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Abstract

Characters play an important role in the
Chinese language, yet computational pro-
cessing of Chinese has been dominated
by word-based approaches, with leaves in
syntax trees being words. We investigate
Chinese parsing from the character-level,
extending the notion of phrase-structure
trees by annotating internal structures of
words. We demonstrate the importance
of character-level information to Chinese
processing by building a joint segmen-
tation, part-of-speech (POS) tagging and
phrase-structure parsing system that inte-
grates character-structure features. Our
joint system significantly outperforms a
state-of-the-art word-based baseline on the
standard CTB5 test, and gives the best
published results for Chinese parsing.

1 Introduction

Characters play an important role in the Chinese
language. They act as basic phonetic, morpho-
syntactic and semantic units in a Chinese sentence.
Frequently-occurring character sequences that ex-
press certain meanings can be treated as words,
while most Chinese words have syntactic struc-
tures. For example, Figure 1(b) shows the struc-
ture of the word “建筑业 (construction and build-
ing industry)”, where the characters “建 (construc-
tion)” and “筑 (building)” form a coordination,
and modify the character “业 (industry)”.

However, computational processing of Chinese
is typically based on words. Words are treated
as the atomic units in syntactic parsing, machine
translation, question answering and other NLP
tasks. Manually annotated corpora, such as the
Chinese Treebank (CTB) (Xue et al., 2005), usu-
ally have words as the basic syntactic elements
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(a) CTB-style word-based syntax tree for “中国 (China)建
筑业 (architecture industry) 呈现 (show) 新 (new) 格局
(pattern)”.
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(b) character-level syntax tree with hierarchal word structures
for “中 (middle) 国 (nation) 建 (construction) 筑 (building)
业 (industry) 呈 (present) 现 (show) 新 (new) 格 (style) 局
(situation)”.

Figure 1: Word-based and character-level phrase-
structure trees for the sentence “中国建筑业呈现
新格局 (China’s architecture industry shows new
patterns)”, where “l”, “r”, “c” denote the direc-
tions of head characters (see section 2).

(Figure 1(a)). This form of annotation does not
give character-level syntactic structures for words,
a source of linguistic information that is more fun-
damental and less sparse than atomic words.

In this paper, we investigate Chinese syn-
tactic parsing with character-level information
by extending the notation of phrase-structure
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(constituent) trees, adding recursive structures of
characters for words. We manually annotate the
structures of 37,382 words, which cover the entire
CTB5. Using these annotations, we transform
CTB-style constituent trees into character-level
trees (Figure 1(b)). Our word structure corpus,
together with a set of tools to transform CTB-style
trees into character-level trees, is released at
https://github.com/zhangmeishan/wordstructures.
Our annotation work is in line with the work of
Vadas and Curran (2007) and Li (2011), which
provide extended annotations of Penn Treebank
(PTB) noun phrases and CTB words (on the
morphological level), respectively.

We build a character-based Chinese parsing
model to parse the character-level syntax trees.
Given an input Chinese sentence, our parser pro-
duces its character-level syntax trees (Figure 1(b)).
With richer information than word-level trees, this
form of parse trees can be useful for all the afore-
mentioned Chinese NLP applications.

With regard to task of parsing itself, an impor-
tant advantage of the character-level syntax trees is
that they allow word segmentation, part-of-speech
(POS) tagging and parsing to be performed jointly,
using an efficient CKY-style or shift-reduce algo-
rithm. Luo (2003) exploited this advantage by
adding flat word structures without manually an-
notation to CTB trees, and building a generative
character-based parser. Compared to a pipeline
system, the advantages of a joint system include
reduction of error propagation, and the integration
of segmentation, POS tagging and syntax features.
With hierarchical structures and head character in-
formation, our annotated words are more informa-
tive than flat word structures, and hence can bring
further improvements to phrase-structure parsing.

