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Abstract

The prevalent approach to neural machine
translation relies on bi-directional LSTMs
to encode the source sentence. We present
a faster and simpler architecture based on a
succession of convolutional layers. This al-
lows to encode the source sentence simulta-
neously compared to recurrent networks for
which computation is constrained by tem-
poral dependencies. On WMT’16 English-
Romanian translation we achieve compet-
itive accuracy to the state-of-the-art and
on WMT’15 English-German we outper-
form several recently published results. Our
models obtain almost the same accuracy
as a very deep LSTM setup on WMT’14
English-French translation. We speed up
CPU decoding by more than two times at
the same or higher accuracy as a strong bi-
directional LSTM.1

1 Introduction

Neural machine translation (NMT) is an end-to-end
approach to machine translation (Sutskever et al.,
2014). The most successful approach to date en-
codes the source sentence with a bi-directional re-
current neural network (RNN) into a variable length
representation and then generates the translation
left-to-right with another RNN where both com-
ponents interface via a soft-attention mechanism
(Bahdanau et al., 2015; Luong et al., 2015a; Brad-
bury and Socher, 2016; Sennrich et al., 2016a).
Recurrent networks are typically parameterized as
long short term memory networks (LSTM; Hochre-
iter et al. 1997) or gated recurrent units (GRU; Cho
et al. 2014), often with residual or skip connec-
tions (Wu et al., 2016; Zhou et al., 2016) to enable
stacking of several layers (§2).

There have been several attempts to use convo-
lutional encoder models for neural machine trans-

1The source code will be availabe at https://github.
com/facebookresearch/fairseq

lation in the past but they were either only ap-
plied to rescoring n-best lists of classical systems
(Kalchbrenner and Blunsom, 2013) or were not
competitive to recurrent alternatives (Cho et al.,
2014a). This is despite several attractive properties
of convolutional networks. For example, convolu-
tional networks operate over a fixed-size window of
the input sequence which enables the simultaneous
computation of all features for a source sentence.
This contrasts to RNNs which maintain a hidden
state of the entire past that prevents parallel com-
putation within a sequence.

A succession of convolutional layers provides a
shorter path to capture relationships between ele-
ments of a sequence compared to RNNs.2 This also
eases learning because the resulting tree-structure
applies a fixed number of non-linearities compared
to a recurrent neural network for which the number
of non-linearities vary depending on the time-step.
Because processing is bottom-up, all words un-
dergo the same number of transformations, whereas
for RNNs the first word is over-processed and the
last word is transformed only once.

In this paper we show that an architecture based
on convolutional layers is very competitive to recur-
rent encoders. We investigate simple average pool-
ing as well as parameterized convolutions as an al-
ternative to recurrent encoders and enable very deep
convolutional encoders by using residual connec-
tions (He et al., 2015; §3).

We experiment on several standard datasets and
compare our approach to variants of recurrent en-
coders such as uni-directional and bi-directional
LSTMs. On WMT’16 English-Romanian transla-
tion we achieve accuracy that is very competitive
to the current state-of-the-art result. We perform
competitively on WMT’15 English-German, and
nearly match the performance of the best WMT’14
English-French system based on a deep LSTM
setup when comparing on a commonly used subset

2For kernel width k and sequence length n we require
max

(
1,
⌈

n−1
k−1

⌉)
forwards on a succession of stacked convo-

lutional layers compared to n forwards with an RNN.
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of the training data (Zhou et al. 2016; §4, §5).

2 Recurrent Neural Machine Translation

The general architecture of the models in this work
follows the encoder-decoder approach with soft at-
tention first introduced in (Bahdanau et al., 2015).
A source sentence x = (x1, . . . , xm) of m words is
processed by an encoder which outputs a sequence
of states z = (z1. . . . , zm).

The decoder is an RNN network that computes a
new hidden state si+1 based on the previous state
si, an embedding gi of the previous target lan-
guage word yi, as well as a conditional input ci de-
rived from the encoder output z. We use LSTMs
(Hochreiter and Schmidhuber, 1997) for all decoder
networks whose state si comprises of a cell vector
and a hidden vector hi which is output by the LSTM
at each time step. We input ci into the LSTM by
concatenating it to gi.

