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Abstract

Retrieving similar questions in online
Q&A community sites is a difficult task
because different users may formulate the
same question in a variety of ways, us-
ing different vocabulary and structure.
In this work, we propose a new neural
network architecture to perform the task
of semantically equivalent question re-
trieval. The proposed architecture, which
we call BOW-CNN, combines a bag-of-
words (BOW) representation with a dis-
tributed vector representation created by a
convolutional neural network (CNN). We
perform experiments using data collected
from two Stack Exchange communities.
Our experimental results evidence that: (1)
BOW-CNN is more effective than BOW
based information retrieval methods such
as TFIDF; (2) BOW-CNN is more robust
than the pure CNN for long texts.

1 Introduction

Most Question-answering (Q&A) community
sites advise users before posting a new question
to search for similar questions. This is not always
an easy task because different users may formulate
the same question in a variety of ways.

We define two questions as semantically equiv-
alent if they can be adequately answered by the
exact same answer. Here is an example of a pair
of such questions from Ask Ubuntu community,
which is part of the Stack Exchange Q&A com-
munity site: (q1)“I have downloaded ISO files re-
cently. How do I burn it to a CD or DVD or mount
it?” and (q2)“I need to copy the iso file for Ubuntu
12.04 to a CD-R in Win8. How do I do so?”.
Retrieving semantically equivalent questions is a
challenging task due to two main factors: (1) the
same question can be rephrased in many different

ways; and (2) two questions may be different but
may refer implicitly to a common problem with
the same answer. Therefore, traditional similarity
measures based on word overlap such as shingling
and Jaccard coefficient (Broder, 1997) and its vari-
ations (Wu et al., 2011) are not able to capture
many cases of semantic equivalence. To capture
the semantic relationship between pair of ques-
tions, different strategies have been used such as
machine translation (Jeon et al., 2005; Xue et al.,
2008), knowledge graphs (Zhou et al., 2013) and
topic modelling (Cai et al., 2011; Ji et al., 2012).

Recent papers (Kim, 2014; Hu et al., 2014; Yih
et al., 2014; dos Santos and Gatti, 2014; Shen et
al., 2014) have shown the effectiveness of convo-
lutional neural networks (CNN) for sentence-level
analysis of short texts in a variety of different nat-
ural language processing and information retrieval
tasks. This motivated us to investigate CNNs for
the task of semantically equivalent question re-
trieval. However, given the fact that the size of a
question in an online community may vary from a
single sentence to a detailed problem description
with several sentences, it was not clear that the
CNN representation would be the most adequate.

In this paper, we propose a hybrid neural net-
work architecture, which we call BOW-CNN. It
combines a traditional bag-of-words (BOW) rep-
resentation with a distributed vector representa-
tion created by a CNN, to retrieve semantically
equivalent questions. Using a ranking loss func-
tion in the training, BOW-CNN learns to represent
questions while learning to rank them according to
their semantic similarity. We evaluate BOW-CNN
over two different Q&A communities in the Stack
Exchange site, comparing it against CNN and 6
well-established information retrieval algorithms
based on BOW. The results show that our proposed
solution outperforms BOW-based information re-
trieval methods such as the term frequency - in-
verse document frequency (TFIDF) in all evalu-
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Figure 1: Representing and scoring questions with
weighted bag-of-words.

ated scenarios. Moreover, we were able to show
that for short texts (title of the questions), an ap-
proach using only CNN obtains the best results,
whereas for long texts (title and body of the ques-
tions), our hybrid approach (BOW-CNN) is more
effective.

2 BOW-CNN

2.1 Feed Forward Processing

The goal of the feed forward processing is to cal-
culate the similarity between a pair of questions
(q1, q2). To perform this task, each question
q follows two parallel paths (BOW and CNN),
each one producing a distinct vector representa-
tions of q. The BOW path produces a weighted
bag-of-words representation of the question, rbowq ,
where the weight of each word in the vocabu-
lary V is learned by the neural network. The
CNN path, uses a convolutional approach to con-
struct a distributed vector representations, rconvq ,
of the question. After producing the BOW and
CNN representations for the two input questions,
the BOW-CNN computes two partial similarity
scores sbow(q1, q2), for the CNN representations,
and sconv(q1, q2), for the BOW representations.
Finally, it combines the two partial scores to create
the final score s(q1, q2).

