
Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics, pages 444–454,
Sofia, Bulgaria, August 4-9 2013. c©2013 Association for Computational Linguistics

Nonconvex Global Optimization for Latent-Variable Models∗

Matthew R. Gormley Jason Eisner
Department of Computer Science

Johns Hopkins University, Baltimore, MD
{mrg,jason}@cs.jhu.edu

Abstract

Many models in NLP involve latent vari-
ables, such as unknown parses, tags, or
alignments. Finding the optimal model pa-
rameters is then usually a difficult noncon-
vex optimization problem. The usual prac-
tice is to settle for local optimization meth-
ods such as EM or gradient ascent.

We explore how one might instead search
for a global optimum in parameter space,
using branch-and-bound. Our method
would eventually find the global maxi-
mum (up to a user-specified ε) if run for
long enough, but at any point can return
a suboptimal solution together with an up-
per bound on the global maximum.

As an illustrative case, we study a gener-
ative model for dependency parsing. We
search for the maximum-likelihood model
parameters and corpus parse, subject to
posterior constraints. We show how to for-
mulate this as a mixed integer quadratic
programming problem with nonlinear con-
straints. We use the Reformulation Lin-
earization Technique to produce convex
relaxations during branch-and-bound. Al-
though these techniques do not yet pro-
vide a practical solution to our instance
of this NP-hard problem, they sometimes
find better solutions than Viterbi EM with
random restarts, in the same time.

1 Introduction

Rich models with latent linguistic variables are
popular in computational linguistics, but in gen-
eral it is not known how to find their optimal pa-
rameters. In this paper, we present some “new” at-
tacks for this common optimization setting, drawn
from the mathematical programming toolbox.

We focus on the well-studied but unsolved task
of unsupervised dependency parsing (i.e., depen-

∗This research was partially funded by the JHU Human
Language Technology Center of Excellence.

-180.2

-231.0 -254.3

-387.1 -287.3 -311.1 -467.5

-298 -342

!5 " -0.6 -0.6 " !5

!5 " -2 -2 " !5 !3 " -0.6 -0.6 " !3

!2 " -0.6 -0.6 " !2

Branch-and-bound tree: Incumbent solution:

$

$

M�

m=1

θmf·m = −400

θ = [−0.1,−0.6,−20,−1.3, . . .]
f = [4, 0, 2, 21, . . .]

M�

i=1

θmfm = −400

Figure 1: Each node contains a local upper bound
for its subspace, computed by a relaxation. The
node branches on a single model parameter θm to
partition its subspace. The lower bound, -400, is
given by the best solution seen so far, the incum-
bent. The upper bound, -298, is the min of all re-
maining leaf nodes. The node with a local bound
of -467.5 can be pruned because no solution within
its subspace could be better than the incumbent.

dency grammar induction). This may be a par-
ticularly hard case, but its structure is typical.
Many parameter estimation techniques have been
attempted, including expectation-maximization
(EM) (Klein and Manning, 2004; Spitkovsky et
al., 2010a), contrastive estimation (Smith and Eis-
ner, 2006; Smith, 2006), Viterbi EM (Spitkovsky
et al., 2010b), and variational EM (Naseem et al.,
2010; Cohen et al., 2009; Cohen and Smith, 2009).
These are all local search techniques, which im-
prove the parameters by hill-climbing.

The problem with local search is that it gets
stuck in local optima. This is evident for gram-
mar induction. An algorithm such as EM will find
numerous different solutions when randomly ini-
tialized to different points (Charniak, 1993; Smith,
2006). A variety of ways to find better local op-
tima have been explored, including heuristic ini-
tialization of the model parameters (Spitkovsky
et al., 2010a), random restarts (Smith, 2006),
and annealing (Smith and Eisner, 2006; Smith,
2006). Others have achieved accuracy improve-
ments by enforcing linguistically motivated pos-
terior constraints on the parameters (Gillenwater
et al., 2010; Naseem et al., 2010), such as requir-
ing most sentences to have verbs or encouraging
nouns to be children of verbs or prepositions.

We introduce a method that performs global

444

search with certificates of ε-optimality for both
the corpus parse and the model parameters. Our
search objective is log-likelihood. We can also im-
pose posterior constraints on the latent structure.

As we show, maximizing the joint log-
likelihood of the parses and the parameters can be
formulated as a mathematical program (MP) with
a nonconvex quadratic objective and with integer
linear and nonlinear constraints. Note that this ob-
jective is that of hard (Viterbi) EM—we do not
marginalize over the parses as in classical EM.1

To globally optimize the objective function,
we employ a branch-and-bound algorithm that
searches the continuous space of the model param-
eters by branching on individual parameters (see
Figure 1). Thus, our branch-and-bound tree serves
to recursively subdivide the global parameter hy-
percube. Each node represents a search problem
over one of the resulting boxes (i.e., orthotopes).

The crucial step is to prune nodes high in the
tree by determining that their boxes cannot contain
the global maximum. We compute an upper bound
at each node by solving a relaxed maximization
problem tailored to its box. If this upper bound is
worse than our current best solution, we can prune
the node. If not, we split the box again via another
branching decision and retry on the two halves.

At each node, our relaxation derives a linear
programming problem (LP) that can be efficiently
solved by the dual simplex method. First, we lin-
early relax the constraints that grammar rule prob-
abilities sum to 1—these constraints are nonlin-
ear in our parameters, which are log-probabilities.
Second, we linearize the quadratic objective by ap-
plying the Reformulation Linearization Technique
(RLT) (Sherali and Adams, 1990), a method of
forming tight linear relaxations of various types
of MPs: the reformulation step multiplies together
pairs of the original linear constraints to generate
new quadratic constraints, and then the lineariza-
tion step replaces quadratic terms in the new con-
straints with auxiliary variables.