The translation model computes a distribution
over the V possible target words yi+1 by trans-
forming the LSTM output hi via a linear layer with
weights Wo and bias bo:

p(yi+1|y1, . . . , yi,x) = softmax(Wohi+1 + bo)

The conditional input ci at time i is computed
via a simple dot-product style attention mecha-
nism (Luong et al., 2015a). Specifically, we trans-
form the decoder hidden state hi by a linear layer
with weights Wd and bd to match the size of the
embedding of the previous target word gi and then
sum the two representations to yield di. Condi-
tional input ci is a weighted sum of attention scores
ai ∈ Rm and encoder outputs z. The attention
scores ai are determined by a dot product between
hi with each zj , followed by a softmax over the
source sequence:

di = Wdhi + bd + gi,

aij =
exp

(
dTi zj

)
∑m

t=1 exp
(
dTi zt

) , ci =

m∑

j=1

aijzj

In preliminary experiments, we did not find the
MLP attention of (Bahdanau et al., 2015) to perform
significantly better in terms of BLEU nor perplex-
ity. However, we found the dot-product attention to
be more favorable in terms of training and evalua-
tion speed.

We use bi-directional LSTMs to implement re-
current encoders similar to (Zhou et al., 2016)
which achieved some of the best WMT14 English-
French results reported to date. First, each word

of the input sequence x is embedded in distribu-
tional space resulting in e = (e1, . . . , em). The em-
beddings are input to two stacks of uni-directional
RNNs where the output of each layer is reversed
before being fed into the next layer. The first stack
takes the original sequence while the second takes
the reversed input sequence; the output of the sec-
ond stack is reversed so that the final outputs of the
stacks align. Finally, the top-level hidden states of
the two stacks are concatenated and fed into a linear
layer to yield z. We denote this encoder architecture
as BiLSTM.

3 Non-recurrent Encoders

3.1 Pooling Encoder

A simple baseline for non-recurrent encoders is the
pooling model described in (Ranzato et al., 2015)
which simply averages the embeddings of k con-
secutive words. Averaging word embeddings does
not convey positional information besides that the
words in the input are somewhat close to each
other. As a remedy, we add position embeddings
to encode the absolute position of each source
word within a sentence. Each source embedding
ej therefore contains a position embedding lj as
well as the word embedding wj . Position embed-
dings have also been found helpful in memory net-
works for question-answering and language model-
ing (Sukhbaatar et al., 2015). Similar to the recur-
rent encoder (§2), the attention scores aij are com-
puted from the pooled representations zj , however,
the conditional input ci is a weighted sum of the
embeddings ej , not zj , i.e.,

ej = wj + lj , zj =
1

k

bk/2c∑

t=−bk/2c
ej+t,

ci =

m∑

j=1

aijej

The input sequence is padded prior to pooling such
that the encoder output matches the input length
|z| = |x|. We set k to 5 in all experiments as (Ran-
zato et al., 2015).

3.2 Convolutional Encoder

A straightforward extension of pooling is to learn
the kernel in a convolutional neural network (CNN).
The encoder output zj contains information about a
fixed-sized context depending on the kernel width
k but the desired context width may vary. This can
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be addressed by stacking several layers of convolu-
tions followed by non-linearities: additional layers
increase the total context size while non-linearities
can modulate the effective size of the context as
needed. For instance, stacking 5 convolutions with
kernel width k = 3 results in an input field of 11
words, i.e., each output depends on 11 input words,
and the non-linearities allow the encoder to exploit
the full input field, or to concentrate on fewer words
as needed.

To ease learning for deep encoders, we add resid-
ual connections from the input of each convolution
to the output and then apply the non-linear activa-
tion function to the output (tanh; He et al., 2015);
the non-linearities are therefore not ’bypassed’.
Multi-layer CNNs are constructed by stacking sev-
eral blocks on top of each other. The CNNs do not
contain pooling layers which are commonly used
for down-sampling, i.e., the full source sequence
length will be retained after the network has been
applied. Similar to the pooling model, the convolu-
tional encoder uses position embeddings.

The final encoder consists of two stacked convo-
lutional networks (Figure 1): CNN-a produces the
encoder output zj to compute the attention scores
ai, while the conditional input ci to the decoder is
computed by summing the outputs of CNN-c,

zj = CNN-a(e)j , ci =
m∑

j=1

aij CNN-c(e)j .

In practice, we found that two different CNNs re-
sulted in better perplexity as well as BLEU com-
pared to using a single one (§5.3). We also found
this to perform better than directly summing the ei
without transformation as for the pooling model.

