
Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics, pages 650–658,
Uppsala, Sweden, 11-16 July 2010. c©2010 Association for Computational Linguistics

Comparable Entity Mining from Comparative Questions

Shasha Li
1，Chin-Yew Lin

2，Young-In Song
2，Zhoujun Li

3

1
National University of Defense Technology, Changsha, China

2
Microsoft Research Asia, Beijing, China

3
Beihang University, Beijing, China

shashali@nudt.edu.cn
1
, {cyl,yosong}@microsoft.com

2
,

lizj@buaa.edu.cn
3

Abstract

Comparing one thing with another is a typical

part of human decision making process. How-

ever, it is not always easy to know what to

compare and what are the alternatives. To ad-

dress this difficulty, we present a novel way to

automatically mine comparable entities from

comparative questions that users posted on-

line. To ensure high precision and high recall,

we develop a weakly-supervised bootstrapping

method for comparative question identification

and comparable entity extraction by leveraging

a large online question archive. The experi-

mental results show our method achieves F1-

measure of 82.5% in comparative question

identification and 83.3% in comparable entity

extraction. Both significantly outperform an

existing state-of-the-art method.

1 Introduction

Comparing alternative options is one essential

step in decision-making that we carry out every

day. For example, if someone is interested in cer-

tain products such as digital cameras, he or she

would want to know what the alternatives are

and compare different cameras before making a

purchase. This type of comparison activity is

very common in our daily life but requires high

knowledge skill. Magazines such as Consumer

Reports and PC Magazine and online media such

as CNet.com strive in providing editorial com-

parison content and surveys to satisfy this need.

In the World Wide Web era, a comparison ac-

tivity typically involves: search for relevant web

pages containing information about the targeted

products, find competing products, read reviews,

and identify pros and cons. In this paper, we fo-

cus on finding a set of comparable entities given

a user‟s input entity. For example, given an enti-

ty, Nokia N95 (a cellphone), we want to find

comparable entities such as Nokia N82, iPhone

and so on.

In general, it is difficult to decide if two enti-

ties are comparable or not since people do com-

pare apples and oranges for various reasons. For

example, “Ford” and “BMW” might be compa-

rable as “car manufacturers” or as “market seg-

ments that their products are targeting”, but we

rarely see people comparing “Ford Focus” (car

model) and “BMW 328i”. Things also get more

complicated when an entity has several functio-

nalities. For example, one might compare

“iPhone” and “PSP” as “portable game player”

while compare “iPhone” and “Nokia N95” as

“mobile phone”. Fortunately, plenty of compara-

tive questions are posted online, which provide

evidences for what people want to compare, e.g.

“Which to buy, iPod or iPhone?”. We call “iPod”

and “iPhone” in this example as comparators. In

this paper, we define comparative questions and

comparators as:

 Comparative question: A question that in-

tends to compare two or more entities and it

has to mention these entities explicitly in the

question.

 Comparator: An entity which is a target of

comparison in a comparative question.

According to these definitions, Q1 and Q2 be-

low are not comparative questions while Q3 is.

“iPod Touch” and “Zune HD” are comparators.

Q1: “Which one is better?”

Q2: “Is Lumix GH-1 the best camera?”

Q3: “What‟s the difference between iPod

Touch and Zune HD?”

The goal of this work is mining comparators

from comparative questions. The results would

be very useful in helping users‟ exploration of

650

alternative choices by suggesting comparable

entities based on other users‟ prior requests.

To mine comparators from comparative ques-

tions, we first have to detect whether a question

is comparative or not. According to our defini-

tion, a comparative question has to be a question

with intent to compare at least two entities.

Please note that a question containing at least

two entities is not a comparative question if it

does not have comparison intent. However, we

observe that a question is very likely to be a

comparative question if it contains at least two

entities. We leverage this insight and develop a

weakly supervised bootstrapping method to iden-

tify comparative questions and extract compara-

tors simultaneously.