To analyze word structures in addition to phrase
structures, our character-based parser naturally
performs joint word segmentation, POS tagging
and parsing jointly. Our model is based on the
discriminative shift-reduce parser of Zhang and
Clark (2009; 2011), which is a state-of-the-art
word-based phrase-structure parser for Chinese.
We extend their shift-reduce framework, adding
more transition actions for word segmentation and
POS tagging, and defining novel features that cap-
ture character information. Even when trained
using character-level syntax trees with flat word
structures, our joint parser outperforms a strong
pipelined baseline that consists of a state-of-the-
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(a) subject-predicate.
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(b) verb-object.
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(d) modifier-noun.

Figure 2: Inner word structures of “库存 (reper-
tory)”,“考古 (archaeology)”, “科技 (science and
technology)” and “败类 (degenerate)”.

art joint segmenter and POS tagger, and our base-
line word-based parser. Our word annotations lead
to further improvements to the joint system, espe-
cially for phrase-structure parsing accuracy.

Our parser work falls in line with recent work
of joint segmentation, POS tagging and parsing
(Hatori et al., 2012; Li and Zhou, 2012; Qian
and Liu, 2012). Compared with related work,
our model gives the best published results for
joint segmentation and POS tagging, as well as
joint phrase-structure parsing on standard CTB5
evaluations. With linear-time complexity, our
parser is highly efficient, processing over 30 sen-
tences per second with a beam size of 16. An
open release of the parser is freely available at
http://sourceforge.net/projects/zpar/, version 0.6.

2 Word Structures and Syntax Trees

The Chinese language is a character-based lan-
guage. Unlike alphabetical languages, Chinese
characters convey meanings, and the meaning of
most Chinese words takes roots in their charac-
ter. For example, the word “计算机 (computer)” is
composed of the characters “计 (count)”, “算 (cal-
culate)” and “机 (machine)”. An informal name of
“computer” is “电脑”, which is composed of “电
(electronic)” and “脑 (brain)”.

Chinese words have internal structures (Xue,
2001; Ma et al., 2012). The way characters inter-
act within words can be similar to the way words
interact within phrases. Figure 2 shows the struc-
tures of the four words “库存 (repertory)”, “考古
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Figure 3: Character-level word structure of “卧虎
藏龙 (crouching tiger hidden dragon)”.

(archaeology)”, “科技 (science and technology)”
and “败类 (degenerate)”, which demonstrate
four typical syntactic structures of two-character
words, including subject-predicate, verb-object,
coordination and modifier-noun structures. Multi-
character words can also have recursive syntac-
tic structures. Figure 3 illustrates the structure
of the word “卧虎藏龙 (crouching tiger hidden
dragon)”, which is composed of two subwords “卧
虎 (crouching tiger)” and “藏龙 (hidden dragon)”,
both having a modifier-noun structure.

The meaning of characters can be a useful
source of information for computational process-
ing of Chinese, and some recent work has started
to exploit this information. Zhang and Clark
(2010) found that the first character in a Chinese
word is a useful indicator of the word’s POS. They
made use of this information to help joint word
segmentation and POS tagging.

Li (2011) studied the morphological structures
of Chinese words, showing that 35% percent of
the words in CTB5 can be treated as having mor-
phemes. Figure 4(a) illustrates the morphological
structures of the words “ 朋友们 (friends)” and
“教育界 (educational world)”, in which the char-
acters “们 (plural)” and “界 (field)” can be treated
as suffix morphemes. They studied the influence
of such morphology to Chinese dependency pars-
ing (Li and Zhou, 2012).

The aforementioned work explores the influ-
ence of particular types of characters to Chinese
processing, yet not the full potentials of complete
word structures. We take one step further in this
line of work, annotating the full syntactic struc-
tures of 37,382 Chinese words in the form of Fig-
ure 2 and Figure 3. Our annotation covers the
entire vocabulary of CTB5. In addition to dif-
ference in coverage (100% vs 35%), our annota-
tion is structurally more informative than that of
Li (2011), as illustrated in Figure 4(b).

