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Abstract

Properties of corpora, such as the diver-
sity of vocabulary and how tightly related
texts cluster together, impact the best way
to cluster short texts. We examine several
such properties in a variety of corpora and
track their effects on various combinations
of similarity metrics and clustering algo-
rithms. We show that semantic similar-
ity metrics outperform traditional n-gram
and dependency similarity metrics for k-
means clustering of a linguistically cre-
ative dataset, but do not help with less
creative texts. Yet the choice of simi-
larity metric interacts with the choice of
clustering method. We find that graph-
based clustering methods perform well on
tightly clustered data but poorly on loosely
clustered data. Semantic similarity met-
rics generate loosely clustered output even
when applied to a tightly clustered dataset.
Thus, the best performing clustering sys-
tems could not use semantic metrics.

1 Introduction

Corpora of collective discourse—texts generated
by multiple authors in response to the same
stimulus—have varying properties depending on
the stimulus and goals of the authors. For instance,
when multiple puzzle-composers write crossword
puzzle clues for the same word, they will try to
write creative, unique clues to make the puzzle in-
teresting and challenging; clues for “star” could
be “Paparazzi’s target” or “Sky light.” In contrast,
people writing a descriptive caption for a photo-
graph can adopt a less creative style. Corpora may
also differ on how similar texts within a particular

class are to one another, compared to how simi-
lar they are to texts from other classes. For ex-
ample, entries in a cartoon captioning contest that
all relate to the same cartoon may vary widely in
subject, while crossword clues for the same word
would likely be more tightly clustered.

This paper studies how such text properties af-
fect the best method of clustering short texts.
Choosing how to cluster texts involves two ma-
jor decisions: choosing a similarity metric to de-
termine which texts are alike, and choosing a
clustering method to group those texts. We hy-
pothesize that creativity may drive authors to ex-
press the same concept in a wide variety of ways,
leading to data that can benefit from different
similarity metrics than less creative texts. At
the same time, we hypothesize that tightly clus-
tered datasets—datasets where each text is much
more similar to texts in its cluster than to texts
from other clusters—can be clustered by power-
ful graph-based methods such as Markov Cluster-
ing (MCL) and Louvain, which may fail on more
loosely clustered data. This paper explores the in-
teraction of these effects.

Recently, distributional semantics has been
popular and successful for measuring text simi-
larity (Socher et al., 2011; Cheng and Kartsaklis,
2015; He et al., 2015; Kenter and de Rijke, 2015;
Kusner et al., 2015; Ma et al., 2015; Tai et al.,
2015; Wang et al., 2015). Word embeddings rep-
resent similar words in similar locations in vector
space: “cat” is closer to “feline” than to “bird.” It
would be natural to expect such semantics-based
approaches to be useful for clustering, particu-
larly for corpora where authors have tried to ex-
press similar ideas in unique ways. And indeed,
this paper will show that, depending on the choice
of clustering method, semantics-based similarity
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measures such as summed word embeddings and
deep neural networks can have an advantage over
more traditional similarity metrics, such as n-gram
counts, n-gram tf-idf vectors, and dependency tree
kernels, when applied to creative texts.

However, unlike in most text similarity tasks,
in clustering the choice of similarity metric inter-
acts with both the choice of clustering method and
the properties of the text. Graph-based cluster-
ing techniques can be quite effective in clustering
short texts (Rangrej et al., 2011), yet this paper
will show that they are sensitive to how tightly
clustered the data is. Moreover, the tightness of
clusters in a dataset is a property of both the un-
derlying data and the similarity metric. We show
that when the underlying data can be clustered
tightly enough to use powerful graph-based clus-
tering methods, using semantics-based similarity
metrics actually creates a disadvantage compared
to methods that rely on the surface form of the text,
because semantic metrics reduce tightness.