3.3 Related Work
There are several past attempts to use convolutional
encoders for neural machine translation, however,
to our knowledge none of them were able to match
the performance of recurrent encoders. (Kalch-
brenner and Blunsom, 2013) introduce a convolu-
tional sentence encoder in which a multi-layer CNN
generates a fixed sized embedding for a source
sentence, or an n-gram representation followed by
transposed convolutions for directly generating a
per-token decoder input. The latter requires the
length of the translation prior to generation and both
models were evaluated by rescoring the output of
an existing translation system. (Cho et al., 2014a)
propose a gated recursive CNN which is repeat-
edly applied until a fixed-size representation is ob-

tained but the recurrent encoder achieves higher ac-
curacy. In follow-up work, the authors improved the
model via a soft-attention mechanism but did not re-
consider convolutional encoder models (Bahdanau
et al., 2015).

Concurrently to our work, (Kalchbrenner et al.,
2016) have introduced convolutional translation
models without an explicit attention mechanism
but their approach does not yet result in state-of-
the-art accuracy. (Lamb and Xie, 2016) also pro-
posed a multi-layer CNN to generate a fixed-size
encoder representation but their work lacks quan-
titative evaluation in terms of BLEU. Meng et al.
(2015) and (Tu et al., 2015) applied convolutional
models to score phrase-pairs of traditional phrase-
based and dependency-based translation models.
Convolutional architectures have also been success-
ful in language modeling but so far failed to outper-
form LSTMs (Pham et al., 2016).

4 Experimental Setup

4.1 Datasets

We evaluate different encoders and ablate architec-
tural choices on a small dataset from the German-
English machine translation track of IWSLT
2014 (Cettolo et al., 2014) with a similar setting
to (Ranzato et al., 2015). Unless otherwise stated,
we restrict training sentences to have no more than
175 words; test sentences are not filtered. This is
a higher threshold compared to other publications
but ensures proper training of the position embed-
dings for non-recurrent encoders; the length thresh-
old did not significantly effect recurrent encoders.
Length filtering results in 167K sentence pairs and
we test on the concatenation of tst2010, tst2011,
tst2012, tst2013 and dev2010 comprising 6948 sen-
tence pairs.3 Our final results are on three major
WMT tasks:
WMT’16 English-Romanian. We use the same
data and pre-processing as (Sennrich et al., 2016a)
and train on 2.8M sentence pairs.4 Our model is
word-based instead of relying on byte-pair encod-
ing (Sennrich et al., 2016b). We evaluate on new-
stest2016.
WMT’15 English-German. We use all available
parallel training data, namely Europarl v7, Com-

3Different to the other datasets, we lowercase the training
data and evaluate with case-insensitive BLEU.

4We followed the pre-processing of https:
//github.com/rsennrich/wmt16-scripts/
blob/master/sample/preprocess.sh and added the
back-translated data from http://data.statmt.org/
rsennrich/wmt16_backtranslations/en-ro.
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Die Katze schlief ein <p><p> Die Katze schlief ein <p> <p> 
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Figure 1: Neural machine translation model with single-layer convolutional encoder networks. CNN-a is
on the left and CNN-c is at the right. Embedding layers are not shown.

mon Crawl and News Commentary v10 and ap-
ply the standard Moses tokenization to obtain 3.9M
sentence pairs (Koehn et al., 2007). We report re-
sults on newstest2015.
WMT’14 English-French. We use a commonly
used subset of 12M sentence pairs (Schwenk,
2014), and remove sentences longer than 150
words. This results in 10.7M sentence-pairs for
training. Results are reported on ntst14.

A small subset of the training data serves as vali-
dation set (5% for IWSLT’14 and 1% for WMT) for
early stopping and learning rate annealing (§4.3).
For IWSLT’14, we replace words that occur fewer
than 3 times with a <unk> symbol, which results in
a vocabulary of 24158 English and 35882 German
word types. For WMT datasets, we retain 200K
source and 80K target words. For English-French
only, we set the target vocabulary to 30K types to
be comparable with previous work.

4.2 Model parameters

We use 512 hidden units for both recurrent encoders
and decoders. We reset the decoder hidden states to
zero between sentences. For the convolutional en-
coder, 512 hidden units are used for each layer in
CNN-a, while layers in CNN-c contain 256 units
each. All embeddings, including the output pro-
duced by the decoder before the final linear layer,
are of 256 dimensions. On the WMT corpora, we
find that we can improve the performance of the bi-
directional LSTM models (BiLSTM) by using 512-
dimensional word embeddings.