Finally, if the node is not pruned, we search
for a better incumbent solution under that node
by projecting the solution of the RLT relaxation
back onto the feasible region. In the relaxation, the
model parameters might sum to slightly more than

1This objective might not be a great sacrifice: Spitkovsky
et al. (2010b) present evidence that hard EM can outperform
soft EM for grammar induction in a hill-climbing setting. We
use it because it is a quadratic objective. However, maximiz-
ing it remains NP-hard (Cohen and Smith, 2010).

one and the parses can consist of fractional depen-
dency edges. We project in order to compute the
true objective and compare with other solutions.

Our results demonstrate that our method can ob-
tain higher likelihoods than Viterbi EM with ran-
dom restarts. Furthermore, we show how posterior
constraints inspired by Gillenwater et al. (2010)
and Naseem et al. (2010) can easily be applied
in our framework to obtain competitive accuracies
using a simple model, the Dependency Model with
Valence (Klein and Manning, 2004). We also ob-
tain an ε-optimal solution on a toy dataset.

We caution that the linear relaxations are very
loose on larger boxes. Since we have many dimen-
sions, the binary branch-and-bound tree may have
to grow quite deep before the boxes become small
enough to prune. This is why nonconvex quadratic
optimization by LP-based branch-and-bound usu-
ally fails with more than 80 variables (Burer and
Vandenbussche, 2009). Even our smallest (toy)
problems have hundreds of variables, so our exper-
imental results mainly just illuminate the method’s
behavior. Nonetheless, we offer the method as
a new tool which, just as for local search, might
be combined with other forms of problem-specific
guidance to produce more practical results.

2 The Constrained Optimization Task

We begin by describing how for our typical model,
the Viterbi EM objective can be formulated as a
mixed integer quadratic programming (MIQP)
problem with nonlinear constraints (Figure 2).

Other locally normalized log-linear generative
models (Berg-Kirkpatrick et al., 2010) would have
a similar formulation. In such models, the log-
likelihood objective is simply a linear function of
the feature counts. However, the objective be-
comes quadratic in unsupervised learning, be-
cause the feature counts are themselves unknown
variables to be optimized. The feature counts are
constrained to be derived from the latent variables
(e.g., parses), which are unknown discrete struc-
tures that must be encoded with integer variables.
The nonlinear constraints ensure that the model
parameters are true log-probabilities.

Concretely, (1) specifies the Viterbi EM objec-
tive: the total log-probability of the best parse
trees under the parameters θ, given by a sum of
log-probabilities θm of the individual steps needed
to generate the tree, as encoded by the features
fm. The (nonlinear) sum-to-one constraints on the

445

Variables:
θm Log-probability for feature m
fm Corpus-wide feature count for m
esij Indicator of an arc from i to j in tree s
Indices and constants:
m Feature / model parameter index
s Sentence index
c Conditional distribution index
M Number of model parameters
C Number of conditional distributions
Mc cth Set of feature indices that sum to 1.0
S Number of sentences
Ns Number of words in the sth sentence
Objective and constraints:

max
∑

m

θmfm (1)

s.t.
∑

m∈Mc

exp(θm) = 1, ∀c (2)

A

[
f
e

]
≤ b (Model constraints) (3)

θm ≤ 0, fm, esij ∈ Z, ∀m, s, i, j (4)

Figure 2: Viterbi EM as a mathematical program

probabilities are in (2). The linear constraints in
(3) will ensure that the arc variables for each sen-
tence es encode a valid latent dependency tree,
and that the f variables count up the features of
these trees. The final constraints (4) simply spec-
ify the range of possible values for the model pa-
rameters and their integer count variables.

Our experiments use the dependency model
with valence (DMV) (Klein and Manning, 2004).
This generative model defines a joint distribution
over the sentences and their dependency trees.

We encode the DMV using integer linear con-
straints on the arc variables e and feature counts
f . These will constitute the model constraints in
(3). The constraints must declaratively specify that
the arcs form a valid dependency tree and that the
resulting feature values are as defined by the DMV.

Tree Constraints To ensure that our arc vari-
ables, es, form a dependency tree, we employ the
same single-commodity flow constraints of Mag-
nanti and Wolsey (1994) as adapted by Martins et
al. (2009) for parsing. We also use the projectivity
constraints of Martins et al. (2009).

The single-commodity flow constraints simul-
taneously enforce that each node has exactly one
parent, the special root node (position 0) has no in-

coming arcs, and the arcs form a connected graph.
For each sentence, s, the variable φsij indicates

the amount of flow traversing the arc from i to j in
sentence s. The constraints below specify that the
root node emits Ns units of flow (5), that one unit
of flow is consumed by each each node (6), that
the flow is zero on each disabled arc (7), and that
the arcs are binary variables (8).

Single-commodity flow (Magnanti & Wolsey, 1994)
Ns∑

j=1

φs0j = Ns, ∀j (5)

Ns∑

i=0

φsij −
Ns∑

k=1

φsjk = 1, ∀j (6)

φsij ≤ Nsesij , ∀i, j (7)

esij ∈ {0, 1}, ∀i, j (8)

Projectivity is enforced by adding a constraint
(9) for each arc ensuring that no edges will cross
that arc if it is enabled. Xij is the set of arcs (k, l)
that cross the arc (i, j).

Projectivity (Martins et al., 2009)∑

(k,l)∈Xij

eskl ≤ Ns(1− esij), ∀s, i, j (9)

DMV Feature Counts The DMV generates a
dependency tree recursively as follows. First
the head word of the sentence is generated, t ∼
Discrete(θroot), where θroot is a subvector of θ.
To generate its children on the left side, we flip
a coin to decide whether an adjacent child is gen-
erated, d ∼ Bernoulli(θdec.L.0,t). If the coin flip
d comes up continue, we sample the word of that
child as t′ ∼ Discrete(θchild.L,t). We continue gen-
erating non-adjacent children in this way, using
coin weights θdec.L.≥ 1,t until the coin comes up
stop. We repeat this procedure to generate chil-
dren on the right side, using the model parameters
θdec.R.0,t, θchild.R,t, and θdec.R.≥ 1,t. For each new
child, we apply this process recursively to gener-
ate its descendants.