The remainder of this paper is organized as fol-
lows. Section 2 summarizes related work. Section
3 describes four datasets of short texts. In Sec-
tion 4, we describe the similarity metrics and clus-
tering methods used in our experiments, as well
as the evaluation measures. Section 5 shows that
semantics-based similarity metrics have some ad-
vantage when clustering short texts from the most
creative dataset, but ultimately do not perform the
best when graph-based clustering is an option. In
Section 6, we demonstrate the powerful effect that
tightness of clusters has on the best combination of
similarity metric and clustering method for a given
dataset. Finally, Section 7 draws conclusions.

2 Related Work

The most similar work to the present paper is
Shrestha et al. (2012), which acknowledged that
the similarity metric and the clustering method
could both contribute to clustering results. It com-
pared four similarity methods and also tested four
clustering methods. Unlike the present work, it did
not consider distributional semantics-based simi-
larity measures or similarity measures that incor-
porated deep learning. In addition, it reported that
the characteristics of the corpora “overshadow[ed]
the effect of the similarity measures,” making it
difficult to conclude that there were any significant
differences between the similarity measures.

Several papers address the choice of similarity

metric for short text clustering without varying the
clustering method. Yan et al. (2012) proposed an
alternative term weighting scheme to use in place
of tf-idf when clustering using non-negative ma-
trix factorization. King et al. (2013) used the
cosine similarity between feature vectors that in-
cluded context word and part-of-speech features
and spelling features and applied Louvain cluster-
ing to the resulting graph. Xu et al. (2015) used
a convolutional neural network to represent short
texts and found that, when used with the k-means
clustering algorithm, this deep semantic represen-
tation outperformed tf-idf, Laplacian eigenmaps,
and average embeddings for clustering.

Other papers focused on choosing the best clus-
tering method for short texts, but kept the simi-
larity metric constant. Rangrej et al. (2011) com-
pared k-means, singular value decomposition, and
affinity propagation for tweets, finding affinity
propagation the most effective, using tf-idf with
cosine similarity or Jaccard for a similarity mea-
sure. Errecalde et al. (2010) describe an AntTree-
based clustering method. They used the cosine
similarity of tf-idf vectors as well. Yin (2013) also
use the cosine similarity of tf-idf vectors for a two-
stage clustering algorithm for tweets.

One common strategy for short text clustering
has been to take advantage of outside sources of
knowledge (Banerjee et al., 2007; Wang et al.,
2009a; Petersen and Poon, 2011; Rosa et al., 2011;
Wang et al., 2014). The present work relies only
on the texts themselves, not external information.

3 Datasets

Collective discourse (Qazvinian and Radev, 2011;
King et al., 2013) involves multiple writers gen-
erating texts in response to the same stimulus. In
a corpus of texts relating to several stimuli, it may
be desirable to cluster according to which stimulus
each text relates to—for instance, grouping all of
the news headlines about the same event together.
Here, we consider texts triggered by several types
of stimuli: photographs that need descriptive cap-
tions, cartoons that need humorous captions, and
crossword answers that need original clues. Each
need shapes the properties of the texts.

Pascal and Flickr Captions. The Pascal Cap-
tions dataset (hereinafter PAS) and the 8K Im-
ageFlickr dataset (Rashtchian et al., 2010) are
sets of captions solicited from Mechanical Turk-
ers for photographs from Flickr and from the Pat-
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tern Analysis, Statistical Modeling, and Computa-
tional Learning (PASCAL) Visual Object Classes
Challenge (Everingham et al., 2010).

PAS includes twenty categories of images (e.g.,
dogs, as in Example (1)) and 4998 captions. Each
category has fifty images with approximately five
captions for each image. We use the category as
the gold standard cluster. The 8K ImageFlickr set
includes 38,390 captions for 7663 photographs;
we treat the image a caption is associated with as
the gold standard cluster. To keep dataset sizes
comparable, we use a randomly selected subset
of 5000 captions (998 clusters) from ImageFlickr
(hereinafter FLK).