To our best knowledge, this is the first attempt

to specially address the problem on finding good

comparators to support users‟ comparison activi-

ty. We are also the first to propose using com-

parative questions posted online that reflect what

users truly care about as the medium from which

we mine comparable entities. Our weakly super-

vised method achieves 82.5% F1-measure in

comparative question identification, 83.3% in

comparator extraction, and 76.8% in end-to-end

comparative question identification and compa-

rator extraction which outperform the most rele-

vant state-of-the-art method by Jindal & Liu

(2006b) significantly.

The rest of this paper is organized as follows.

The next section discusses previous works. Sec-

tion 3 presents our weakly-supervised method for

comparator mining. Section 4 reports the evalua-

tions of our techniques, and we conclude the pa-

per and discuss future work in Section 5.

2 Related Work

2.1 Overview

In terms of discovering related items for an enti-

ty, our work is similar to the research on recom-

mender systems, which recommend items to a

user. Recommender systems mainly rely on simi-

larities between items and/or their statistical cor-

relations in user log data (Linden et al., 2003).

For example, Amazon recommends products to

its customers based on their own purchase histo-

ries, similar customers‟ purchase histories, and

similarity between products. However, recom-

mending an item is not equivalent to finding a

comparable item. In the case of Amazon, the

purpose of recommendation is to entice their cus-

tomers to add more items to their shopping carts

by suggesting similar or related items. While in

the case of comparison, we would like to help

users explore alternatives, i.e. helping them make

a decision among comparable items.

For example, it is reasonable to recommend

“iPod speaker” or “iPod batteries” if a user is

interested in “iPod”, but we would not compare

them with “iPod”. However, items that are com-

parable with “iPod” such as “iPhone” or “PSP”

which were found in comparative questions post-

ed by users are difficult to be predicted simply

based on item similarity between them. Although

they are all music players, “iPhone” is mainly a

mobile phone, and “PSP” is mainly a portable

game device. They are similar but also different

therefore beg comparison with each other. It is

clear that comparator mining and item recom-

mendation are related but not the same.

Our work on comparator mining is related to

the research on entity and relation extraction in

information extraction (Cardie, 1997; Califf and

Mooney, 1999; Soderland, 1999; Radev et al.,

2002; Carreras et al., 2003). Specifically, the

most relevant work is by Jindal and Liu (2006a

and 2006b) on mining comparative sentences and

relations. Their methods applied class sequential

rules (CSR) (Chapter 2, Liu 2006) and label se-

quential rules (LSR) (Chapter 2, Liu 2006)

learned from annotated corpora to identify com-

parative sentences and extract comparative rela-

tions respectively in the news and review do-

mains. The same techniques can be applied to

comparative question identification and compa-

rator mining from questions. However, their me-

thods typically can achieve high precision but

suffer from low recall (Jindal and Liu, 2006b)

(J&L). However, ensuring high recall is crucial

in our intended application scenario where users

can issue arbitrary queries. To address this prob-

lem, we develop a weakly-supervised bootstrap-

ping pattern learning method by effectively leve-

raging unlabeled questions.

Bootstrapping methods have been shown to be

very effective in previous information extraction

research (Riloff, 1996; Riloff and Jones, 1999;

Ravichandran and Hovy, 2002; Mooney and Bu-

nescu, 2005; Kozareva et al., 2008). Our work is

similar to them in terms of methodology using

bootstrapping technique to extract entities with a

specific relation. However, our task is different

from theirs in that it requires not only extracting

entities (comparator extraction) but also ensuring

that the entities are extracted from comparative

questions (comparative question identification),

which is generally not required in IE task.

651

2.2 Jindal & Liu 2006

In this subsection, we provide a brief summary

of the comparative mining method proposed by

Jindal and Liu (2006a and 2006b), which is used

as baseline for comparison and represents the

state-of-the-art in this area. We first introduce

the definition of CSR and LSR rule used in their

approach, and then describe their comparative

mining method. Readers should refer to J&L‟s

original papers for more details.