2.2 BOW Path

The generation of the bag-of-words representation
for a given question q is quite straightforward. As
detailed in Figure 1, we first create a sparse vec-
tor qbow ∈ R|V | that contains the frequency in q of
each word of the vocabulary. Next, we compute
the weighted bag-of-words representation by per-

Figure 2: Representing and scoring questions with
a convolutional approach.

forming the element-wise vector multiplication:

rbowq = qbow ∗ t (1)

where the vector t ∈ R|V |, contains a weight for
each word in the vocabulary V . The vector t is a
parameter to be learned by the network. This is
closely related to the TFIDF text representation.
In fact, if we fix t to the vector of IDFs, this corre-
sponds to the exact TFIDF representation.

2.3 CNN Path
As detailed in Figure 2, the first layer of the
CNN path transforms words into representations
that capture syntactic and semantic information
about the words. Given a question consisting of
N words q = {w1, ..., wN}, every word wn is
converted into a real-valued vector rwn . There-
fore, for each question, the input to the next NN
layer is a sequence of real-valued vectors qemb =
{rw1 , ..., rwN }. Word representations are encoded
by column vectors in an embedding matrix W 0 ∈
Rd×|V |, where V is a fixed-sized vocabulary.

The next step in the CNN path consists in cre-
ating distributed vector representations rconvq1 and
rconvq2 from the word embedding sequencies qemb1

and qemb2 . We perform this by using a convolu-
tional layer in the same way as used in (dos Santos
and Gatti, 2014) to create sentence-level represen-
tations.

More specifically, given a question q1, the con-
volutional layer applies a matrix-vector operation
to each window of size k of successive windows
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in qemb1 = {rw1 , ..., rwN }. Let us define the vector
zn ∈ Rdk as the concatenation of a sequence of k
word embeddings, centralized in the n-th word:

zn = (rwn−(k−1)/2 , ..., rwn+(k−1)/2)T

The convolutional layer computes the j-th ele-
ment of the vector rconvq1 ∈ Rclu as follows:

[rconvq1 ]j = f

(
max

1<n<N

[
W 1zn + b1

]
j

)
(2)

where W 1 ∈ Rclu×dk is the weight matrix of the
convolutional layer and f is the hyperbolic tangent
function. Matrices W 0 and W 1, and the vector b1

are parameters to be learned. The word embedding
size d, the number of convolutional units clu, and
the size of the word context window k are hyper-
parameters to be chosen by the user.

2.4 Question Pair Scoring
After the bag-of-words and convolutional-based
representations are generated for the input pair (q1,
q2), the partial scores are computed as the cosine
similarity between the respective vectors:

sbow(q1, q2) =
rbowq1 .rbowq2
‖rbowq1 ‖‖rbowq2 ‖

sconv(q1, q2) =
rconvq1 .rconvq2

‖rconvq1 ‖‖rconvq2 ‖
The final score for the input questions (q1, q2) is

given by the following linear combination

s(q1, q2) = β1 ∗ sbow(q1, q2) + β2 ∗ sconv(q1, q2)

where β1 and β2 are parameters to be learned.

2.5 Training Procedure
Our network is trained by minimizing a ranking
loss function over the training set D. The input in
each round is two pairs of questions (q1, q2)+ and
(q1, qx)− where the questions in the first pair are
semantically equivalent (positive example), and
the ones in the second pair are not (negative ex-
ample). Let ∆ be the difference of their similarity
scores, ∆ = sθ(q1, q2) − sθ(q1, qx), generated by
the network with parameter set θ. As in (Yih et al.,
2011), we use a logistic loss over ∆

L(∆, θ) = log(1 + exp(−γ∆))

where γ is a scaling factor that magnifies ∆ from
[-2,2] (in the case of using cosine similarity) to a

larger range. This helps to penalize more on the
prediction errors. Following (Yih et al., 2011), in
our experiments we set γ to 10.

Sampling informative negative examples can
have a significant impact in the effectiveness of the
learned model. In our experiments, before train-
ing, we create 20 pairs of negative examples for
each positive pair (q1,q2)+. To create a negative
example we (1) randomly sample a question qx
that is not semantically equivalent to q1 or q2; (2)
then create negative pairs (q1,qx)− and (q2,qx)−.
During training, at each iteration we only use the
negative example x that produces the smallest dif-
ferent sθ(q1, q2)+ − sθ(q1, qx)−. Using this strat-
egy, we select more representative negative exam-
ples.