The feature count variables for the DMV are en-
coded in our MP as various sums over the edge
variables. We begin with the root/child feature
counts. The constraint (10) defines the feature
count for model parameter θroot,t as the number
of all enabled arcs connecting the root node to a
word of type t, summing over all sentences s. The
constraint in (11) similarly defines fchild.L,t,t′ to be
the number of enabled arcs connecting a parent of

446

type t to a left child of type t′. Wst is the index set
of tokens in sentences s with word type t.

DMV root/child feature counts

froot,t =

Ns∑

s=1

∑

j∈Wst

es0j , ∀t (10)

fchild.L,t,t′ =

Ns∑

s=1

∑

j<i

δ
[
i∈Wst ∧
j∈Wst′

]
esij , ∀t, t′ (11)

The decision feature counts require the addi-
tion of an auxiliary count variables f (si)m ∈ Z in-
dicating how many times decision feature m fired
at some position in the corpus s, i. We then need
only add a constraint that the corpus wide fea-
ture count is the sum of these token-level feature
counts fm =

∑S
s=1

∑Ns
i=1 f

(si)
m , ∀m.

Below we define these auxiliary variables for
1 ≤ s ≤ S and 1 ≤ i ≤ Ns. The helper vari-
able ns,i,l counts the number of enabled arcs to the
left of token i in sentence s. Let t denote the word
type of token i in sentence s. Constraints (11) -
(16) are defined analogously for the right side fea-
ture counts.

DMV decision feature counts

ns,i,l =

i−1∑

j=1

esij (12)

ns,i,l/Ns ≤ f (s,i)dec.L.0,t,cont ≤ 1 (13)

f
(s,i)
dec.L.0,t,stop = 1− f (s,i)dec.L.0,t,cont (14)

f
(s,i)
dec.L.≥ 1,t,stop = f

(s,i)
dec.L.0,t,cont (15)

f
(s,i)
dec.L.≥ 1,t,cont = ns,i,l − f (s,i)dec.L.0,t,cont (16)

3 A Branch-and-Bound Algorithm

The mixed integer quadratic program with nonlin-
ear constraints, given in the previous section, max-
imizes the nonconvex Viterbi EM objective and is
NP-hard to solve (Cohen and Smith, 2010). The
standard approach to optimizing this program is
local search by the hard (Viterbi) EM algorithm.
Yet local search can only provide a lower (pes-
simistic) bound on the global maximum.

We propose a branch-and-bound algorithm,
which will iteratively tighten both pessimistic and
optimistic bounds on the optimal solution. This
algorithm may be halted at any time, to obtain the
best current solution and a bound on how much
better the global optimum could be.

A feasible solution is an assignment to all

the variables—both model parameters and corpus
parse—that satisfies all constraints. Our branch-
and-bound algorithm maintains an incumbent so-
lution: the best known feasible solution according
to the objective function. This is updated as better
feasible solutions are found.

Our algorithm implicitly defines a search tree in
which each node corresponds to a region of model
parameter space. Our search procedure begins
with only the root node, which represents the full
model parameter space. At each node we perform
three steps: bounding, projecting, and branching.

In the bounding step, we solve a relaxation of
the original problem to provide an upper bound on
the objective achievable within that node’s subre-
gion. A node is pruned when Lglobal + ε|Lglobal| ≥
Ulocal, where Lglobal is the incumbent score, Ulocal
is the upper bound for the node, and ε > 0. This
ensures that its entire subregion will not yield a
ε-better solution than the current incumbent.

The overall optimistic bound is given by the
worst optimistic bound of all current leaf nodes.

The projecting step, if the node is not pruned,
projects the solution of the relaxation back to the
feasible region, replacing the current incumbent if
this projection provides a better lower bound.

In the branching step, we choose a variable θm
on which to divide. Each of the child nodes re-
ceives a lower θmin

m and upper θmax
m bound for θm.

The child subspaces partition the parent subspace.
The search tree is defined by a variable order-

ing and the splitting procedure. We do binary
branching on the variable θm with the highest re-
gret, defined as zm − θmfm, where zm is the
auxiliary objective variable we will introduce in
§ 4.2. Since θm is a log-probability, we split its
current range at the midpoint in probability space,
log((exp θmin

m + exp θmax
m)/2).

We perform best-first search, ordering the nodes
by the the optimistic bound of their parent. We
also use the LP-guided rule (Martin, 2000; Achter-
berg, 2007, section 6.1) to perform depth-first
plunges in search of better incumbents.

4 Relaxations

The relaxation in the bounding step computes an
optimistic bound for a subspace of the model pa-
rameters. This upper bound would ideally be not
much greater than the true maximum achievable
on that region, but looser upper bounds are gener-
ally faster to compute.

447

We present successive relaxations to the orig-
inal nonconvex mixed integer quadratic program
with nonlinear constraints from (1)–(4). First, we
show how the nonlinear sum-to-one constraints
can be relaxed into linear constraints and tight-
ened. Second, we apply a classic approach to
bound the nonconvex quadratic objective by a lin-
ear concave envelope. Finally, we present our full
relaxation based on the Reformulation Lineariza-
tion Technique (RLT) (Sherali and Adams, 1990).
We solve these LPs by the dual simplex algorithm.