CSR and LSR

CSR is a classification rule. It maps a sequence

pattern S(𝑠1𝑠2 …𝑠𝑛) to a class C. In our problem,

C is either comparative or non-comparative.

Given a collection of sequences with class in-

formation, every CSR is associated to two para-

meters: support and confidence. Support is the

proportion of sequences in the collection contain-

ing S as a subsequence. Confidence is the propor-

tion of sequences labeled as C in the sequences

containing the S. These parameters are important

to evaluate whether a CSR is reliable or not.

LSR is a labeling rule. It maps an input se-

quence pattern 𝑆(𝑠1𝑠2 …𝑠𝑖 …𝑠𝑛) to a labeled

sequence 𝑆′(𝑠1𝑠2 … 𝑙𝑖 …𝑠𝑛) by replacing one to-

ken (𝑠𝑖) in the input sequence with a designated

label (𝑙𝑖). This token is referred as the anchor.

The anchor in the input sequence could be ex-

tracted if its corresponding label in the labeled

sequence is what we want (in our case, a compa-

rator). LSRs are also mined from an annotated

corpus, therefore each LSR also have two para-

meters: support and confidence. They are simi-

larly defined as in CSR.

Supervised Comparative Mining Method

J&L treated comparative sentence identification

as a classification problem and comparative rela-

tion extraction as an information extraction prob-

lem. They first manually created a set of 83 key-

words such as beat, exceed, and outperform that

are likely indicators of comparative sentences.

These keywords were then used as pivots to

create part-of-speech (POS) sequence data. A

manually annotated corpus with class informa-

tion, i.e. comparative or non-comparative, was

used to create sequences and CSRs were mined.

A Naïve Bayes classifier was trained using the

CSRs as features. The classifier was then used to

identify comparative sentences.

Given a set of comparative sentences, J&L

manually annotated two comparators with labels

$ES1 and $ES2 and the feature compared with

label $FT for each sentence. J&L‟s method was

only applied to noun and pronoun. To differen-

tiate noun and pronoun that are not comparators

or features, they added the fourth label $NEF, i.e.

non-entity-feature. These labels were used as

pivots together with special tokens li & rj
1
 (token

position), #start (beginning of a sentence), and

#end (end of a sentence) to generate sequence

data, sequences with single label only and mini-

mum support greater than 1% are retained, and

then LSRs were created. When applying the

learned LSRs for extraction, LSRs with higher

confidence were applied first.

J&L‟s method have been proved effective in

their experimental setups. However, it has the

following weaknesses:

 The performance of J&L‟s method relies

heavily on a set of comparative sentence in-

dicative keywords. These keywords were

manually created and they offered no guide-

lines to select keywords for inclusion. It is

also difficult to ensure the completeness of

the keyword list.

 Users can express comparative sentences or

questions in many different ways. To have

high recall, a large annotated training corpus

is necessary. This is an expensive process.

 Example CSRs and LSRs given in Jindal &

Liu (2006b) are mostly a combination of

POS tags and keywords. It is a surprise that

their rules achieved high precision but low

recall. They attributed most errors to POS

tagging errors. However, we suspect that

their rules might be too specific and overfit

their small training set (about 2,600 sen-

tences). We would like to increase recall,

avoid overfitting, and allow rules to include

discriminative lexical tokens to retain preci-

sion.

In the next section, we introduce our method to

address these shortcomings.

3 Weakly Supervised Method for Com-

parator Mining

Our weakly supervised method is a pattern-based

approach similar to J&L‟s method, but it is dif-

ferent in many aspects: Instead of using separate

CSRs and LSRs, our method aims to learn se-

1 li marks a token is at the i

th
position to the left of the pivot

and rj marks a token is at j
th
 position to the right of the

pivot where i and j are between 1 and 4 in J&L (2006b).

652

quential patterns which can be used to identify

comparative question and extract comparators

simultaneously.