(1)
“a man walking a small dog on a very wavy beach”
“A person in a large black coats walks a white dog
on the beach through rough waves.”
“Walking a dog on the edge of the ocean”

This task did not encourage creativity; instruc-
tions said to “describe the image in one complete
but simple sentence.” This could lead to sentences
within a cluster being rather similar to each other.
However, because photographs may contain over-
lapping elements—for instance, a photograph in
the “bus” category of PAS might also show cars,
while a photograph in the “cars” category could
also contain a bus—texts in one cluster can also
be quite similar to texts from other clusters. Thus,
these datasets should not be very tightly clustered.

New Yorker Cartoon Captions. The New
Yorker magazine has a weekly competition in
which readers submit possible captions for a
captionless cartoon (Example (2)) (Radev et al.,
2015). We use the cartoon each caption is associ-
ated with as its gold standard cluster.

The complete dataset includes over 1.9 million
captions for 366 cartoons. For this work, we use a
total of 5000 captions from 20 randomly selected
cartoons as the “TOON” dataset.

(2)
“Objection, Your Honor! Alleged killer whale.”

“My client maintains that the penguin had a gun!”
“I demand a change of venue to a maritime court!”

Since caption writers seek to stand out from the
crowd, we expect high creativity. This may en-
courage a more varied vocabulary than the FLK
and PAS captions that merely describe the image.
We also expect wide variation in the meanings
of captions for the same cartoon, due to the dif-
ferent joke senses submitted for each, leading to
low intra-cluster similarity. Moreover, some users
may submit the same caption for more than one
cartoon, so we can expect surprisingly high inter-
cluster similarity despite the wide variation in car-
toon prompt images. We therefore do not expect
TOON to be tightly clustered.

Crossword Clues. A dataset of particularly
creative texts is comprised of crossword clues.1

We use the clues as texts and the answer words
as their gold standard cluster; all of the clues in
Example (3) belong to the “toe” cluster.

(3) Part of the foot
Little piggy
tic-tac-
The third O of OOO

The complete crossword clues dataset includes
1.7M different clues corresponding to 174,638
unique answers. The “CLUE” dataset includes
5000 clues corresponding to 20 unique answers
selected by randomly choosing answers that have
250 or more unique clues, and then randomly
choosing 250 of those clues for each answer.

Since words repeat, crossword authors must be
creative to come up with clues that will not bore
cruciverbalists. CLUE should thus contain many
alternative phrasings for essentially the same idea.
At the same time, there is likely to be relatively
little overlap between clues for different answers,
so CLUE should be tightly clustered.

1Collected from http://crosswordgiant.com/

656



4 Method

Here we describe the similarity metrics and clus-
tering methods, as well as evaluation measures.

4.1 Similarity Metrics

We hypothesize that creative texts with wide vo-
cabularies will benefit from similarity metrics
based on semantic representation of the text, rather
than its surface form. We therefore compare three
metrics that rely on surface forms of words—n-
gram count vectors, tf-idf vectors, and dependency
tree segment counts—to three semantic ones—
summed Word2Vec embeddings, LSTM autoen-
coders, and skip-thought vectors. In each case, we
represent texts as vectors and find their cosine sim-
ilarities; if cosine similarity can be negative, we
add one and normalize by two to ensure similarity
in the range [0, 1].
N -Gram Counts. First we consider n-gram

count vectors. We use three variations: (1) un-
igrams, (2) unigrams and bigrams, and (3) uni-
grams, bigrams, and trigrams.
N -Gram tf-idf. We also consider weighting

n-grams by tf-idf, as calculated by sklearn (Pe-
dregosa et al., 2011).

Dependency Counts. Grammatical informa-
tion has been found to be useful in text, particu-
larly short text, similarity. (Liu and Gildea, 2005;
Zhang et al., 2005; Wang et al., 2009b; Heilman
and Smith, 2010; Tian et al., 2010; Šarić et al.,
2012; Tai et al., 2015). To leverage this infor-
mation, previous work has used dependency ker-
nels (Tian et al., 2010), which measure similarity
by the fraction of identical dependency parse seg-
ments between two sentences. Here, we accom-
plish the same effect using a count vector for each
sentence, with the dependency parse segments as
the vocabulary. We define the set of segments for
a dependency parse to consist of, for each word,
the word, its parent, and the dependency relation
that connects them as shown in Example (4).