4.1 Relaxing the sum-to-one constraint
In this section, we use cutting planes to create a
linear relaxation for the sum-to-one constraint (2).
When relaxing a constraint, we must ensure that
any assignment of the variables that was feasible
(i.e. respected the constraints) in the original prob-
lem must also be feasible in the relaxation. In most
cases, the relaxation is not perfectly tight and so
will have an enlarged space of feasible solutions.

We begin by weakening constraint (2) to
∑

m∈Mc

exp(θm) ≤ 1 (17)

The optimal solution under (17) still satisfies the
original equality constraint (2) because of the
maximization. We now relax (17) by approx-
imating the surface z =

∑
m∈Mc

exp(θm) by
the max of N lower-bounding linear functions on
R|Mc|. Instead of requiring z ≤ 1, we only require
each of these lower bounds to be ≤ 1, slightly
enlarging the feasible space into a convex poly-
tope. Figure 3a shows the feasible region con-
structed from N=3 linear functions on two log-
probabilities θ1, θ2.

Formally, for each c, we define the ith linear
lower bound (i = 1, . . . , N) to be the tangent hy-

perplane at some point θ̂
(i)
c = [θ̂

(i)
c,1, . . . , θ̂

(i)
c,|Mc|] ∈

R|Mc|, where each coordinate is a log-probability
θ̂
(i)
c,m < 0. We require each of these linear func-

tions to be ≤ 1:

Sum-to-one Relaxation∑

m∈Mc

(
θm + 1− θ̂(i)c,m

)
exp

(
θ̂(i)c,m

)
≤ 1, ∀i, ∀c

(18)

4.2 “Relaxing” the objective
Our true maximization objective

∑
m θmfm in (1)

is a sum of quadratic terms. If the parameters θ

(a)

01234
fsm

�15 �10 �5

Θm

�60

�40

�20

0

20

(b)

Figure 3: In (a), the area under the curve corre-
sponds to those points (θ1, θ2) that satisfy (17)
(z ≤ 1), with equality (2) achieved along the curve
(z = 1). The shaded area shows the enlarged fea-
sible region under the linear relaxation. In (b),
the curved lower surface represents a single prod-
uct term in the objective. The piecewise-linear up-
per surface is its concave envelope (raised by 20
for illustration; in reality they touch).

were fixed, the objective would become linear in
the latent features. Although the parameters are
not fixed, the branch-and-bound algorithm does
box them into a small region, where the quadratic
objective is “more linear.”

Since it is easy to maximize a concave function,
we will maximize the concave envelope—the con-
cave function that most tightly upper-bounds our
objective over the region. This turns out to be
piecewise linear and can be maximized with an LP
solver. Smaller regions yield tighter bounds.

Each node of the branch-and-bound tree speci-
fies a region via bounds constraints θmin

m < θm <
θmax
m , ∀m. In addition, we have known bounds
fmin
m ≤ fm ≤ fmax

m , ∀m for the count variables.
McCormick (1976) described the concave enve-

lope for a single quadratic term subject to bounds
constraints (Figure 3b). In our case:

θmfm ≤ min[fmax
m θm + θmin

m fm − θmin
m fmax

m ,

fmin
m θm + θmax

m fm − θmax
m fmin

m]

We replace our objective
∑

m θmfm with
∑

m zm,
where we would like to constrain each auxiliary
variable zm to be = θmfm or (equivalently) ≤
θmfm, but instead settle for making it ≤ the con-
cave envelope—a linear programming problem:

Concave Envelope Objective

max
∑

m

zm (19)

s.t. zm ≤ fmax
m θm + θmin

m fm − θmin
m fmax

m (20)

zm ≤ fmin
m θm + θmax

m fm − θmax
m fmin

m (21)

448

4.3 Reformulation Linearization Technique
The Reformulation Linearization Technique
(RLT)2 (Sherali and Adams, 1990) is a method
of forming tighter relaxations of various types of
MPs. The basic method reformulates the problem
by adding products of existing constraints. The
quadratic terms in the objective and in these new
constraints are redefined as auxiliary variables,
thereby linearizing the program.

In this section, we will show how the RLT can
be applied to our grammar induction problem and
contrast it with the concave envelope relaxation
presented in section 4.2.

Consider the original MP in equations (1) -
(4), with the nonlinear sum-to-one constraints in
(2) replaced by our linear constraints proposed in
(18). If we remove the integer constraints in (4),
the result is a quadratic program with purely linear
constraints. Such problems have the form

max xTQx (22)

s.t. Ax ≤ b (23)

−∞ < Li ≤ xi ≤ Ui <∞, ∀i (24)

where the variables are x ∈ Rn, A is an m × n
matrix, and b ∈ Rm, and Q is an n× n indefinite3

matrix. Without loss of generality we assume Q is
symmetric. The application of the RLT here was
first considered by Sherali and Tuncbilek (1995).

For convenience of presentation, we repre-
sent both the linear inequality constraints and the
bounds constraints, under a different parameteri-
zation using the matrix G and vector g.
[

(bi −Aix) ≥ 0, 1 ≤ i ≤ m
(Uk − xk) ≥ 0, 1 ≤ k ≤ n
(−Lk + xk) ≥ 0, 1 ≤ k ≤ n

]
≡
[
(gi −Gix) ≥ 0,
1 ≤ i ≤ m+ 2n

]

The reformulation step forms all possible products
of these linear constraints and then adds them to
the original quadratic program.

(gi −Gix)(gj −Gjx) ≥ 0, ∀1 ≤ i ≤ j ≤ m+ 2n

In the linearization step, we replace all
quadratic terms in the quadratic objective and new
quadratic constraints with auxiliary variables:

wij ≡ xixj , ∀1 ≤ i ≤ j ≤ n
2The key idea underlying the RLT was originally intro-

duced in Adams and Sherali (1986) for 0-1 quadratic pro-
gramming. It has since been extended to various other set-
tings; see Sherali and Liberti (2008) for a complete survey.