We use stochastic gradient descent (SGD) to
minimize the loss function with respect to θ.
The backpropagation algorithm is used to com-
pute the gradients of the network. In our exper-
iments, BOW-CNN architecture is implemented
using Theano (Bergstra et al., 2010).

3 Experimental Setup

3.1 Data

A well-structured source of semantically equiv-
alent questions is the Stack Exchange site. It
is composed by multiple Q&A communities,
whereby users can ask and answer questions, and
vote up and down both questions and answers.
Questions are composed by a title and a body.
Moderators can mark questions as duplicates, and
eventually a question can have multiple duplicates.

For this evaluation, we chose two highly-
accessed Q&A communities: Ask Ubuntu and En-
glish. They differ in terms of content and size.
Whereas Ask Ubuntu has 29510 duplicated ques-
tions, English has 6621. We performed exper-
iments using only the title of the questions as
well as title + body, which we call all for the
rest of this section. The average size of a title
is very small (about 10 words), which is at least
10 times smaller than the average size of all for
both datasets. The data was tokenized using the
tokenizer available with the Stanford POS Tag-
ger (Toutanova et al., 2003), and all links were re-
placed by a unique string. For Ask Ubuntu, we
did not consider the content inside the tag code,
which contains some specific Linux commands or
programming code.

For each community, we created training, vali-
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Community Training Validation Test
Ask Ubuntu 9802 1991 3800
English 2235 428 816

Table 1: Partition of training, validation and test
sets for the experiments.

dation and test sets. In Table 1, we inform the size
of each set. The number of instances in the train-
ing set corresponds to the number of positive pairs
of semantically equivalent questions. The number
of instances in the validation and the test sets cor-
respond to the number of questions which are used
as queries. All questions in the validation and test
set contain at least one duplicated question in the
set of all questions. In our experiments, given a
query question q, all questions in the Q&A com-
munity are evaluated when searching for a dupli-
cate of q.

3.2 Baselines and Neural Network Setup

In order to verify the impact of jointly using
BOW and CNN representations, we perform ex-
periments with two NN architectures: the BOW-
CNN and the CNN alone, which consists in us-
ing only the CNN path of BOW-CNN and, con-
sequently, computing the score for a pair of ques-
tions using s(q1, q2) = sconv(q1, q2).

Additionally, we compare BOW-CNN with six
well-established IR algorithms available on the
Lucene package (Hatcher et al., 2004). Here we
provide a brief overview of them. For further de-
tails, we refer the reader to the citation associated
with the algorithm.

• TFIDF (Manning et al., 2008) uses the tradi-
tional Vector Space Model to represent docu-
ments as vectors in a high-dimensional space.
Each position in the vector represents a word
and the weight of words are calculated using
TFIDF.

• BM25 (Robertson and Walker, 1994) is a
probabilistic weighting method that takes
into consideration term frequency, inverse
document frequency and document length.
Its has two free parameters: k1 to tune term-
frequency saturation; and b to calibrate the
document-length normalization.

• IB (Clinchant and Gaussier, 2010) uses
information-based models to capture the im-
portance of a term by measuring how much

Param. Name BOW-CNN CNN
Word Emb. Size 200 200
Context Winow Size 3 3
Convol. Units 400 1000
Learning Rate 0.01 0.05

Table 2: Neural Network Hyper-Parameters

its behavior in a document deviates from its
behavior in the whole collection.

• DFR (Amati and Van Rijsbergen, 2002) is
based on divergence from randomness frame-
work. The relevance of a term is measured by
the divergence between its actual distribution
and the distribution from a random process.

• LMDirichlet and LMJelinekMercer apply
probabilistic language model approaches for
retrieval (Zhai and Lafferty, 2004). They dif-
fer in the smoothing method: LMDirichlet
uses Dirichlet priors and LMJelinekMercer
uses the Jelinek-Mercer method.

The word embeddings used in our experiments
are initialized by means of unsupervised pre-
training. We perform pre-training using the skip-
gram NN architecture (Mikolov et al., 2013) avail-
able in the word2vec tool. We use the En-
glish Wikipedia to train word embeddings for
experiments with the English dataset. For the
AskUbuntu dataset, we use all available Ask-
Ubuntu community data to train word embed-
dings.