(4) Part of shoe
a. Segment 1: (part, ROOT, nsubj)
b. Segment 2: (of, part, prep)
c. Segment 3: (shoe, of, pobj)

Word2Vec. For each word, we obtain, if possi-
ble, a vector learned via Word2Vec (Mikolov et al.,
2013) from the Google News corpus.2 We repre-

2https://code.google.com/archive/p/
word2vec/

sent a sentence as the normalized sum of its word
vectors.

LSTM Autoencoder. We use Long Short-
Term Memory (LSTM) networks (Hochreiter and
Schmidhuber, 1997) to build another semantics-
based sentence representation. We train an LSTM
autoencoder consisting of an encoder network and
a decoder network. The encoder reads the in-
put sentence and produces a single vector as the
hidden state at the last time step. The decoder
takes this hidden state vector as input and at-
tempts to reconstruct the original sentence. The
LSTM autoencoder is trained to minimize the re-
construction loss. After training, we extract the
hidden state at the last time step of encoder as
the vector representation for a sentence. We use
300-dimensional word2vec vectors pretrained on
GoogleNews and generate 300-dimensional hid-
den vectors. LSTM autoencoders are separately
trained for each dataset with 20% for validation.

Skip-thoughts (Kiros et al., 2015) trains
encoder-decoder Recurrent Neural Networks
(RNN) without supervision to predict the next and
the previous sentences given the current sentence.
The pretrained skip-thought model computes
vectors as sentence representations.

4.2 Clustering Methods

We explore five clustering methods: k-means,
spectral, affinity propagation, Louvain, and MCL.

K-means is a popular and straightforward clus-
tering algorithm (Berkhin, 2006) that takes a pa-
rameter k, the number of clusters, and uses an
expectation-maximization approach to find k cen-
troids in the data. In the expectation phase points
are assigned to their nearest cluster centroid. In
the maximization phase the centroids of are re-
computed for each cluster of assigned points. K-
means is not a graph-based clustering algorithm,
but rather operates in a vector space.

Spectral clustering (Donath and Hoffman,
1973; Shi and Malik, 2000; Ng et al., 2001) is
a graph-based clustering approach that finds the
graph Laplacian of a similarity matrix, builds a
matrix of the first k eigenvectors of the Laplacian,
and then applies further clustering to this matrix.
The method can be viewed as an approximation of
a normalized min-cuts algorithm or of a random
walks approach. We use the default implementa-
tion provided by sklearn, which applies a Gaussian
kernel to determine the graph Laplacian and uses
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k-means for the subsequent clustering step.
Affinity propagation finds exemplars for each

cluster and then assigns nodes to a cluster based
on these exemplars (Frey and Dueck, 2007). This
involves updating two matrices R and A, respec-
tively representing the responsibility and availabil-
ity of each node. A high value for R(i,k) indicates
that node xi would be a good exemplar for cluster
k. A high value for A(i,k) indicates that node xi

is likely to belong to cluster k. We use the default
implementation provided by sklearn.

Louvain initializes each node to be its own
cluster, then greedily maximizes modularity (Sec-
tion 6.1) by iteratively merging clusters that are
highly interconnected (Blondel et al., 2008).

Markov Cluster Algorithm (MCL) simulates
flow on a network via random walk (Van Dongen,
2000). The sequence of nodes is represented via
a Markov chain. By applying inflation to the tran-
sition matrix, the algorithm can maintain the clus-
ter structure pronounced in the transition matrix
of this random walk—a structure that would oth-
erwise disappear over time.3

4.3 Evaluation Methods
Adjusted Rand Index We use the sklearn im-
plementation of the Adjusted Rand Index (ARI)4

(Hubert and Arabie, 1985):

ARI =
RI − Expected RI

maxRI − Expected RI
(1)

where RI is the Rand Index,

RI =
TP + TN

TP + FP + FN + TN
(2)

TP is the number of true positives, TN is true
negatives, and FP and FN are false positives
and false negatives, respectively. The Rand Index
ranges from 0 to 1. ARI adjusts the Rand Index
for chance, so that the score ranges from -1 to 1.
Random labeling will achieve an ARI score close
to 0; perfect labeling achieves an ARI of 1.