Our annotations are binarized recursive word
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(a) morphological-level word structures, where “f” de-
notes a special mark for fine-grained words.
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(b) character-level word structures.

Figure 4: Comparison between character-level and
morphological-level word structures.

structures. For each word or subword, we spec-
ify its POS and head direction. We use “l”, “r”
and “c” to indicate the “left”, “right” and “coordi-
nation” head directions, respectively. The “coor-
dination” direction is mostly used in coordination
structures, while a very small number of translit-
eration words, such as “奥巴马 (Obama)” and “洛
杉矶 (Los Angeles)”, have flat structures, and we
use “coordination” for their left binarization. For
leaf characters, we follow previous work on word
segmentation (Xue, 2003; Ng and Low, 2004), and
use “b” and “i” to indicate the beginning and non-
beginning characters of a word, respectively.

The vast majority of words do not have struc-
tural ambiguities. However, the structures of some
words may vary according to different POS. For
example, “制服” means “dominate” when it is
tagged as a verb, of which the head is the left char-
acter; the same word means “uniform dress” when
tagged as a noun, of which the head is the right
character. Thus the input of the word structure
annotation is a word together with its POS. The
annotation work was conducted by three persons,
with one person annotating the entire corpus, and
the other two checking the annotations.

Using our annotations, we can extend CTB-
style syntax trees (Figure 1(a)) into character-
level trees (Figure 1(b)). In particular, we mark
the original nodes that represent POS tags in CTB-
style trees with “-t”, and insert our word structures
as unary subnodes of the “-t” nodes. For the rest
of the paper, we refer to the “-t” nodes as full-word
nodes, all nodes above full-word nodes as phrase
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nodes, and all nodes below full-word nodes as sub-
word nodes.

Our character-level trees contain additional syn-
tactic information, which are potentially useful to
Chinese processing. For example, the head char-
acters of words can be populated up to phrase-
level nodes, and serve as an additional source of
information that is less sparse than head words. In
this paper, we build a parser that yields character-
level trees from raw character sequences. In addi-
tion, we use this parser to study the effects of our
annotations to character-based statistical Chinese
parsing, showing that they are useful in improving
parsing accuracies.

3 Character-based Chinese Parsing

To produce character-level trees for Chinese
NLP tasks, we develop a character-based parsing
model, which can jointly perform word segmen-
tation, POS tagging and phrase-structure parsing.
To our knowledge, this is the first work to develop
a transition-based system that jointly performs the
above three tasks. Trained using annotated word
structures, our parser also analyzes the internal
structures of Chinese words.

Our character-based Chinese parsing model is
based on the work of Zhang and Clark (2009),
which is a transition-based model for lexicalized
constituent parsing. They use a beam-search de-
coder so that the transition action sequence can be
globally optimized. The averaged perceptron with
early-update (Collins and Roark, 2004) is used to
train the model parameters. Their transition sys-
tem contains four kinds of actions: (1) SHIFT,
(2) REDUCE-UNARY, (3) REDUCE-BINARY and
(4) TERMINATE. The system can provide bina-
rzied CFG trees in Chomsky Norm Form, and they
present a reversible conversion procedure to map
arbitrary CFG trees into binarized trees.

In this work, we remain consistent with their
work, using the head-finding rules of Zhang and
Clark (2008), and the same binarization algo-
rithm.1 We apply the same beam-search algorithm
for decoding, and employ the averaged perceptron
with early-update to train our model.

We make two extensions to their work to en-
able joint segmentation, POS tagging and phrase-
structure parsing from the character level. First,
we modify the actions of the transition system for

1We use a left-binarization process for flat word structures
that contain more than two characters.

S2

stack

...

...

queue

Q0 Q1
...S1

S1l S1r

... ...

S0

S0l S0r

... ...