3In the general case, that Q is indefinite causes this pro-
gram to be nonconvex, making this problem NP-hard to solve
(Vavasis, 1991; Pardalos, 1991).

This yields the following RLT relaxation:

RLT Relaxation

max
∑

1≤i≤j≤n
Qijwij (25)

s.t. gigj −
n∑

k=1

gjGikxk −
n∑

k=1

giGjkxk

+

n∑

k=1

n∑

l=1

GikGjlwkl ≥ 0,

∀1 ≤ i ≤ j ≤ m+ 2n (26)

Notice above that we have omitted the original
inequality constraints (23) and bounds (24), be-
cause they are fully enforced by the new RLT con-
straints (26) from the reformulation step (Sherali
and Tuncbilek, 1995). In our experiments, we
keep the original constraints and instead explore
subsets of the RLT constraints.

If the original QP contains equality constraints
of the form Gex = ge, then we can form con-
straints by multiplying this one by each variable
xi. This gives us the following new set of con-
straints, for each equality constraint e: gexi +∑n

j=1−Gejwij = 0, ∀1 ≤ i ≤ n.

Theoretical Properties The new constraints in
eq. (26) will impose the concave envelope con-
straints (20)–(21) (Anstreicher, 2009).

The constraints presented above are consid-
ered to be first-level constraints corresponding to
the first-level variables wij . However, the same
technique can be applied repeatedly to produce
polynomial constraints of higher degree. These
higher level constraints/variables have been shown
to provide increasingly tighter relaxations (Sher-
ali and Adams, 1990) at the cost of a large num-
ber of variables and constraints. In the case where
x ∈ {0, 1}n the degree-n RLT constraints will re-
strict to the convex hull of the feasible solutions
(Sherali and Adams, 1990).

This is in direct contrast to the concave enve-
lope relaxation presented in section 4.2 which re-
laxes to the convex hull of each quadratic term in-
dependently. This demonstrates the key intuition
of the RLT relaxation: The products of constraints
are implied (and unnecessary) in the original vari-
able space. Yet when we project to a higher-
dimentional space by including the auxiliary vari-
ables, the linearized constraints cut off portions of
the feasible region given by only the concave en-
velope relaxation in eqs. (20)-(21) .

449

4.4 Adding Posterior Constraints

It is a simple extension to impose posterior con-
straints within our framework. Here we empha-
size constraints that are analogous to the universal
linguistic constraints from Naseem et al. (2010).
Since we optimize the Viterbi EM objective, we
directly constrain the counts in the single corpus
parse rather than expected counts from a distribu-
tion over parses. Let E be the index set of model
parameters corresponding to edge types from Ta-
ble 1 of Naseem et al. (2010), and Ns be the num-
ber of words in the sth sentence. We impose
the constraint that 75% of edges come from E :∑

m∈E fm ≥ 0.75
(∑S

s=1Ns

)
.

5 Projections

A pessimistic bound, from the projecting step, will
correspond to a feasible but not necessarily opti-
mal solution to the original problem. We propose
several methods for obtaining pessimistic bounds
during the branch-and-bound search, by projecting
and improving the solutions found by the relax-
ation. A solution to the relaxation may be infea-
sible in the original problem for two reasons: the
model parameters might not sum to one, and/or the
parse may contain fractional edges.

Model Parameters For each set of model pa-
rameters Mc that should sum-to-one, we project
the model parameters onto the Mc − 1 simplex
by one of two methods: (1) normalize the infeasi-
ble parameters or (2) find the point on the simplex
that has minimum Euclidean distance to the infea-
sible parameters using the algorithm of Chen and
Ye (2011). For both methods, we can optionally
apply add-λ smoothing before projecting.

Parses Since we are interested in projecting the
fractional parse onto the space of projective span-
ning trees, we can simply employ a dynamic pro-
gramming parsing algorithm (Eisner and Satta,
1999) where the weight of each edge is given as
the fraction of the edge variable.

Only one of these projection techniques is
needed. We then either use parsing to fill in the
optimal parse trees given the projected model pa-
rameters, or use supervised parameter estimation
to fill in the optimal model parameters given the
projected parses. These correspond to the Viterbi
E step and M step, respectively. We can locally

improve the projected solution by continuing with
a few additional iterations of Viterbi EM.

Related models could use very similar projec-
tion techniques. Given a relaxed joint solution to
the parameters and the latent variables, one must
be able to project it to a nearby feasible one, by
projecting either the fractional parameters or the
fractional latent variables into the feasible space
and then solving exactly for the other.

6 Related Work

The goal of this work was to better understand and
address the non-convexity of maximum-likelihood
training with latent variables, especially parses.

Gimpel and Smith (2012) proposed a concave
model for unsupervised dependency parsing us-
ing IBM Model 1. This model did not include a
tree constraint, but instead initialized EM on the
DMV. By contrast, our approach incorporates the
tree constraints directly into our convex relaxation
and embeds the relaxation in a branch-and-bound
algorithm capable of solving the original DMV
maximum-likelihood estimation problem.

Spectral learning constitutes a wholly differ-
ent family of consistent estimators, which achieve
efficiency because they sidestep maximizing the
nonconvex likelihood function. Hsu et al. (2009)
introduced a spectral learner for a large class of
HMMs. For supervised parsing, spectral learn-
ing has been used to learn latent variable PCFGs
(Cohen et al., 2012) and hidden-state dependency
grammars (Luque et al., 2012). Alas, there are
not yet any spectral learning methods that recover
latent tree structure, as in grammar induction.

Several integer linear programming (ILP) for-
mulations of dependency parsing (Riedel and
Clarke, 2006; Martins et al., 2009; Riedel et al.,
2012) inspired our definition of grammar induc-
tion as a MP. Recent work uses branch-and-bound
for decoding with non-local features (Qian and
Liu, 2013). These differ from our work by treating
the model parameters as constants, thereby yield-
ing a linear objective.