Model weights are initialized from a uniform
distribution within [−0.05, 0.05]. For convolu-
tional layers, we use a uniform distribution of[
−kd−0.5, kd−0.5

]
, where k is the kernel width (we

use 3 throughout this work) and d is the input size

for the first layer and the number of hidden units
for subsequent layers (Collobert et al., 2011b). For
CNN-c, we transform the input and output with
a linear layer each to match the smaller embed-
ding size. The model parameters were tuned on
IWSLT’14 and cross-validated on the larger WMT
corpora.

4.3 Optimization

Recurrent models are trained with Adam as we
found them to benefit from aggressive optimization.
We use a step width of 3.125 · 10−4 and early stop-
ping based on validation perplexity (Kingma and
Ba, 2014). For non-recurrent encoders, we obtain
best results with stochastic gradient descent (SGD)
and annealing: we use a learning rate of 0.1 and
once the validation perplexity stops improving, we
reduce the learning rate by an order of magnitude
each epoch until it falls below 10−4.

For all models, we use mini-batches of 32 sen-
tences for IWSLT’14 and 64 for WMT. We use
truncated back-propagation through time to limit
the length of target sequences per mini-batch to 25
words. Gradients are normalized by the mini-batch
size. We re-normalize the gradients if their norm
exceeds 25 (Pascanu et al., 2013). Gradients of con-
volutional layers are scaled by sqrt(dim(input))−1

similar to (Collobert et al., 2011b). We use dropout
on the embeddings and decoder outputs hi with a
rate of 0.2 for IWSLT’14 and 0.1 for WMT (Sri-
vastava et al., 2014). All models are implemented
in Torch (Collobert et al., 2011a) and trained on a
single GPU.

4.4 Evaluation

We report accuracy of single systems by train-
ing several identical models with different ran-
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dom seeds (5 for IWSLT’14, 3 for WMT) and
pick the one with the best validation perplex-
ity for final BLEU evaluation. Translations are
generated by a beam search and we normalize
log-likelihood scores by sentence length. On
IWSLT’14 we use a beam width of 10 and for
WMT models we tune beam width and word
penalty on a separate test set, that is newsdev2016
for WMT’16 English-Romanian, newstest2014
for WMT’15 English-German and ntst1213 for
WMT’14 English-French.5 The word penalty adds
a constant factor to log-likelihoods, except for the
end-of-sentence token.

Prior to scoring the generated translations against
the respective references, we perform unknown
word replacement based on attention scores (Jean
et al., 2015). Unknown words are replaced by look-
ing up the source word with the maximum atten-
tion score in a pre-computed dictionary. If the
dictionary contains no translation, then we simply
copy the source word. Dictionaries were extracted
from the aligned training data that was aligned with
fast align (Dyer et al., 2013). Each source
word is mapped to the target word it is most fre-
quently aligned to.

For convolutional encoders with stacked CNN-c
layers we noticed for some models that the atten-
tion maxima were consistently shifted by one word.
We determine this per-model offset on the above-
mentioned development sets and correct for it. Fi-
nally, we compute case-sensitive tokenized BLEU,
except for WMT’16 English-Romanian where we
use detokenized BLEU to be comparable with Sen-
nrich et al. (2016a).6

5 Results

5.1 Recurrent vs. Non-recurrent Encoders
We first compare recurrent and non-recurrent en-
coders in terms of perplexity and BLEU on
IWSLT’14 with and without position embeddings
(§3.1) and include a phrase-based system (Koehn
et al., 2007). Table 1 shows that a single-layer con-
volutional model with position embeddings (Con-
volutional) can outperform both a uni-directional
LSTM encoder (LSTM) as well as a bi-directional
LSTM encoder (BiLSTM). Next, we increase the
depth of the convolutional encoder. We choose a

5Specifically, we select a beam from {5, 10} and a word
penalty from {0,−0.5,−1,−1.5}

6https://github.com/moses-smt/
mosesdecoder/blob/617e8c8ed1630fb1d1/
scripts/generic/{multi-bleu.perl,
mteval-v13a.pl}