In our approach, a sequential pattern is defined

as a sequence S(s1s2 … si … sn) where si can be a

word, a POS tag, or a symbol denoting either a

comparator ($C), or the beginning (#start) or the

end of a question (#end). A sequential pattern is

called an indicative extraction pattern (IEP) if it

can be used to identify comparative questions

and extract comparators in them with high relia-

bility. We will formally define the reliability

score of a pattern in the next section.

Once a question matches an IEP, it is classified

as a comparative question and the token se-

quences corresponding to the comparator slots in

the IEP are extracted as comparators. When a

question can match multiple IEPs, the longest

IEP is used
2
. Therefore, instead of manually

creating a list of indicative keywords, we create a

set of IEPs. We will show how to acquire IEPs

automatically using a bootstrapping procedure

with minimum supervision by taking advantage

of a large unlabeled question collection in the

following subsections. The evaluations shown in

section 4 confirm that our weakly supervised

method can achieve high recall while retain high

precision.

This pattern definition is inspired by the work

of Ravichandran and Hovy (2002). Table 1

shows some examples of such sequential pat-

terns. We also allow POS constraint on compara-

tors as shown in the pattern “<, $C/NN or $C/NN

? #end>”. It means that a valid comparator must

have a NN POS tag.

3.1 Mining Indicative Extraction Patterns

Our weakly supervised IEP mining approach is

based on two key assumptions:

2 It is because the longest IEP is likely to be the most specif-

ic and relevant pattern for the given question.

Figure 1: Overview of the bootstrapping alogorithm

 If a sequential pattern can be used to extract

many reliable comparator pairs, it is very likely

to be an IEP.

 If a comparator pair can be extracted by an

IEP, the pair is reliable.

Based on these two assumptions, we design

our bootstrapping algorithm as shown in Figure 1.

The bootstrapping process starts with a single

IEP. From it, we extract a set of initial seed com-

parator pairs. For each comparator pair, all ques-

tions containing the pair are retrieved from a

question collection and regarded as comparative

questions. From the comparative questions and

comparator pairs, all possible sequential patterns

are generated and evaluated by measuring their

reliability score defined later in the Pattern Eval-

uation section. Patterns evaluated as reliable ones

are IEPs and are added into an IEP repository.

Then, new comparator pairs are extracted from

the question collection using the latest IEPs. The

new comparators are added to a reliable compa-

rator repository and used as new seeds for pattern

learning in the next iteration. All questions from

which reliable comparators are extracted are re-

moved from the collection to allow finding new

patterns efficiently in later iterations. The

process iterates until no more new patterns can

be found from the question collection.

There are two key steps in our method: (1)

pattern generation and (2) pattern evaluation. In

the following subsections, we will explain them

in details.

Pattern Generation

To generate sequential patterns, we adapt the

surface text pattern mining method introduced in

(Ravichandran and Hovy, 2002). For any given

comparative question and its comparator pairs,

comparators in the question are replaced with

symbol $Cs. Two symbols, #start and #end, are

attached to the beginning and the end of a sen-

Sequential Patterns

<#start which city is better, $C or $C ? #end>

<, $C or $C ? #end>

<#start $C/NN or $C/NN ? #end>

<which NN is better, $C or $C ?>

<which city is JJR, $C or $C ?>

<which NN is JJR, $C or $C ?>

...

Table 1: Candidate indicative extraction pattern (IEP)

examples of the question “which city is better, NYC or

Paris?”

653

tence in the question. Then, the following three

kinds of sequential patterns are generated from

sequences of questions:

 Lexical patterns: Lexical patterns indicate

sequential patterns consisting of only words

and symbols ($C, #start, and #end). They are

generated by suffix tree algorithm (Gusfield,

1997) with two constraints: A pattern should

contain more than one $C, and its frequency

in collection should be more than an empiri-

cally determined number 𝛽.

 Generalized patterns: A lexical pattern can

be too specific. Thus, we generalize lexical

patterns by replacing one or more words with

their POS tags. 2𝑛 − 1 generalized patterns

can be produced from a lexical pattern con-

taining N words excluding $Cs.