Figure 5: A state in a transition-based model.

parsing the inner structures of words. Second, we
extend the feature set for our parsing problem.

3.1 The Transition System
In a transition-based system, an input sentence is
processed in a linear left-to-right pass, and the
output is constructed by a state-transition pro-
cess. We learn a model for scoring the transi-
tion Ai from one state STi to the next STi+1. As
shown in Figure 5, a state ST consists of a stack
S and a queue Q, where S = (· · · , S1, S0) con-
tains partially constructed parse trees, and Q =
(Q0, Q1, · · · , Qn−j) = (cj , cj+1, · · · , cn) is the
sequence of input characters that have not been
processed. The candidate transition action A at
each step is defined as follows:

• SHIFT-SEPARATE(t): remove the head
character cj from Q, pushing a subword node
S′
cj

2 onto S, assigning S′.t = t. Note that the
parse tree S0 must correspond to a full-word
or a phrase node, and the character cj is the
first character of the next word. The argu-
ment t denotes the POS of S′.

• SHIFT-APPEND: remove the head character
cj from Q, pushing a subword node S′

cj
onto

S. cj will eventually be combined with all the
subword nodes on top of S to form a word,
and thus we must have S′.t = S0.t.

• REDUCE-SUBWORD(d): pop the top two
nodes S0 and S1 off S, pushing a new sub-
word node S′

S1 S0
onto S. The argument d

denotes the head direction of S′, of which
the value can be “left”, “right” or “coordi-
nation”.3 Both S0 and S1 must be subword
nodes and S′.t = S0.t = S1.t.

2We use this notation for a compact representation of a
tree node, where the numerator represents a father node, and
the denominator represents the children.

3For the head direction “coordination”, we extract the
head character from the left node.
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Category Feature templates When to Apply

Structure S0ntl S0nwl S1ntl S1nwl S2ntl S2nwl S3ntl S3nwl, All
features Q0c Q1c Q2c Q3c Q0c ·Q1c Q1c ·Q2c Q2c ·Q3c,

S0ltwl S0rtwl S0utwl S1ltwl S1rtwl S1utwl,
S0nw · S1nw S0nw · S1nl S0nl · S1nw S0nl · S1nl,
S0nw ·Q0c S0nl ·Q0c S1nw ·Q0c S1nlQ0c,
S0nl · S1nl · S2nl S0nw · S1nl · S2nl S0nl · S1nw · S2nl S0nl · S1nl · S2nw,
S0nw · S1nl ·Q0c S0nl · S1nw ·Q0c S0nl · S1nl ·Q0c,
S0ncl S0nct S0nctl S1ncl S1nct S1nctl,
S2ncl S2nct S2nctl S3ncl S3nct S3nctl,
S0nc · S1nc S0ncl · S1nl S0nl · S1ncl S0ncl · S1ncl,
S0nc ·Q0c S0nl ·Q0c S1nc ·Q0c S1nl ·Q0c,
S0nc · S1nc ·Q0c S0nc · S1nc ·Q0c ·Q1c

start(S0w) · start(S1w) start(S0w) · end(S1w), REDUCE-SUBWORD

indict(S1wS0w) · len(S1wS0w) indict(S1wS0w, S0t) · len(S1wS0w)

String t−1 · t0 t−2 · t−1t0 w−1 · t0 c0 · t0 start(w−1) · t0 c−1 · c0 · t−1 · t0, SHIFT-SEPARATE

features w−1 w−2 · w−1 w−1,where len(w−1) = 1 end(w−1) · c0, REDUCE-WORD

start(w−1) · len(w−1) end(w−1) · len(w−1) start(w−1) · end(w−1),
w−1 · c0 end(w−2) · w−1 start(w−1) · c0 end(w−2) · end(w−1),
w−1 · len(w−2) w−2 · len(w−1) w−1 · t−1 w−1 · t−2 w−1 · t−1 · c0,
w−1 · t−1 · end(w−2) c−2 · c−1 · c0 · t−1,where len(w−1) = 1 end(w−1) · t−1,
c · t−1 · end(w−1),where c ∈ w−1 and c 6= end(w−1)

c0 · t−1 c−1 · c0 start(w−1) · c0t−1 c−1 · c0 · t−1 SHIFT-APPEND

Table 1: Feature templates for the character-level parser. The function start(·), end(·) and len(·) denote
the first character, the last character and the length of a word, respectively.