System/Encoder BLEU BLEU PPL
wrd+pos wrd wrd+pos

Phrase-based – 28.4 –

LSTM 27.4 27.3 10.8
BiLSTM 29.7 29.8 9.9

Pooling 26.1 19.7 11.0
Convolutional 29.9 20.1 9.1
Deep Convolutional 6/3 30.4 25.2 8.9

Table 1: Accuracy of encoders with position fea-
tures (wrd+pos) and without (wrd) in terms of
BLEU and perplexity (PPL) on IWSLT’14 Ger-
man to English translation; results include unknown
word replacement. Deep Convolutional 6/3 is the
only multi-layer configuration, more layers for the
LSTMs did not improve accuracy on this dataset.

good setting by independently varying the number
of layers in CNN-a and CNN-c between 1 and 10
and obtained best validation set perplexity with six
layers for CNN-a and three layers for CNN-c. This
configuration outperforms BiLSTM by 0.7 BLEU
(Deep Convolutional 6/3). We investigate depth in
the convolutional encoder more in §5.3.

Among recurrent encoders, the BiLSTM is 2.3
BLEU better than the uni-directional version. The
simple pooling encoder which does not contain any
parameters is only 1.3 BLEU lower than a uni-
directional LSTM encoder and 3.6 BLEU lower
than BiLSTM. The results without position em-
beddings (words) show that position information
is crucial for convolutional encoders. In particu-
lar for shallow models (Pooling and Convolutional),
whereas deeper models are less effected. Recurrent
encoders do not benefit from explicit position in-
formation because this information can be naturally
extracted through the sequential computation.

When tuning model settings, we generally ob-
serve good correlation between perplexity and
BLEU. However, for convolutional encoders per-
plexity gains translate to smaller BLEU improve-
ments compared to recurrent counterparts (Table 1).
We observe a similar trend on larger datasets.

5.2 Evaluation on WMT Corpora
Next, we evaluate the BiLSTM encoder and the
convolutional encoder architecture on three larger
tasks and compare against previously published re-
sults. On WMT’16 English-Romanian translation
we compare to (Sennrich et al., 2016a), the win-
ning single system entry for this language pair.
Their model consists of a bi-directional GRU en-
coder, a GRU decoder and MLP-based attention.
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WMT’16 English-Romanian Encoder Vocabulary BLEU

(Sennrich et al., 2016a) BiGRU BPE 90K 28.1

Single-layer decoder BiLSTM 80K 27.5
Convolutional 80K 27.1
Deep Convolutional 8/4 80K 27.8

WMT’15 English-German Encoder Vocabulary BLEU

(Jean et al., 2015) RNNsearch-LV BiGRU 500K 22.4
(Chung et al., 2016) BPE-Char BiGRU Char 500 23.9
(Yang et al., 2016) RNNSearch + UNK replace BiLSTM 50K 24.3
+ recurrent attention BiLSTM 50K 25.0

Single-layer decoder BiLSTM 80K 23.5
Deep Convolutional 8/4 80K 23.6

Two-layer decoder Two-layer BiLSTM 80K 24.1
Deep Convolutional 15/5 80K 24.2

WMT’14 English-French (12M) Encoder Vocabulary BLEU

(Bahdanau et al., 2015) RNNsearch BiGRU 30K 28.5
(Luong et al., 2015b) Single LSTM 6-layer LSTM 40K 32.7
(Jean et al., 2014) RNNsearch-LV BiGRU 500K 34.6
(Zhou et al., 2016) Deep-Att Deep BiLSTM 30K 35.9

Single-layer decoder BiLSTM 30K 34.3
Deep Convolutional 8/4 30K 34.6

Two-layer decoder 2-layer BiLSTM 30K 35.3
Deep Convolutional 20/5 30K 35.7

Table 2: Accuracy on three WMT tasks, including results published in previous work. For deep convolu-
tional encoders, we include the number of layers in CNN-a and CNN-c, respectively.

They use byte pair encoding (BPE) to achieve open-
vocabulary translation and dropout in all compo-
nents of the neural network to achieve 28.1 BLEU;
we use the same pre-processing but no BPE (§4).

The results (Table 2) show that a deep convo-
lutional encoder can perform competitively to the
state of the art on this dataset (Sennrich et al.,
2016a). Our bi-directional LSTM encoder baseline
is 0.6 BLEU lower than the state of the art but uses
only 512 hidden units compared to 1024. A single-
layer convolutional encoder with embedding size
256 performs at 27.1 BLEU. Increasing the num-
ber of convolutional layers to 8 in CNN-a and 4
in CNN-c achieves 27.8 BLEU which outperforms
our baseline and is competitive to the state of the
art.