 Specialized patterns: In some cases, a pat-

tern can be too general. For example, al-

though a question “ipod or zune?” is com-

parative, the pattern “<$C or $C>” is too

general, and there can be many non-

comparative questions matching the pattern,

for instance, “true or false?”. For this reason,

we perform pattern specialization by adding

POS tags to all comparator slots. For exam-

ple, from the lexical pattern “<$C or $C>”

and the question “ipod or zune?”, “<$C/NN

or $C/NN?>” will be produced as a specia-

lized pattern.

Note that generalized patterns are generated from

lexical patterns and the specialized patterns are

generated from the combined set of generalized

patterns and lexical patterns. The final set of

candidate patterns is a mixture of lexical patterns,

generalized patterns and specialized patterns.

Pattern Evaluation

According to our first assumption, a reliability

score 𝑅𝑘(𝑝𝑖) for a candidate pattern 𝑝𝑖 at itera-

tion k can be defined as follows:

𝑅𝑘 𝑝𝑖 =
 𝑁𝑄 (𝑝𝑖→𝑐𝑝 𝑗)

∀𝑐𝑝 𝑗∈𝐶𝑃𝑘−1

𝑁𝑄 (𝑝𝑖→∗)
 (1)

, where 𝑝𝑖 can extract known reliable comparator

pairs 𝑐𝑝𝑗 . 𝐶𝑃𝑘−1 indicates the reliable compara-

tor pair repository accumulated until the

(𝑘 − 1)𝑡ℎ iteration. 𝑁𝑄(𝑥) means the number of

questions satisfying a condition x. The condition

𝑝𝑖 → 𝑐𝑝𝑗 denotes that 𝑐𝑝𝑗 can be extracted from

a question by applying pattern 𝑝𝑖 while the con-

dition 𝑝𝑖 →∗ denotes any question containing

pattern 𝑝𝑖 .

However, Equation (1) can suffer from in-

complete knowledge about reliable comparator

pairs. For example, very few reliable pairs are

generally discovered in early stage of bootstrap-

ping. In this case, the value of Equation (1)

might be underestimated which could affect the

effectiveness of equation (1) on distinguishing

IEPs from non-reliable patterns. We mitigate this

problem by a lookahead procedure. Let us denote

the set of candidate patterns at the iteration k by

𝑃 𝑘 . We define the support 𝑆 for comparator pair

𝑐𝑝 𝑖 which can be extracted by 𝑃 𝑘 and does not

exist in the current reliable set:

𝑆 𝑐𝑝 𝑖 = 𝑁𝑄(𝑃
𝑘
→ 𝑐𝑝 𝑖) (2)

where 𝑃 𝑘 → 𝑐𝑝 𝑖 means that one of the patterns in

𝑃 𝑘 can extract 𝑐𝑝 𝑖 in certain questions. Intuitive-

ly, if 𝑐𝑝 𝑖 can be extracted by many candidate

patterns in 𝑃 𝑘 , it is likely to be extracted as a

reliable one in the next iteration. Based on this

intuition, a pair 𝑐𝑝 𝑖 whose support S is more than

a threshold 𝛼 is regarded as a likely-reliable pair.

Using likely-reliable pairs, lookahead reliability

score 𝑅 𝑝𝑖 is defined:

𝑅 𝑘 𝑝𝑖 =
 𝑁𝑄 (𝑝𝑖→𝑐𝑝 i)

∀𝑐𝑝 𝑖∈𝐶𝑃 𝑟𝑒𝑙
𝑘

𝑁𝑄 (𝑝𝑖→∗)
 (3)

, where 𝐶𝑃 𝑟𝑒𝑙
𝑘 indicates a set of likely-reliable

pairs based on 𝑃 𝑘 .