Purity is a score in the [0, 1] range that indi-
cates to what extent sentences in the same pre-
dicted cluster actually belong to the same cluster.
Given Ω = {ω1, ω2, ..., ωK}, the predicted clus-
ters, C = {c1, c2, ..., cJ}, the true clusters, and N ,
the number of examples, purity is

Purity(Ω, C) =
1
N

∑
k∈K

max
j∈J
|ωk ∩ cj | (3)

3We use the implementation from http://micans.
org/mcl/ with inflation=2.0.

4Equivalent to Cohen’s Kappa (Warrens, 2008).

Normalized Mutual Information (NMI). We
use the sklearn implementation of NMI:

NMI(Ω, C) =
MI(Ω, C)√
H(C) ·H(Ω)

(4)

The numerator is the mutual information (MI) of
predicted cluster labels Ω and true cluster labels
C. MI describes how much knowing what the
predicted clusters are increases knowledge about
what the actual classes are. Using marginal en-
tropy (H(x)), NMI normalizes MI so that it ranges
from 0 to 1. If C and Ω are identical—that is, if
the clusters are perfect—NMI will be 1.

5 Vocabulary Width

5.1 Descriptive Statistics for Vocabulary
Width

We predict that creative texts have a wider vocabu-
lary than functional texts. We use two measures to
reflect this wide vocabulary: the type/token ratio
in the dataset (TTR), and that ratio normalized by
the mean length of a text in the dataset.

TTR is an obvious estimate of the width of the
vocabulary of a corpus. However, all other things
being equal, a corpus of many very short texts
triggered by the same stimulus would have more
repeated words, proportional to the total num-
ber of tokens in the corpus, than would a corpus
of a smaller number of longer texts. We might
therefore normalize the ratio of types to tokens
by dividing by the mean length of a text in the
dataset, leading to the normalized type-to-token
ratio (NTTR) and TTR values shown in Table 1.

CLUE TOON PAS FLK
TTR 0.1680 0.1064 0.0625 0.0561
NTTR 0.0377 0.0086 0.0058 0.0047

Table 1: Vocabulary properties of each dataset

FLK, PAS, and CLUE conform to expectations.
The creative CLUE has TTR more than double
that of the more functional PAS and FLK. The
effect is more pronounced using NTTR. Surpris-
ingly, TOON falls closer to the PAS and FLK end
of the spectrum, suggesting that vocabulary width
does not capture the creativity in the captioning
competition; perhaps the creativity of cartoon cap-
tions is about expressing different ideas, rather
than finding unique ways to express the same idea.
For the experiments based on vocabulary width,
we therefore compare PAS and CLUE.
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5.2 Experiments

We hypothesize that if a dataset uses a wide va-
riety of words to express the same ideas, sim-
ilarity metrics that rely on the surface form of
the sentence will be at a disadvantage compared
to similarity metrics based in distributional se-
mantics. Thus, word2vec, LSTM autoencoders,
and skip-thoughts ought to perform better than
the n-gram-based methods and dependency count
method when applied to CLUE, but should enjoy
no advantage when applied to PAS.

We begin by comparing the performance of all
similarity metrics on PAS and CLUE, using k-
means for clustering. We then also examine their
performance with MCL.

5.3 Results and Discussion

Table 2 compares the performance of all similar-
ity metrics on PAS and CLUE using k-means and
MCL. Using k-means on PAS, the unigram tf-idf
similarity metric gives the strongest performance
for purity and NMI and came in a close second
for ARI. LSTM slightly outperformed the other
similarity metrics on ARI, but had middle-of-the-
road results on the other evaluations. Overall, the
semantics-based similarity metrics gave reason-
able but not exceptional ARI and purity results,
but were at the low end on NMI. This is consis-
tent with our hypothesis that when authors are not
trying to express creativity by using a wider vo-
cabulary, surface-based similarity metrics suffice.