On WMT’15 English to German, we compare to
a BiLSTM baseline and prior work: (Jean et al.,
2015) introduce a large output vocabulary; the
decoder of (Chung et al., 2016) operates on the
character-level; (Yang et al., 2016) uses LSTMs in-
stead of GRUs and feeds the conditional input to the
output layer as well as to the decoder.

Our single-layer BiLSTM baseline is competi-
tive to prior work and a two-layer BiLSTM encoder
performs 0.6 BLEU better at 24.1 BLEU. Previ-
ous work also used multi-layer setups, e.g., (Chung

et al., 2016) has two layers both in the encoder
and the decoder with 1024 hidden units, and (Yang
et al., 2016) use 1000 hidden units per LSTM. We
use 512 hidden units for both LSTM and convolu-
tional encoders. Our convolutional model with ei-
ther 8 or 15 layers in CNN-a outperform the BiL-
STM encoder with both a single decoder layer or
two decoder layers.

Finally, we evaluate on the larger WMT’14
English-French corpus. On this dataset the recur-
rent architectures benefit from an additional layer
both in the encoder and the decoder. For a single-
layer decoder, a deep convolutional encoder outper-
forms the BiLSTM accuracy by 0.3 BLEU and for a
two-layer decoder, our very deep convolutional en-
coder with up to 20 layers outperforms the BiLSTM
by 0.4 BLEU. It has 40% fewer parameters than the
BiLSTM due to the smaller embedding sizes. We
also outperform several previous systems, includ-
ing the very deep encoder-decoder model proposed
by (Luong et al., 2015a). Our best result is just 0.2
BLEU below (Zhou et al., 2016) who use a very
deep LSTM setup with a 9-layer encoder, a 7-layer
decoder, shortcut connections and extensive regu-
larization with dropout and L2 regularization.
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5.3 Convolutional Encoder Architecture
Details

We next motivate our design of the convolutional
encoder (§3.2). We use the smaller IWSLT’14
German-English setup without unknown word re-
placement to enable fast experimental turn-around.
BLEU results are averaged over three training runs
initialized with different seeds.

Figure 2 shows accuracy for a different number
of layers of both CNNs with and without residual
connections. Our first observation is that computing
the conditional input ci directly over embeddings e
(line ”without CNN-c”) is already working well at
28.3 BLEU with a single CNN-a layer and at 29.1
BLEU for CNN-a with 7 layers (Figure 2a). In-
creasing the number of CNN-c layers is beneficial
up to three layers and beyond this we did not ob-
serve further improvements. Similarly, increasing
the number of layers in CNN-a beyond six does not
increase accuracy on this relatively small dataset. In
general, choosing two to three times as many layers
in CNN-a as in CNN-c is a good rule of thumb.
Without residual connections, the model fails to
utilize the increase in modeling power from addi-
tional layers, and performance drops significantly
for deeper encoders (Figure 2b).

Our convolutional architecture relies on two sets
of networks, CNN-a for attention score computa-
tion ai and CNN-c for the conditional input ci to
be fed to the decoder. We found that using the
same network for both tasks, similar to recurrent
encoders, resulted in poor accuracy of 22.9 BLEU.
This compares to 28.5 BLEU for separate single-
layer networks, or 28.3 BLEU when aggregating
embeddings for ci. Increasing the number of layers
in the single network setup did not help. Figure 2(a)
suggests that the attention weights (CNN-a) need
to integrate information from a wide context which
can be done with a deep stack. At the same time,
the vectors which are averaged (CNN-c) seem to
benefit from a shallower, more local representation
closer to the input words. Two stacks are an easy
way to achieve these contradicting requirements.

In Appendix A we visualize attention scores and
find that alignments for CNN encoders are less
sharp compared to BiLSTMs, however, this does
not affect the effectiveness of unknown word re-
placement once we adjust for shifted maxima. In
Appendix B we investigate whether deep convo-
lutional encoders are required for translating long
sentences and observe that even relatively shallow
encoders perform well on long sentences.