• REDUCE-WORD: pop the top node S0 off S,
pushing a full-word node S′

S0
onto S. This re-

duce action generates a full-word node from
S0, which must be a subword node.

• REDUCE-BINARY(d, l): pop the top two
nodes S0 and S1 off S, pushing a binary
phrase node S′

S1 S0
onto S. The argument l

denotes the constituent label of S′, and the ar-
gument d specifies the lexical head direction
of S′, which can be either “left” or “right”.
Both S0 and S1 must be a full-word node or
a phrase node.

• REDUCE-UNARY(l): pop the top node S0

off S, pushing a unary phrase node S′
S0

onto
S. l denotes the constituent label of S′.

• TERMINATE: mark parsing complete.

Compared to set of actions in our baseline
transition-based phrase-structure parser, we have
made three major changes. First, we split the orig-
inal SHIFT action into SHIFT-SEPARATE(t)
and SHIFT-APPEND, which jointly perform the
word segmentation and POS tagging tasks. Sec-
ond, we add an extra REDUCE-SUBWORD(d) op-
eration, which is used for parsing the inner struc-

tures of words. Third, we add REDUCE-WORD,
which applies a unary rule to mark a completed
subword node as a full-word node. The new node
corresponds to a unary “-t” node in Figure 1(b).

3.2 Features

Table 1 shows the feature templates of our model.
The feature set consists of two categories: (1)
structure features, which encode the structural in-
formation of subwords, full-words and phrases.
(2) string features, which encode the information
of neighboring characters and words.

For the structure features, the symbols S0, S1,
S2, S3 represent the top four nodes on the stack;
Q0, Q1, Q2, Q3 denote the first four characters
in the queue; S0l, S0r, S0u represent the left,
right child for a binary branching S0, and the sin-
gle child for a unary branching S0, respectively;
S1l, S1r, S1u represent the left, right child for
a binary branching S1, and the single child for
a unary branching S1, respectively; n represents
the type for a node; it is a binary value that indi-
cates whether the node is a subword node; c, w,
t and l represent the head character, word (or sub-
word), POS tag and constituent label of a node, re-
spectively. The structure features are mostly taken
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from the work of Zhang and Clark (2009). The
feature templates in bold are novel, are designed
to encode head character information. In particu-
lar, the indict function denotes whether a word is
in a tag dictionary, which is collected by extract-
ing all multi-character subwords that occur more
than five times in the training corpus.

For string features, c0, c−1 and c−2 represent
the current character and its previous two charac-
ters, respectively; w−1 and w−2 represent the pre-
vious two words to the current character, respec-
tively; t0, t−1 and t−2 represent the POS tags of
the current word and the previous two words, re-
spectively. The string features are used for word
segmentation and POS tagging, and are adapted
from a state-of-the-art joint segmentation and tag-
ging model (Zhang and Clark, 2010).

In summary, our character-based parser con-
tains the word-based features of constituent parser
presented in Zhang and Clark (2009), the word-
based and shallow character-based features of
joint word segmentation and POS tagging pre-
sented in Zhang and Clark (2010), and addition-
ally the deep character-based features that encode
word structure information, which are the first pre-
sented by this paper.