For k-means on CLUE, the picture is quite
different: the semantics-based similarity met-
rics markedly outperformed any other similar-
ity metric on ARI. LSTM also provides the best
purity score, followed by skip-thought. The
semantics-based metrics do not stand out for NMI,
though. Based on these results, we conclude
that semantics-based measures provide a signifi-
cant advantage over traditional similarity metrics
when using k-means on the wide-vocabulary, cre-
ative CLUE.

When clustering with MCL, however, the
semantics-based methods perform exceptionally
poorly on both datasets. Interestingly, the n-gram-
based similarity metrics performed very well
when paired with MCL on CLUE—outperforming
the best of the k-means scores—while the same
metrics performed terribly with MCL on PAS.

We hypothesize that the semantics-based sim-
ilarity metrics produce less tightly clustered data

than the surface-form-based metrics do, and that
this may make clustering difficult for some graph-
based clustering methods. The next section de-
scribes how we test this hypothesis.

6 Tightness of Clusters

6.1 Descriptive Statistics for Tightness

Two pieces contribute to cluster tightness: the
dataset itself and the choice of similarity metric.
To illustrate, we represent each text with the vector
for its similarity metric—for instance, the sum of
its word2vec vectors or the unigram tf-idf vector—
and reduce it to two dimensions using linear dis-
criminant analysis. We plot five randomly selected
gold standard clusters. Plots for unigram tf-idf and
word2vec representations of PAS and CLUE are
shown in Figures 1 and 2. These support the in-
tuition that semantics-based similarity metrics are
not as tightly clustered as n-gram-based metrics.
Note also that the CLUE unigram tf-idf clusters
appear tighter than the PAS unigram tf-idf clus-
ters.

To quantify this, we compute modularity (New-
man, 2004; Newman, 2006):5

Q =
1

2m

∑
ij

(
Aij − kikj

2m

)
δ(ci, cj) (5)

Aij is the edge weight between nodes i and j.
δ(ci, cj) indicates whether i and j belong to the
same cluster. m is the number of edges. ki is the
degree of vertex i, so kikj

2m is the expected number
of edges between i and j in a random graph. Thus,
modularity is highest when nodes in a cluster are
highly interconnected, but sparsely connected to
nodes in different clusters. We use this statistic in
an unconventional way, determining the modular-
ity of the golden clusters.

Table 3 shows the modularities for all four
datasets using the unigram, trigram, unigram tf-
idf, trigram tf-idf, dependency, word2vec, and
skipthoughts similarity metrics. As suggested
by Figures 1 and 2, the CLUE surface-form-
based similarities have the highest modularity by
far. The surface-form-based similarities for all
datasets have much higher modularity than any
of the semantics-based similarities; indeed, the

5Newman (2010) notes that modularity for even a per-
fectly mixed network generally cannot be 1 and describes a
normalized modularity formula. We calculated both normal-
ized and non-normalized modularity and found the pattern of
results to be the same, so we report only modularity.
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k-Means MCL
PAS CLUE PAS CLUE

