice
that with self-attention used in both xenc and xdec
we recover the Transformer model. Additionally,
we remove the residual block on the decoder side
entirely (none). This results in a decoder block
which only has information about the previous tar-
get word yt through the word embedding that is
fed as the input to the first layer. The decoder
block is reduced to

tdec = res nd(mh dot src att)�res nd(ffl).
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IWSLT EN→DE WMT’17 EN→DE WMT’17 LV→EN
Encoder Decoder BLEU BLEU METEOR BLEU METEOR
self-att self-att 25.4± 0.2 27.6± 0.0 47.2± 0.1 18.3± 0.0 51.1± 0.1

self-att RNN 25.1± 0.1 27.4± 0.1 47.0± 0.1 18.4± 0.2 51.1± 0.1
self-att CNN 25.4± 0.4 27.6± 0.2 46.7± 0.1 18.0± 0.3 50.3± 0.3

RNN self-att 25.8± 0.1 27.2± 0.1 46.7± 0.1 17.8± 0.1 50.6± 0.1
CNN self-att 25.7± 0.1 26.6± 0.3 46.3± 0.1 16.8± 0.4 49.4± 0.4

RNN RNN 25.1± 0.1 26.7± 0.1 46.4± 0.2 17.8± 0.1 50.5± 0.1
CNN CNN 25.3± 0.3 26.9± 0.1 46.1± 0.0 16.4± 0.2 47.9± 0.2

self-att combined 25.1± 0.2 27.6± 0.2 47.2± 0.2 18.3± 0.1 51.1± 0.1
self-att none 23.7± 0.2 25.3± 0.2 43.1± 0.1 15.9± 0.1 45.1± 0.2

Table 5: Different variations of the encoder and decoder self-attention layer.

In addition to that, we try a combination where the
first and fourth block use self-attention, the second
and fifth an RNN, the third and sixth a CNN (com-
bined).

Replacing the self-attention on both the encoder
and the decoder side with an RNN or CNN re-
sults in a degradation of performance. In most
settings, such as WMT’17 EN→DE for both vari-
ations and WMT’17 LV→EN for the RNN, the
performance is comparable when replacing the de-
coder side self-attention. For the encoder how-
ever, except for IWSLT, we see a drop in perfor-
mance of up to 1.5 BLEU points when not using
self-attention. Therefore, self-attention seems to
be more important on the encoder side than on the
decoder side. Despite the disadvantage of having a
limited context window, the CNN performs as well
as self-attention on the decoder side on IWLT and
WMT’17 EN→DE in terms of BLEU and only
slightly worse in terms of METEOR. The combi-
nation of the three mechanisms (combined) on the
decoder side performs almost identical to the full
Transformer model, except for IWSLT where it is
slightly worse.

It is surprising how well the model works with-
out any self-attention as the decoder essentially
looses any information about the history of gener-
ated words. Translations are entirely based on the
previous word, provided through the target side
word embedding, and the current position, pro-
vided through the positional embedding.

5 Conclusion

We described an ADL for specifying NMT archi-
tectures based on composable building blocks. In-
stead of committing to a single architecture, the
language allows for combining architectures on

a granular level. Using this language we ex-
plored how specific aspects of the Transformer ar-
chitecture can successfully be applied to RNNs
and CNNs. We performed an extensive evalua-
tion on IWSLT EN→DE, WMT’17 EN→DE and
LV→EN, reporting both BLEU and METEOR
over multiple runs in each setting.

We found that RNN based models benefit from
multiple source attention mechanisms and resid-
ual feed-forward blocks. CNN based models on
the other hand can be improved through layer nor-
malization and also feed-forward blocks. These
variations bring the RNN and CNN based models
close to the Transformer. Furthermore, we showed
that one can successfully combine architectures.
We found that self-attention is much more impor-
tant on the encoder side than it is on the decoder
side, where even a model without self-attention
performed surprisingly well. For the data sets we
evaluated on, models with self-attention on the en-
coder side and either an RNN or CNN on the de-
coder side performed competitively to the Trans-
former model in most cases.

We make our implementation available so that it
can be used for exploring novel architecture varia-
tions.
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