For semi-supervised dependency parsing, Wang
et al. (2008) used a convex objective, combin-
ing unsupervised least squares loss and a super-
vised large margin loss, This does not apply to our
unsupervised setting. Branch-and-bound has also
been applied to semi-supervised SVM training, a
nonconvex search problem (Chapelle et al., 2007),
with a relaxation derived from the dual.

450

7 Experiments

We first analyze the behavior of our method on a
toy synthetic dataset. Next, we compare various
parameter settings for branch-and-bound by esti-
mating the total solution time. Finally, we com-
pare our search method to Viterbi EM on a small
subset of the Penn Treebank.

All our experiments use the DMV for unsuper-
vised dependency parsing of part-of-speech (POS)
tag sequences. For Viterbi EM we initialize the pa-
rameters of the model uniformly, breaking parser
ties randomly in the first E-step (Spitkovsky et
al., 2010b). This initializer is state-of-the-art for
Viterbi EM. We also apply add-one smoothing
during each M-step. We use random restarts, and
select the model with the highest likelihood.

We add posterior constraints to Viterbi EM’s E-
step. First, we run a relaxed linear programming
(LP) parser, then project the (possibly fractional)
parses back to the feasible region. If the resulting
parse does not respect the posterior constraints, we
discard it. The posterior constraint in the LP parser
is tighter4 than the one used in the true optimiza-
tion problem, so the projections tends to be feasi-
ble under the true (looser) posterior constraints. In
our experiments, all but one projection respected
the constraints. We solve all LPs with CPLEX.

7.1 Synthetic Data

For our toy example, we generate sentences from a
synthetic DMV over three POS tags (Verb, Noun,
Adjective) with parameters chosen to favor short
sentences with English word order.

In Figure 4 we show that the quality of the root
relaxation increases as we approach the full set of
RLT constraints. That the number of possible RLT
constraints increases quadratically with the length
of the corpus poses a serious challenge. For just
20 sentences from this synthetic model, the RLT
generates 4,056,498 constraints.

For a single run of branch-and-bound, Figure 5
shows the global upper and lower bounds over
time.5 We consider five relaxations, each using
only a subset of the RLT constraints. Max.0k
uses only the concave envelope (20)-(21). Max.1k
uses the concave envelope and also randomly sam-
ples 1,000 other RLT constraints, and so on for
Max.10k and Max.100k. Obj.Filter includes all

480% of edges must come from E as opposed to 75%.
5The initial incumbent solution for branch-and-bound is

obtained by running Viterbi EM with 10 random restarts.

!4

!3

!2

!1

0 ! ! !

!

!

!
!

! ! ! !

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of RLT rows included

U
pp

er
 b

ou
nd

 o
n

lo
g!

lik
el

ih
oo

d
at

 ro
ot

Figure 4: The bound quality at the root improves
as the proportion of RLT constraints increases, on
5 synthetic sentences. A random subset of 70%
of the 320,126 possible RLT constraints matches
the relaxation quality of the full set. This bound is
very tight: the relaxations in Figure 5 solve hun-
dreds of nodes before such a bound is achieved.

!12

!10

!8

!6

!4

!2

0
!!

!

!
!!!!

!!

! ! !!!!

20 40 6080
Time (sec)

Bo
un

ds
 o

n
lo

g!
lik

el
ih

oo
d Bound type

lower

upper

Relaxation
! RLT Obj.Filter

RLT Max.0k

RLT Max.1k

RLT Max.10k

Figure 5: The global upper and lower bounds
improve over time for branch-and-bound using
different subsets of RLT constraints on 5 syn-
thetic sentences. Each solves the problem to ε-
optimality for ε = 0.01. A point marks every 200
nodes processed. (The time axis is log-scaled.)

constraints with a nonzero coefficient for one of
the RLT variables zm from the linearized ob-
jective. The rightmost lines correspond to RLT
Max.10k: despite providing the tightest (local)
bound at each node, it processed only 110 nodes in
the time it took RLT Max.1k to process 1164. RLT
Max.0k achieves the best balance of tight bounds
and speed per node.

7.2 Comparing branch-and-bound strategies

It is prohibitively expensive to repeatedly run our
algorithm to completion with a variety of param-
eter settings. Instead, we estimate the size of the
branch-and-bound tree and the solution time using
a high-variance estimate that is effective for com-
parisons (Lobjois and Lemaı̂tre, 1998).

Given a fixed set of parameters for our algo-
rithm and an ε-optimality stopping criterion, we

451

RLT Re-
laxation

Avg. ms
per node

Sam-
ples

Est. #
Nodes

Est. #
Hours

Obj.Filter 63 10000 3.2E+08 4.6E+09
Max.0k 6 10000 1.7E+10 7.8E+10
Max.1k 15 10000 3.5E+08 4.2E+09
Max.10k 161 10000 1.3E+09 3.4E+10
Max.100k 232259 5 1.7E+09 9.7E+13

Table 1: Branch-and-bound node count and com-
pletion time estimates. Each standard deviation
was close in magnitude to the estimate itself. We
ran for 8 hours, stopping at 10,000 samples on 8
synthetic sentences.

can view the branch-and-bound tree T as fixed and
finite in size. We wish to estimate some cost asso-
ciated with the tree C(T) =

∑
α∈nodes(T) f(α).

Letting f(α) = 1 estimates the number of nodes;
if f(α) is the time to solve a node, then we es-
timate the total solution time using the Monte
Carlo method of Knuth (1975). Table 1 gives
these estimates, for the same five RLT relaxations.
Obj.Filter yields the smallest estimated tree size.