By interpolating Equation (1) and (3), the final

reliability score 𝑅(𝑝𝑖)𝑓𝑖𝑛𝑎𝑙
𝑘 for a pattern is de-

fined as follows:

𝑅(𝑝𝑖)𝑓𝑖𝑛𝑎𝑙
𝑘 = 𝜆 ∙ 𝑅𝑘 𝑝𝑖 + (1 − 𝜆) ∙ 𝑅 𝑘(𝑝𝑖) (4)

Using Equation (4), we evaluate all candidate

patterns and select patterns whose score is more

than threshold 𝛾 as IEPs. All necessary parame-

ter values are empirically determined. We will

explain how to determine our parameters in sec-

tion 4.

4 Experiments

4.1 Experiment Setup

Source Data

All experiments were conducted on about 60M

questions mined from Yahoo! Answers‟ question

title field. The reason that we used only a title

654

field is that they clearly express a main intention

of an asker with a form of simple questions in

general.

Evaluation Data

Two separate data sets were created for evalua-

tion. First, we collected 5,200 questions by sam-

pling 200 questions from each Yahoo! Answers

category
3
. Two annotators were asked to label

each question manually as comparative, non-

comparative, or unknown. Among them, 139

(2.67%) questions were classified as comparative,

4,934 (94.88%) as non-comparative, and 127

(2.44%) as unknown questions which are diffi-

cult to assess. We call this set SET-A.

Because there are only 139 comparative ques-

tions in SET-A, we created another set which

contains more comparative questions. We ma-

nually constructed a keyword set consisting of 53

words such as “or” and “prefer”, which are good

indicators of comparative questions. In SET-A,

97.4% of comparative questions contains one or

more keywords from the keyword set. We then

randomly selected another 100 questions from

each Yahoo! Answers category with one extra

condition that all questions have to contain at

least one keyword. These questions were labeled

in the same way as SET-A except that their com-

parators were also annotated. This second set of

questions is referred as SET-B. It contains 853

comparative questions and 1,747 non-

comparative questions. For comparative question

identification experiments, we used all labeled

questions in SET-A and SET-B. For comparator

extraction experiments, we used only SET-B. All

the remaining unlabeled questions (called as

SET-R) were used for training our weakly super-

vised method.

As a baseline method, we carefully imple-

mented J&L‟s method. Specifically, CSRs for

comparative question identification were learned

from the labeled questions, and then a statistical

classifier was built by using CSR rules as fea-

tures. We examined both SVM and Naïve Bayes

(NB) models as reported in their experiments.

For the comparator extraction, LSRs were

learned from SET-B and applied for comparator

extraction.

To start the bootstrapping procedure, we ap-

plied the IEP “<#start nn/$c vs/cc nn/$c ?/.

#end>” to all the questions in SET-R and ga-

thered 12,194 comparator pairs as the initial

seeds. For our weakly supervised method, there

3 There are 26 top level categories in Yahoo! Answers.

are four parameters, i.e. α, β, γ, and λ, need to be

determined empirically. We first mined all poss-

ible candidate patterns from the suffix tree using

the initial seeds. From these candidate patterns,

we applied them to SET-R and got a new set of

59,410 candidate comparator pairs. Among these

new candidate comparator pairs, we randomly

selected 100 comparator pairs and manually clas-

sified them into reliable or non-reliable compara-

tors. Then we found 𝛼 that maximized precision

without hurting recall by investigating frequen-

cies of pairs in the labeled set. By this method, 𝛼

was set to 3 in our experiments. Similarly, the

threshold parameters 𝛽 and 𝛾 for pattern evalua-

tion were set to 10 and 0.8 respectively. For the

interpolation parameter 𝜆 in Equation (3), we

simply set the value to 0.5 by assuming that two

reliability scores are equally important.

As evaluation measures for comparative ques-

tion identification and comparator extraction, we

used precision, recall, and F1-measure. All re-

sults were obtained from 5-fold cross validation.

Note that J&L‟s method needs a training data but

ours use the unlabeled data (SET-R) with weakly

supervised method to find parameter setting.

This 5-fold evaluation data is not in the unla-

beled data. Both methods were tested on the

same test split in the 5-fold cross validation. All

evaluation scores are averaged across all 5 folds.