5.4 Training and Generation Speed
For training, we use the fast CuDNN LSTM im-
plementation for layers without attention and ex-
periment on IWSLT’14 with batch size 32. The
single-layer BiLSTM model trains at 4300 target
words/second, while the 6/3 deep convolutional en-
coder compares at 6400 words/second on an NVidia
Tesla M40 GPU. We do not observe shorter over-
all training time since SGD converges slower than
Adam which we use for BiLSTM models.

We measure generation speed on an Intel Haswell
CPU clocked at 2.50GHz with a single thread for
BLAS operations. We use vocabulary selection
which can speed up generation by up to a factor of
ten at no cost in accuracy via making the time to
compute the final output layer negligible (Mi et al.,
2016; L’Hostis et al., 2016). This shifts the focus
from the efficiency of the encoder to the efficiency
of the decoder. On IWSLT’14 (Table 3a) the convo-
lutional encoder increases the speed of the overall
model by a factor of 1.35 compared to the BiLSTM
encoder while improving accuracy by 0.7 BLEU. In
this setup both encoders models have the same hid-
den layer and embedding sizes.

On the larger WMT’15 English-German task
(Table 3b) the convolutional encoder speeds up gen-
eration by 2.1 times compared to a two-layer BiL-
STM. This corresponds to 231 source words/second
with beam size 5. Our best model on this dataset
generates 203 words/second but at slightly lower
accuracy compared to the full vocabulary setting in
Table 2. The recurrent encoder uses larger embed-
dings than the convolutional encoder which were
required for the models to match in accuracy.

The smaller embedding size is not the only rea-
son for the speed-up. In Table 3a (a), we com-
pare a Conv 6/3 encoder and a BiLSTM with equal
embedding sizes. The convolutional encoder is
still 1.34x faster (at 0.7 higher BLEU) although it
requires roughly 1.6x as many FLOPs. We be-
lieve that this is likely due to better cache locality
for convolutional layers on CPUs: an LSTM with
fused gates7 requires two big matrix multiplications
with different weights as well as additions, multi-
plications and non-linearities for each source word,
while the output of each convolutional layer can be
computed as whole with a single matrix multiply.

For comparison, the quantized deep LSTM-
7Our bi-directional LSTM implementation is

based on torch rnnlib which uses fused LSTM gates
(https://github.com/facebookresearch/
torch-rnnlib/) and which we consider an efficient
implementation.
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Figure 2: Effect of encoder depth on IWSLT’14 with and without residual connections. The x-axis varies
the number of layers in CNN-a and curves show different CNN-c settings.

Encoder Words/s BLEU

BiLSTM 139.7 22.4
Deep Conv. 6/3 187.9 23.1

(a) IWSLT’14 German-English generation speed on
tst2013 with beam size 10.

Encoder Words/s BLEU

2-layer BiLSTM 109.9 23.6
Deep Conv. 8/4 231.1 23.7
Deep Conv. 15/5 203.3 24.0

(b) WMT’15 English-German generation speed on new-
stest2015 with beam size 5.

Table 3: Generation speed in source words per second on a single CPU core using vocabulary selection.

based model in (Wu et al., 2016) processes 106.4
words/second for English-French on a CPU with
88 cores and 358.8 words/second on a custom TPU
chip. The optimized RNNsearch model and C++
decoder described by (Junczys-Dowmunt et al.,
2016) translates 265.3 words/s on a CPU with a
similar vocabulary selection technique, computing
16 sentences in parallel, i.e., 16.6 words/s on a sin-
gle core.

6 Conclusion

We introduced a simple encoder model for neu-
ral machine translation based on convolutional net-
works. This approach is more parallelizable than
recurrent networks and provides a shorter path to
capture long-range dependencies in the source. We
find it essential to use source position embeddings
as well as different CNNs for attention score com-
putation and conditional input aggregation.

Our experiments show that convolutional en-
coders perform on par or better than baselines based
on bi-directional LSTM encoders. In comparison
to other recent work, our deep convolutional en-
coder is competitive to the best published results
to date (WMT’16 English-Romanian) which are
obtained with significantly more complex models
(WMT’14 English-French) or stem from improve-
ments that are orthogonal to our work (WMT’15
English-German). Our architecture also leads to

large generation speed improvements: translation
models with our convolutional encoder can translate
twice as fast as strong baselines with bi-directional
recurrent encoders.