4 Experiments

4.1 Setting

We conduct our experiments on the CTB5 cor-
pus, using the standard split of data, with sections
1–270,400–931 and 1001–1151 for training, sec-
tions 301–325 for system development, and sec-
tions 271–300 for testing. We apply the same pre-
processing step as Harper and Huang (2011), so
that the non-terminal yield unary chains are col-
lapsed to single unary rules.

Since our model can jointly process word seg-
mentation, POS tagging and phrase-structure pars-
ing, we evaluate our model for the three tasks, re-
spectively. For word segmentation and POS tag-
ging, standard metrics of word precision, recall
and F-score are used, where the tagging accuracy
is the joint accuracy of word segmentation and
POS tagging. For phrase-structure parsing, we
use the standard parseval evaluation metrics on
bracketing precision, recall and F-score. As our
constituent trees are based on characters, we fol-
low previous work and redefine the boundary of
a constituent span by its start and end characters.
In addition, we evaluate the performance of word
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Figure 6: Accuracies against the training epoch
for joint segmentation and tagging as well as joint
phrase-structure parsing using beam sizes 1, 4, 16
and 64, respectively.

structures, using the word precision, recall and F-
score metrics. A word structure is correct only if
the word and its internal structure are both correct.

4.2 Development Results

Figure 6 shows the accuracies of our model using
different beam sizes with respect to the training
epoch. The performance of our model increases
as the beam size increases. The amount of in-
creases becomes smaller as the size of the beam
grows larger. Tested using gcc 4.7.2 and Fedora
17 on an Intel Core i5-3470 CPU (3.20GHz), the
decoding speeds are 318.2, 98.0, 30.3 and 7.9 sen-
tences per second with beam size 1, 4, 16 and 64,
respectively. Based on this experiment, we set the
beam size 64 for the rest of our experiments.

The character-level parsing model has the ad-
vantage that deep character information can be ex-
tracted as features for parsing. For example, the
head character of a word is exploited in our model.
We conduct feature ablation experiments to eval-
uate the effectiveness of these features. We find
that the parsing accuracy decreases about 0.6%
when the head character related features (the bold
feature templates in Table 1) are removed, which
demonstrates the usefulness of these features.

4.3 Final Results

In this section, we present the final results of our
model, and compare it to two baseline systems, a
pipelined system and a joint system that is trained
with automatically generated flat words structures.

The baseline pipelined system consists of the
joint segmentation and tagging model proposed by
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Task P R F
Pipeline Seg 97.35 98.02 97.69

Tag 93.51 94.15 93.83
Parse 81.58 82.95 82.26

Flat word Seg 97.32 98.13 97.73
structures Tag 94.09 94.88 94.48

Parse 83.39 83.84 83.61
Annotated Seg 97.49 98.18 97.84
word structures Tag 94.46 95.14 94.80

Parse 84.42 84.43 84.43
WS 94.02 94.69 94.35

Table 2: Final results on test corpus.

Zhang and Clark (2010), and the phrase-structure
parsing model of Zhang and Clark (2009). Both
models give state-of-the-art performances, and are
freely available.4 The model for joint segmen-
tation and POS tagging is trained with a 16-
beam, since it achieves the best performance. The
phrase-structure parsing model is trained with a
64-beam. We train the parsing model using the
automatically generated POS tags by 10-way jack-
knifing, which gives about 1.5% increases in pars-
ing accuracy when tested on automatic segmented
and POS tagged inputs.

The joint system trained with flat word struc-
tures serves to test the effectiveness of our joint
parsing system over the pipelined baseline, since
flat word structures do not contain additional
sources of information over the baseline. It is also
used to test the usefulness of our annotation in im-
proving parsing accuracy.

Table 2 shows the final results of our model
and the two baseline systems on the test data.
We can see that both character-level joint mod-
els outperform the pipelined system; our model
with annotated word structures gives an improve-
ment of 0.97% in tagging accuracy and 2.17% in
phrase-structure parsing accuracy. The results also
demonstrate that the annotated word structures are
highly effective for syntactic parsing, giving an ab-
solute improvement of 0.82% in phrase-structure
parsing accuracy over the joint model with flat
word structures.