7.3 Real Data
In this section, we compare our global search
method to Viterbi EM with random restarts each
with or without posterior constraints. We use 200
sentences of no more than 10 tokens from the WSJ
portion of the Penn Treebank. We reduce the tree-
bank’s gold part-of-speech (POS) tags to a univer-
sal set of 12 tags (Petrov et al., 2012) plus a tag
for auxiliaries, ignoring punctuation. Each search
method is run for 8 hours. We obtain the initial
incumbent solution for branch-and-bound by run-
ning Viterbi EM for 45 minutes. The average time
to solve a node’s relaxation ranges from 3 seconds
for RLT Max.0k to 42 seconds for RLT Max.100k.

Figure 6a shows the log-likelihood of the in-
cumbent solution over time. In our global search
method, like Viterbi EM, the posterior constraints
lead to lower log-likelihoods. RLT Max.0k finds
the highest log-likelihood solution.

Figure 6b compares the unlabeled directed de-
pendency accuracy of the incumbent solution. In
both global and local search, the posterior con-
straints lead to higher accuracies. Viterbi EM
with posterior constraints demonstrates the oscil-
lation of incumbent accuracy: starting at 58.02%
accuracy, it finds several high accuracy solutions
early on (61.02%), but quickly abandons them to
increase likelihood, yielding a final accuracy of
60.65%. RLT Max.0k with posterior constraints
obtains the highest overall accuracy of 61.09% at

(a)

!3300

!3200

!3100

!3000

!2900

!

!

!

!

!

!!!
!!
!

!
!
!

!!
!
!!!!
!!!!

!!

!
!!
!!!

!

!!!
!!!

!!
!

! !!!!!
!!!!!!
!

!

100 200 300 400
Time (min)

Lo
g!

lik
el

ih
oo

d
(tr

ai
n)

Algorithm
! Viterbi EM

RLT Obj.Filter

RLT Max.0k

RLT Max.1k

RLT Max.10k

RLT Max.100k

Posterior Constraints
False

True

(b)

0.35

0.40

0.45

0.50

0.55

0.60

!

!

!

!

!
!
!!!!!

!

!
!

!
!!!
!!!!!!!

!

!

!
!!!!!

!

!!
!!!!

!
!

!

! !!!
!!!!!!!!
!

!

100 200 300 400
Time (min)

A
cc

ur
ac

y
(tr

ai
n)

Algorithm
! Viterbi EM

RLT Obj.Filter

RLT Max.0k

RLT Max.1k

RLT Max.10k

RLT Max.100k

Posterior Constraints
False

True

Figure 6: Likelihood (a) and accuracy (b) of in-
cumbent solution so far, on a small real dataset.

306 min and the highest final accuracy 60.73%.

8 Discussion

In principle, our branch-and-bound method can
approach ε-optimal solutions to Viterbi training of
locally normalized generative models, including
the NP-hard case of grammar induction with the
DMV. The method can also be used with posterior
constraints or a regularized objective.

Future work includes algorithmic improve-
ments for solving the relaxation and the develop-
ment of tighter relaxations. The Dantzig-Wolfe
decomposition (Dantzig and Wolfe, 1960) or La-
grangian Relaxation (Held and Karp, 1970) might
satisfy both of these goals by pushing the inte-
ger tree constraints into a subproblem solved by
a dynamic programming parser. Recent work on
semidefinite relaxations (Anstreicher, 2009) sug-
gests they may provide tighter bounds at the ex-
pense of greater computation time.

Perhaps even more important than tightening
the bounds at each node are search heuristics (e.g.,
surface cues) and priors (e.g., universal grammar)
that guide our global search by deciding which
node to expand next (Chomsky and Lasnik, 1993).

452

References
Tobias Achterberg. 2007. Constraint integer program-

ming. Ph.D. thesis, TU Berlin.

Warren P. Adams and Hanif D. Sherali. 1986. A
tight linearization and an algorithm for zero-one
quadratic programming problems. Management
Science, 32(10):1274–1290, October. ArticleType:
research-article / Full publication date: Oct., 1986 /
Copyright 1986 INFORMS.

Kurt Anstreicher. 2009. Semidefinite programming
versus the reformulation-linearization technique for
nonconvex quadratically constrained quadratic pro-
gramming. Journal of Global Optimization,
43(2):471–484.

Taylor Berg-Kirkpatrick, Alexandre Bouchard-Côté,
DeNero, John DeNero, and Dan Klein. 2010. Pain-
less unsupervised learning with features. In Proc. of
NAACL, June.

Samuel Burer and Dieter Vandenbussche. 2009. Glob-
ally solving box-constrained nonconvex quadratic
programs with semidefinite-based finite branch-and-
bound. Computational Optimization and Applica-
tions, 43(2):181–195.

Olivier Chapelle, Vikas Sindhwani, and S. Sathiya
Keerthi. 2007. Branch and bound for semi-
supervised support vector machines. In Proc. of
NIPS 19, pages 217–224. MIT Press.

E. Charniak. 1993. Statistical language learning. MIT
press.

Yunmei Chen and Xiaojing Ye. 2011. Projection onto
a simplex. arXiv:1101.6081, January.

Noam Chomsky and Howard Lasnik. 1993. Princi-
ples and parameters theory. In Syntax: An Interna-
tional Handbook of Contemporary Research. Berlin:
de Gruyter.

Shay Cohen and Noah A. Smith. 2009. Shared logis-
tic normal distributions for soft parameter tying in
unsupervised grammar induction. In Proc. of HLT-
NAACL, pages 74–82, June.

Shay Cohen and Noah A. Smith. 2010. Viterbi training
for PCFGs: Hardness results and competitiveness of
uniform initialization. In Proc. of ACL, pages 1502–
1511, July.

S. B. Cohen, K. Gimpel, and N. A. Smith. 2009. Lo-
gistic normal priors for unsupervised probabilistic
grammar induction. In Proceedings of NIPS.