For question processing, we used our own sta-

tistical POS tagger developed in-house
4
.

4.2 Experiment Results

Comparative Question Identification and

Comparator Extraction

Table 2 shows our experimental results. In the

table, “Identification only” indicates the perfor-

mances in comparative question identification,

“Extraction only” denotes the performances of

comparator extraction when only comparative

questions are used as input, and “All” indicates

the end-to-end performances when question

identification results were used in comparator

extraction. Note that the results of J&L‟s method

on our collections are very comparable to what is

reported in their paper.

In terms of precision, the J&L‟s method is

competitive to our method in comparative ques-

4 We used NLC-PosTagger which is developed by NLC

group of Microsoft Research Asia. It uses the modified

Penn Treebank POS set for its output; for example, NNS

(plural nouns), NN (nouns), NP (noun phrases), NPS (plural

noun phrases), VBZ (verb, present tense, 3rd person singu-

lar), JJ (adjective), RB(adverb), and so on.

655

tion identification. However, the recall is signifi-

cantly lower than ours. In terms of recall, our

method outperforms J&L‟s method by 35% and

22% in comparative question identification and

comparator extraction respectively. In our analy-

sis, the low recall of J&L‟s method is mainly

caused by low coverage of learned CSR patterns

over the test set.

In the end-to-end experiments, our weakly su-

pervised method performs significantly better

than J&L‟s method. Our method is about 55%

better in F1-measure. This result also highlights

another advantage of our method that identifies

comparative questions and extracts comparators

simultaneously using one single pattern. J&L‟s

method uses two kinds of pattern rules, i.e. CSRs

and LSRs. Its performance drops significantly

due to error propagations. F1-measure of J&L‟s

method in “All” is about 30% and 32% worse

than the scores of “Identification only” and “Ex-

traction” only respectively, our method only

shows small amount of performance decrease

(approximately 7-8%).

We also analyzed the effect of pattern genera-

lization and specialization. Table 3 shows the

results. Despite of the simplicity of our methods,

they significantly contribute to performance im-

provements. This result shows the importance of

learning patterns flexibly to capture various

comparative question expressions. Among the

6,127 learned IEPs in our database, 5,930 pat-

terns are generalized ones, 171 are specialized

ones, and only 26 patterns are non-generalized

and specialized ones.

To investigate the robustness of our bootstrap-

ping algorithm for different seed configurations,

we compare the performances between two dif-

ferent seed IEPs. The results are shown in Table

4. As shown in the table, the performance of our

bootstrapping algorithm is stable regardless of

significantly different number of seed pairs gen-

erated by the two IEPs. This result implies that

our bootstrapping algorithm is not sensitive to

the choice of IEP.

Table 5 also shows the robustness of our boot-

strapping algorithm. In Table 5, „All’ indicates

the performances that all comparator pairs from a

single seed IEP is used for the bootstrapping, and

„Partial‟ indicate the performances using only

1,000 randomly sampled pairs from „All’. As

shown in the table, there is no significant per-

formance difference.

In addition, we conducted error analysis for

the cases where our method fails to extract cor-

rect comparator pairs:

 23.75% of errors on comparator extraction

are due to wrong pattern selection by our

simple maximum IEP length strategy.

 The remaining 67.63% of errors come from

comparative questions which cannot be cov-

ered by the learned IEPs.

 Recall Precision F-score

Original Patterns 0.689 0. 449 0.544

+ Specialized 0.731 0.602 0.665

+ Generalized 0.760 0.776 0.768

Table 3: Effect of pattern specialization and Generali-

zation in the end-to-end experiments.

Seed patterns # of resulted

seed pairs

F-score

<#start nn/$c vs/cc nn/$c

?/. #end>

12,194 0.768

<#start which/wdt is/vb

better/jjr , nn/$c or/cc

nn/$c ?/. #end>

1,478 0.760

Table 4: Performance variation over different initial

seed IEPs in the end-to-end experiments

Set (# of seed pairs) Recall Precision F-score

All (12,194) 0.760 0.774 0.768

Partial (1,000) 0.724 0.763 0.743

Table 5: Performance variation over different sizes of

seed pairs generated from a single initial seed IEP

“<#start nn/$c vs/cc nn/$c ?/. #end>”.