Row “WS” in Table 2 shows the accuracy of
hierarchical word-structure recovery of our joint
system. This figure can be useful for high-level ap-
plications that make use of character-level trees by

4http://sourceforge.net/projects/zpar/, version 0.5.

our parser, as it reflects the capability of our parser
in analyzing word structures. In particular, the per-
formance of parsing OOV word structure is an im-
portant metric of our parser. The recall of OOV
word structures is 60.43%, while if we do not con-
sider the influences of segmentation and tagging
errors, counting only the correctly segmented and
tagged words, the recall is 87.96%.

4.4 Comparison with Previous Work

In this section, we compare our model to previous
systems on the performance of joint word segmen-
tation and POS tagging, and the performance of
joint phrase-structure parsing.

Table 3 shows the results. Kruengkrai+ ’09
denotes the results of Kruengkrai et al. (2009),
which is a lattice-based joint word segmentation
and POS tagging model; Sun ’11 denotes a sub-
word based stacking model for joint segmenta-
tion and POS tagging (Sun, 2011), which uses a
dictionary of idioms; Wang+ ’11 denotes a semi-
supervised model proposed by Wang et al. (2011),
which additionally uses the Chinese Gigaword
Corpus; Li ’11 denotes a generative model that
can perform word segmentation, POS tagging and
phrase-structure parsing jointly (Li, 2011); Li+
’12 denotes a unified dependency parsing model
that can perform joint word segmentation, POS
tagging and dependency parsing (Li and Zhou,
2012); Li ’11 and Li+ ’12 exploited annotated
morphological-level word structures for Chinese;
Hatori+ ’12 denotes an incremental joint model
for word segmentation, POS tagging and depen-
dency parsing (Hatori et al., 2012); they use exter-
nal dictionary resources including HowNet Word
List and page names from the Chinese Wikipedia;
Qian+ ’12 denotes a joint segmentation, POS tag-
ging and parsing system using a unified frame-
work for decoding, incorporating a word segmen-
tation model, a POS tagging model and a phrase-
structure parsing model together (Qian and Liu,
2012); their word segmentation model is a combi-
nation of character-based model and word-based
model. Our model achieved the best performance
on both joint segmentation and tagging as well as
joint phrase-structure parsing.

Our final performance on constituent parsing is
by far the best that we are aware of for the Chinese
data, and even better than some state-of-the-art
models with gold segmentation. For example, the
un-lexicalized PCFG model of Petrov and Klein
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System Seg Tag Parse
Kruengkrai+ ’09 97.87 93.67 –
Sun ’11 98.17* 94.02* –
Wang+ ’11 98.11* 94.18* –
Li ’11 97.3 93.5 79.7
Li+ ’12 97.50 93.31 –
Hatori+ ’12 98.26* 94.64* –
Qian+ ’12 97.96 93.81 82.85
Ours pipeline 97.69 93.83 82.26
Ours joint flat 97.73 94.48 83.61
Ours joint annotated 97.84 94.80 84.43

Table 3: Comparisons of our final model with
state-of-the-art systems, where “*” denotes that
external dictionary or corpus has been used.

(2007) achieves 83.45%5 in parsing accuracy on
the test corpus, and our pipeline constituent pars-
ing model achieves 83.55% with gold segmenta-
tion. They are lower than the performance of our
character-level model, which is 84.43% without
gold segmentation. The main differences between
word-based and character-level parsing models are
that character-level model can exploit character
features. This further demonstrates the effective-
ness of characters in Chinese parsing.