Metric ARI Purity NMI ARI Purity NMI ARI Purity NMI ARI Purity NMI
Unigram 0.0286 0.141 0.110 0.0137 0.173 0.153 1.00E-05 0.058 0.051 0.0620 0.527 0.439
Bigram 0.0230 0.143 0.111 0.0124 0.165 0.142 2.50E-05 0.065 0.070 0.0835 0.585 0.465
Trigram 0.0289 0.139 0.108 0.0148 0.178 0.156 3.60E-05 0.069 0.081 0.1034 0.608 0.478
Uni. tf-idf 0.0445 0.189 0.169 0.0180 0.202 0.188 2.20E-05 0.061 0.060 0.1482 0.643 0.506
Bi. tf-idf 0.0287 0.158 0.135 0.0156 0.205 0.205 3.86E-04 0.104 0.135 0.1327 0.722 0.544
Tri. tf-idf 0.0345 0.176 0.142 0.0134 0.195 0.213 6.49E-03 0.212 0.230 0.1280 0.751 0.561
Dependency 0.0122 0.131 0.104 0.0071 0.169 0.207 2.07E-02 0.280 0.264 0.0832 0.745 0.543
Word2Vec 0.0274 0.142 0.103 0.0527 0.189 0.165 0.000 0.050 0.000 0.0000 0.050 0.000
LSTM 0.0453 0.170 0.142 0.0837 0.240 0.202 0.000 0.050 0.000 0.0000 0.050 0.000
Skipthought 0.0311 0.140 0.106 0.0691 0.215 0.180 0.000 0.050 0.000 0.0000 0.050 0.0009

Table 2: A comparison of all similarity metrics on PAS and CLUE datasets, clustered using k-means and
MCL. For all evaluations, higher scores are better.

Figure 1: Plots of
unigram tf-idf (left)
and word2vec (right)
vectors representing
five randomly selected
clusters of CLUE:
clues for words “ets,”
“stay,” “yes,” “easel,”
and “aha.”

Figure 2: Plots of
unigram tf-idf (left)
and word2vec (right)
vectors representing
five randomly selected
clusters of PAS: im-
ages containing “bus,”
“boat,” “car,” “bird,”
and “motorbike.”

semantics-based similarities rarely have modular-
ity much higher than zero. Thus, we conclude
both that CLUE is more tightly clustered than the
other datasets and that surface-form-based mea-
sures yield tighter clusters than semantics-based
measures.

CLUE’s tight clustering could be due in part to
its particularly short texts. Additionally, it might

reflect the semantics of the dataset: words that the
clues hint at may be less similar to one another
than the categories in PAS are to each other. For
instance, some images in PAS’s “bus” category in-
clude cars, and vice-versa.

The difference between semantics-based and
surface-form similarity metrics likely arises from
the fact that similarity of a word pair is a yes-or-
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Metric PAS Clues TOON FLK
Unigram 0.0254 0.1849 0.0214 0.0065
Bigram 0.0312 0.2216 0.0293 0.0103
Trigram 0.0347 0.2447 0.0352 0.0135
Uni. tf-idf 0.0587 0.3005 0.0519 0.0184
Bi. tf-idf 0.0877 0.3875 0.0950 0.0394
Tri. tf-idf 0.0347 0.4339 0.1311 0.0618
Dependency 0.0799 0.4729 0.0451 0.0299
Word2Vec 0.0020 0.0036 0.0008 0.0004
LSTM 0.0072 0.0121 0.0020 0.0009
Skipthought 0.0009 0.0028 0.0006 0.0003

Table 3: Modularity for all datasets

no question to surface-form-based metrics, but a
question of degree to semantics-based ones. Ac-
cording to semantics-based methods, “cat” is more
similar to “feline” than it is to “dog,” but more
similar to “dog” than to “motorcycle.” This creates
some similarity between texts from different clus-
ters, blurring the lines between them. Thus, “The
man walks his dog” and “A woman with a cat”
are entirely dissimilar according to surface form
methods, but not according to the semantics-based
measures. Even if the nodes in a cluster are highly
interconnected, if the connections between nodes
in different clusters are too strong, modularity will
be low.

To determine whether cluster tightness influ-
ences the best clustering method, we tested all
clustering methods on all four datasets using
unigram, trigram, unigram tf-idf, trigram tf-idf,
word2vec, and skipthought similarity metrics.

6.2 Results and Discussion

As can be seen in Figure 3, the best ARI results by
a large margin were those on the tightly clustered
CLUE. Louvain, which provides the best ARI for
CLUE, and MCL, which provides the second best,
both performed most strongly when paired with
the surface-form-based similarity metrics (n-gram
counts, tf-idf, and dependency count), which had
high modularity relative to the semantics-based
metrics. Although CLUE also differs from the
other datasets in that it has the shortest mean text
length, text length by itself cannot explain the ob-
served differences in performance, since the pat-
tern of graph-based clustering methods working
best with modular data is consistent within each
dataset as well as between datasets.