Future work includes better training to enable
faster convergence with the convolutional encoder
to better leverage the higher processing speed. Our
fast architecture is interesting for character level en-
coders where the input is significantly longer than
for words. Also, we plan to investigate the effec-
tiveness of our architecture on other sequence-to-
sequence tasks, e.g. summarization, constituency
parsing, dialog modeling.
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A Alignment Visualization

In Figure 4 and Figure 5, we plot attention
scores for a sample WMT’15 English-German and
WMT’14 English-French translation with BiLSTM
and deep convolutional encoders. The translation is
on the x-axis and the source sentence on the y-axis.

The attention scores of the BiLSTM output are
sharp but do not necessarily represent a correct
alignment. For CNN encoders the scores are less
focused but still indicate an approximate source lo-
cation, e.g., in Figure 4b, when moving the clause
”over 1,000 people were taken hostage” to the back
of the translation. For some models, attention max-
ima are consistently shifted by one token as both in
Figure 4b and Figure 5b.

Interestingly, convolutional encoders tend to fo-
cus on the last token (Figure 4b) or both the first and
last tokens (Figure 5b). Motivated by the hypothe-
sis that the this may be due to the decoder depend-
ing on the length of the source sentence (which it
cannot determine without position embeddings), we
explicitly provided a distributed representation of
the input length to the decoder and attention mod-
ule. However, this did not cause a change in atten-
tion patterns nor did it improve translation accuracy.

B Performance by Sentence Length
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Figure 3: BLEU per sentence length on WMT’15
English-German newstest2015. The test set is par-
titioned into 15 equally-sized buckets according to
source sentence length.

One characteristic of our convolutional encoder
architecture is that the context over which outputs
are computed depends on the number of layers.
With bi-directional RNNs, every encoder output de-
pends on the entire source sentence. In Figure 3,
we evaluate whether limited context affects the
translation quality on longer sentences of WMT’15
English-German which often requires moving verbs
over long distances. We sort the newstest2015 test
set by source length, partition it into 15 equally-
sized buckets, and compare the BLEU scores of
models listed in Table 2 on a per-bucket basis.

There is no clear evidence for sub-par transla-
tions on sentences that are longer than the observ-
able context per encoder output. We include a small
encoder with a 6-layer CNN-c and a 3-layer CNN-a
in the comparison which performs worse than a 2-
layer BiLSTM (23.3 BLEU vs. 24.1). With 6 con-
volutional layers at kernel width 3, each encoder
output contains information of 13 adjacent source
words. Looking at the accuracy for sentences with
15 words or more, this relatively shallow CNN is
either on par or better than the BiLSTM for 5 out
of 10 buckets; the BiLSTM has access to the entire
source context. Similar observations can be made
for the deeper convolutional encoders.
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[1] Vor

[2] zehn

[3] Jahren

[4] wurden

[5] m
ehr

[6] als

[7] 1.000

[8] Menschen

[9] von

[10] tschetschenischen

[11] Käm
pfern

[12] in

[13] einer

[14] Schule

[15] in

[16] Beslan

[17] als

[18] Geiseln

[19] genom
m
en

[20] .

[21] </s>

[1] Ten
[2] years

[3] ago
[4] over

[5] 1,000
[6] people

[7] were
[8] taken

[9] hostage
[10] by

[11] Chechen
[12] militants

[13] at
[14] a

[15] school
[16] in

[17] Beslan
[18] ,

[19] southern
[20] Russia
[21] </s>
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(a) 2-layer BiLSTM encoder.
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(b) Deep convolutional encoder with 15-layer CNN-a and 5-layer CNN-c.

Figure 4: Attention scores for WMT’15 English-German translation for a sentence of newstest2015.
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[1] La

[2] police

[3] de

[4] Phuket

[5] a
[6] interrogé

[7] les

[8] <unk>

[9] pendant

[10] deux

[11] jours

[12] avant

[13] de

[14] faire

[15] la

[16] fabrication

[17] de

[18] l'

[19] histoire

[20] .

[21] </s>

[1] Phuket

[2] police

[3] interviewed

[4] Bamford

[5] for

[6] two

[7] days

[8] before

[9] she

[10] confessed

[11] to

[12] fabricating

[13] the

[14] story

[15] .

[16] </s>
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(a) 2-layer BiLSTM encoder.
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(b) Deep convolutional encoder with 20-layer CNN-a and 5-layer CNN-c.

Figure 5: Attention scores for WMT’14 English-French translation for a sentence of ntst14.
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