5 Related Work

Recent work on using the internal structure of
words to help Chinese processing gives impor-
tant motivations to our work. Zhao (2009) stud-
ied character-level dependencies for Chinese word
segmentation by formalizing segmentsion task in
a dependency parsing framework. Their results
demonstrate that annotated word dependencies
can be helpful for word segmentation. Li (2011)
pointed out that the word’s internal structure is
very important for Chinese NLP. They annotated
morphological-level word structures, and a unified
generative model was proposed to parse the Chi-
nese morphological and phrase-structures. Li and
Zhou (2012) also exploited the morphological-
level word structures for Chinese dependency
parsing. They proposed a unified transition-based
model to parse the morphological and depen-
dency structures of a Chinese sentence in a unified
framework. The morphological-level word struc-

5We rerun the parser and evaluate it using the publicly-
available code on http://code.google.com/p/berkeleyparser
by ourselves, since we have a preprocessing step for the
CTB5 corpus.

tures concern only prefixes and suffixes, which
cover only 35% of entire words in CTB. Accord-
ing to their results, the final performances of their
model on word segmentation and POS tagging are
below the state-of-the-art joint segmentation and
POS tagging models. Compared to their work,
we consider the character-level word structures
for Chinese parsing, presenting a unified frame-
work for segmentation, POS tagging and phrase-
structure parsing. We can achieve improved seg-
mentation and tagging performance.

Our character-level parsing model is inspired
by the work of Zhang and Clark (2009), which
is a transition-based model with a beam-search
decoder for word-based constituent parsing. Our
work is based on the shift-reduce operations of
their work, while we introduce additional opera-
tions for segmentation and POS tagging. By such
an extension, our model can include all the fea-
tures in their work, together with the features for
segmentation and POS tagging. In addition, we
propose novel features related to word structures
and interactions between word segmentation, POS
tagging and word-based constituent parsing.

Luo (2003) was the first work to introduce the
character-based syntax parsing. They use it as
a joint framework to perform Chinese word seg-
mentation, POS tagging and syntax parsing. They
exploit a generative maximum entropy model for
character-based constituent parsing, and find that
POS information is very useful for Chinese word
segmentation, but high-level syntactic information
seems to have little effect on segmentation. Com-
pared to their work, we use a transition-based dis-
criminative model, which can benefit from large
amounts of flexible features. In addition, in-
stead of using flat structures, we manually anno-
tate hierarchal tree structures of Chinese words
for converting word-based constituent trees into
character-based constituent trees.

Hatori et al. (2012) proposed the first joint work
for the word segmentation, POS tagging and de-
pendency parsing. They used a single transition-
based model to perform the three tasks. Their
work demonstrates that a joint model can improve
the performance of the three tasks, particularly
for POS tagging and dependency parsing. Qian
and Liu (2012) proposed a joint decoder for word
segmentation, POS tagging and word-based con-
stituent parsing, although they trained models for
the three tasks separately. They reported better
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performances when using a joint decoder. In our
work, we employ a single character-based dis-
criminative model to perform segmentation, POS
tagging and phrase-structure parsing jointly, and
study the influence of annotated word structures.

6 Conclusions and Future Work

We studied the internal structures of more than
37,382 Chinese words, analyzing their structures
as the recursive combinations of characters. Using
these word structures, we extended the CTB into
character-level trees, and developed a character-
based parser that builds such trees from raw char-
acter sequences. Our character-based parser per-
forms segmentation, POS tagging and parsing
simultaneously, and significantly outperforms a
pipelined baseline. We make both our annotations
and our parser available online.

In summary, our contributions include:

• We annotated the internal structures of Chi-
nese words, which are potentially useful
to character-based studies of Chinese NLP.
We extend CTB-style constituent trees into
character-level trees using our annotations.

• We developed a character-based parsing
model that can produce our character-level
constituent trees. Our parser jointly performs
word segmentation, POS tagging and syntac-
tic parsing.

• We investigated the effectiveness of our joint
parser over pipelined baseline, and the effec-
tiveness of our annotated word structures in
improving parsing accuracies.

Future work includes investigations of our
parser and annotations on Chinese NLP tasks.
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