CLUE is also the only dataset where the

semantics-based similarity metrics performed ex-
ceptionally well with any of the clustering meth-
ods. Recall from Table 1 that CLUE had a
markedly wider vocabulary than any other dataset.
This further supports our findings in Section 5.3
regarding how creativity affects the usefulness of
semantics-based similarity metrics.

FLK, which had the lowest modularity, cannot
be clustered by the spectral, Louvain, or MCL al-
gorithms. K-means provides the strongest perfor-
mance, followed by affinity propagation.

TOON has the worst ARI results. Its best-
performing clustering methods are the graph-
based Louvain and MCL methods. Both perform
well only when paired with the most modular sim-
ilarity metrics. Louvain seems less sensitive to
modularity than MCL does. MCL’s best perfor-
mance by far for TOON is when it is paired with
trigram tf-idf, which also had the highest modular-
ity; its performance when paired with the lower-
modularity similarity metrics rapidly falls away.
In contrast, Louvain fares reasonably well with the
lower n-gram tf-idfs, which also had lower modu-
larity than trigram tf-idf.

Louvain and MCL follow a similar pattern on
PAS: both perform at their peak on the most mod-
ular similarity metric (dependency), but Louvain
handles slightly less modular similarity metrics
nearly as well as the most modular one, while
MCL quickly falters.

K-means’ performance is not correlated with
modularity. This makes sense, as k-means is
the only non-graph-based method. Methods like
MCL, which is based on a random walk, may
be stymied by too many highly-weighted paths
between clusters; the random walk can too eas-
ily reach a different neighborhood from where it
started. But k-means relies on how close texts are
to centroids, not to other texts, and so would be
less affected.

The fact that k-means nevertheless performs
poorly on TOON suggests that this dataset may be
particularly difficult to cluster. An interesting test
would be to measure inter-annotator agreement on
TOON.

7 Conclusions and Future Work

This work has shown that creativity can influ-
ence the best way to cluster text. When using
k-means to cluster a dataset where authors tried
to be creative, similarity metrics utilizing distri-
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Figure 3: All similarity metrics and all clustering methods for the four datasets.

butional semantics outperformed those that relied
on surface forms. We also showed that semantics-
based methods do not provide a notable advantage
when applying k-means to less creative datasets.
Since traditional similarity metrics are often faster
to calculate, use of slower semantics-based meth-
ods should be limited to creative datasets.

Unlike most work on clustering short texts, we
examined how the similarity metric interacts with
the clustering method. Even for a creative dataset,
if the underlying data is tightly clustered, the use
of semantics-based similarity measures can actu-
ally hurt performance. Traditional metrics applied
to such tightly clustered data generate more mod-
ular output that enables the use of sophisticated,
graph-based clustering methods such as MCL and
Louvain. When either the underlying data or the
similarity metrics applied to it produce loose clus-
ters with low modularity, the sophisticated graph
clustering algorithms fail, and we must fall back
on simpler methods.

Future work can manipulate datasets’ text prop-
erties to confirm that a specific property is the
cause of observed differences in clustering. Such
work should alter the datasets TTR and NTTR
while holding mean length of texts constant. A
pilot effort to use word embeddings to alter the
variety of vocabulary in a dataset has so far not

succeeded, but future experiments altering vocab-
ulary width or modularity of a dataset and find-
ing that the modified dataset behaved like natural
datasets with the same properties could increase
confidence in causality. Future work can also ex-
plore finer clusters within these datasets, such as
clustering CLUE by word sense of the answers and
TOON by joke sense.

These results are a first step towards determin-
ing the best way to cluster a new dataset based on
properties of the text. Future work will explore
further how the goals of short text authors translate
into measurable properties of the texts they write,
and how measuring those properties can help pre-
dict which similarity metrics and clustering meth-
ods will combine to provide the best performance.
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