Shay B. Cohen, Karl Stratos, Michael Collins, Dean P.
Foster, and Lyle Ungar. 2012. Spectral learning of
latent-variable PCFGs. In Proc. of ACL (Volume 1:
Long Papers), pages 223–231. Association for Com-
putational Linguistics, July.

George B. Dantzig and Philip Wolfe. 1960. Decom-
position principle for linear programs. Operations
Research, 8(1):101–111, January.

Jason Eisner and Giorgio Satta. 1999. Efficient pars-
ing for bilexical context-free grammars and head au-
tomaton grammars. In Proc. of ACL, pages 457–
464, June.

Jennifer Gillenwater, Kuzman Ganchev, Joo Graa, Fer-
nando Pereira, and Ben Taskar. 2010. Sparsity
in dependency grammar induction. In Proceedings
of the ACL 2010 Conference Short Papers, pages
194–199. Association for Computational Linguis-
tics, July.

K. Gimpel and N. A. Smith. 2012. Concavity and ini-
tialization for unsupervised dependency parsing. In
Proc. of NAACL.

M. Held and R. M. Karp. 1970. The traveling-
salesman problem and minimum spanning trees.
Operations Research, 18(6):1138–1162.

D. Hsu, S. M Kakade, and T. Zhang. 2009. A spec-
tral algorithm for learning hidden markov models.
In COLT 2009 - The 22nd Conference on Learning
Theory.

Dan Klein and Christopher Manning. 2004. Corpus-
based induction of syntactic structure: Models of de-
pendency and constituency. In Proc. of ACL, pages
478–485, July.

D. E. Knuth. 1975. Estimating the efficiency of
backtrack programs. Mathematics of computation,
29(129):121–136.

L. Lobjois and M. Lemaı̂tre. 1998. Branch and bound
algorithm selection by performance prediction. In
Proc. of the National Conference on Artificial Intel-
ligence, pages 353–358.

Franco M. Luque, Ariadna Quattoni, Borja Balle, and
Xavier Carreras. 2012. Spectral learning for
non-deterministic dependency parsing. In Proc. of
EACL, pages 409–419, April.

Thomas L. Magnanti and Laurence A. Wolsey. 1994.
Optimal Trees. Center for Operations Research and
Econometrics.

Alexander Martin. 2000. Integer programs with block
structure. Technical Report SC-99-03, ZIB.

André Martins, Noah A. Smith, and Eric Xing. 2009.
Concise integer linear programming formulations
for dependency parsing. In Proc. of ACL-IJCNLP,
pages 342–350, August.

Garth P. McCormick. 1976. Computability of global
solutions to factorable nonconvex programs: Part
I—Convex underestimating problems. Mathemati-
cal Programming, 10(1):147–175.

453

Tahira Naseem, Harr Chen, Regina Barzilay, and Mark
Johnson. 2010. Using universal linguistic knowl-
edge to guide grammar induction. In Proc. of
EMNLP, pages 1234–1244, October.

P. M. Pardalos. 1991. Global optimization algorithms
for linearly constrained indefinite quadratic prob-
lems. Computers & Mathematics with Applications,
21(6):87–97.

Slav Petrov, Dipanjan Das, and Ryan McDonald. 2012.
A universal part-of-speech tagset. In Proc. of LREC.

Xian Qian and Yang Liu. 2013. Branch and bound al-
gorithm for dependency parsing with non-local fea-
tures. TACL, 1:37—48.

Sebastian Riedel and James Clarke. 2006. Incremental
integer linear programming for non-projective de-
pendency parsing. In Proc. of EMNLP, pages 129–
137, July.

Sebastian Riedel, David Smith, and Andrew McCal-
lum. 2012. Parse, price and cut—Delayed column
and row generation for graph based parsers. In Proc.
of EMNLP-CoNLL, pages 732–743, July.

Hanif D. Sherali and Warren P. Adams. 1990. A hi-
erarchy of relaxations between the continuous and
convex hull representations for zero-one program-
ming problems. SIAM Journal on Discrete Math-
ematics, 3(3):411–430, August.

H. Sherali and L. Liberti. 2008. Reformulation-
linearization technique for global optimization. En-
cyclopedia of Optimization, 2:3263–3268.

Hanif D. Sherali and Cihan H. Tuncbilek. 1995. A
reformulation-convexification approach for solving
nonconvex quadratic programming problems. Jour-
nal of Global Optimization, 7(1):1–31.

Noah A. Smith and Jason Eisner. 2006. Annealing
structural bias in multilingual weighted grammar in-
duction. In Proc. of COLING-ACL, pages 569–576,
July.

N.A. Smith. 2006. Novel estimation methods for unsu-
pervised discovery of latent structure in natural lan-
guage text. Ph.D. thesis, Johns Hopkins University,
Baltimore, MD.

Valentin I Spitkovsky, Hiyan Alshawi, and Daniel Ju-
rafsky. 2010a. From baby steps to leapfrog: How
Less is more in unsupervised dependency parsing.
In Proc. of HLT-NAACL, pages 751–759. Associa-
tion for Computational Linguistics, June.

Valentin I Spitkovsky, Hiyan Alshawi, Daniel Jurafsky,
and Christopher D Manning. 2010b. Viterbi train-
ing improves unsupervised dependency parsing. In
Proc. of CoNLL, pages 9–17. Association for Com-
putational Linguistics, July.

S. A. Vavasis. 1991. Nonlinear optimization: com-
plexity issues. Oxford University Press, Inc.

Qin Iris Wang, Dale Schuurmans, and Dekang Lin.
2008. Semi-supervised convex training for de-
pendency parsing. In Proc of ACL-HLT, pages
532–540. Association for Computational Linguis-
tics, June.

454