The hyper-parameters of the neural networks
and the baselines are tuned using the development
sets. In Table 2, we show the selected hyper-
parameter values. In our experiments, we initialize
each element [t]i of the bag-of-word weight vector
t with the IDF of i−th word wi computed over the
respective set of questions Q as follows

[t]i = IDF (wi, Q) = log
|Q|

|q ∈ Q : wi ∈ q|

4 Experimental Results

Comparison with Baselines. In Tables 3 and
4, we present the question retrieval performance
(Accuracy@k) of different algorithms over the
AskUbuntu and English datasets for the title and
all settings, respectively. For both datasets, BOW-
CNN outperforms the six IR algorithms for both
title and all settings. For the AskUbuntu all,
BOW-CNN is four absolute points larger than the
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AskUbuntu English
Algorithm @1 @5 @10 @1 @5 @10
TFIDF 8.3 17.5 22.5 10.0 18.1 21.6
BM25 7.3 17.1 21.8 10.0 18.9 23.2
IB 8.1 18.1 22.6 10.1 18.4 22.7
DFR 7.7 17.8 22.4 10.5 19.0 23.0
LMD 5.6 14.1 19.0 10.9 20.1 24.2
LMJ 8.3 17.5 22.5 10.3 18.5 22.1
CNN 11.5 24.8 31.4 11.6 23.0 26.9
BOW-CNN 10.9 22.6 28.7 11.3 21.4 26.0

Table 3: Question title retrieval performance (Ac-
curacy@k) for different algorithms.

AskUbuntu English
Algorithm @1 @5 @10 @1 @5 @10
TFIDF 16.9 31.3 38.3 25.9 42.0 48.1
BM25 18.2 33.1 39.8 29.4 45.7 52.5
IB 14.9 28.2 34.8 25.4 42.3 48.0
DFR 18.0 32.6 39.2 28.6 45.4 52.5
LMD 13.7 26.8 34.4 23.0 40.2 46.0
LMJ 18.3 33.4 40.7 28.5 45.7 52.3
CNN 20.0 33.8 40.1 17.2 29.6 33.8
BOW-CNN 22.3 39.7 46.4 30.8 47.7 54.9

Table 4: Question title + body (all) retrieval per-
formance for different algorithms.

best IR baseline (LMJ) in terms of Accuracy@1,
which represents an improvement of 21.9%. Since
the BOW representation we use is closely related
to TFIDF, an important comparison is the perfor-
mance of BOW-CNN vs. TFIDF. In Tables 3 and
4, we can see that BOW-CNN consistently outper-
forms the TFIDF model in the two datasets for
both cases title and all. These findings suggest
that BOW-CNN is indeed combining the strong
semantic representation power conveyed by the
convolutional-based representation to, jointly with
the BOW representation, construct a more effec-
tive model.

Another interesting finding is that CNN out-
performs BOW-CNN for short texts (Table 3)
and, conversely, BOW-CNN outperforms CNN for
long texts (Table 4). This demonstrates that, when
dealing with large input texts, BOW-CNN is an
effective approach to combine the strengths of
convolutional-based representation and BOW.

Impact of Initialization of BOW Weights. In
the BOW-CNN experiments whose results are pre-
sented in tables 3 and 4 we initialize the elements
of the BOW weight vector t with the IDF of each
word in V computed over the question set Q. In
this section we show some experimental results
that indicate the contribution of this initialization.

In Table 5, we present the performance of

BOW-CNN for the English dataset when differ-
ent configurations of the BOW weight vector t are
used. The first column of Table 5 indicates the
type of initialization, where ones means that t is
initialized with the value 1 (one) in all positions.
The second column informs whether t is allowed
to be updated (Yes) by the network or not (No).
The numbers suggest that letting BOW weights
free to be updated by the network produces better
results than fixing them to IDF values. In addition,
using IDF to initialize the BOW weight vector is
better than using the same weight (ones) to initial-
ize it. This is expected, since we are injecting a
prior knowledge known to be helpful in IR tasks.

Title All
t initial t updated @1 @10 @1 @10

IDF Yes 11.3 26.0 30.8 54.9
IDF No 10.6 25.3 29.7 54.9
Ones Yes 10.7 24.2 26.3 51.2

Table 5: BOW-CNN performance using different
methods to initialize the BOW weight vector t.

5 Conclusions

In this paper, we propose a hybrid neural network
architecture, BOW-CNN, that combines bag-of-
words with distributed vector representations cre-
ated by a CNN, to retrieve semantically equivalent
questions. Our experimental evaluation showed
that: our approach outperforms traditional bow ap-
proaches; for short texts, a pure CNN obtains the
best results, whereas for long texts, BOW-CNN is
more effective; and initializing the BOW weight
vector with IDF values is beneficial.
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