Identification only

(SET-A+SET-B)

Extraction only

(SET-B)

All

(SET-B)

J&L (CSR) Our

Method

J&L

(LSR)

Our

Method

J&L Our

Method SVM NB SVM NB

Recall 0.601 0.537 0.817* 0.621 0.760* 0.373 0.363 0.760*

Precision 0.847 0.851 0.833 0.861 0.916* 0.729 0.703 0.776*

F-score 0.704 0.659 0.825* 0.722 0.833* 0.493 0.479 0.768*

Table 2: Performance comparison between our method and Jindal and Bing‟s Method (denoted as J&L).

The values with * indicate statistically significant improvements over J&L (CSR) SVM or J&L (LSR)

according to t-test at p < 0.01 level.

656

Examples of Comparator Extraction

By applying our bootstrapping method to the

entire source data (60M questions), 328,364

unique comparator pairs were extracted from

679,909 automatically identified comparative

questions.

Table 6 lists top 10 frequently compared enti-

ties for a target item, such as Chanel, Gap, in our

question archive. As shown in the table, our

comparator mining method successfully discov-

ers realistic comparators. For example, for „Cha-

nel’, most results are high-end fashion brands

such as „Dior’ or „Louis Vuitton’, while the rank-

ing results for „Gap’ usually contains similar ap-

parel brands for young people, such as „Old Navy’

or „Banana Republic’. For the basketball player

„Kobe‟, most of the top ranked comparators are

also famous basketball players. Some interesting

comparators are shown for „Canon‟ (the compa-

ny name). It is famous for different kinds of its

products, for example, digital cameras and prin-

ters, so it can be compared to different kinds of

companies. For example, it is compared to „HP’,

„Lexmark’, or „Xerox’, the printer manufacturers,

and also compared to „Nikon’, „Sony’, or „Kodak’,

the digital camera manufactures. Besides gener-

al entities such as a brand or company name, our

method also found an interesting comparable

entity for a specific item in the experiments. For

example, our method recommends „Nikon d40i‟,

„Canon rebel xti‟, „Canon rebel xt‟, „Nikon

d3000‟, „Pentax k100d‟, „Canon eos 1000d‟ as

comparators for the specific camera product „Ni-

kon 40d‟.

Table 7 can show the difference between our

comparator mining and query/item recommenda-

tion. As shown in the table, „Google related

searches‟ generally suggests a mixed set of two

kinds of related queries for a target entity: (1)

queries specified with subtopics for an original

query (e.g., „Chanel handbag‟ for „Chanel‟) and

(2) its comparable entities (e.g., „Dior‟ for „Cha-

nel‟). It confirms one of our claims that compara-

tor mining and query/item recommendation are

related but not the same.

5 Conclusion

In this paper, we present a novel weakly super-

vised method to identify comparative questions

and extract comparator pairs simultaneously. We

rely on the key insight that a good comparative

question identification pattern should extract

good comparators, and a good comparator pair

should occur in good comparative questions to

bootstrap the extraction and identification

process. By leveraging large amount of unla-

beled data and the bootstrapping process with

slight supervision to determine four parameters,

we found 328,364 unique comparator pairs and

6,869 extraction patterns without the need of

creating a set of comparative question indicator

keywords.

The experimental results show that our me-

thod is effective in both comparative question

identification and comparator extraction. It sig-

 Chanel Gap iPod Kobe Canon

1 Dior Old Navy Zune Lebron Nikon

2 Louis Vuitton American Eagle mp3 player Jordan Sony

3 Coach Banana Republic PSP MJ Kodak

4 Gucci Guess by Marciano cell phone Shaq Panasonic

5 Prada ACP Ammunition iPhone Wade Casio

6 Lancome Old Navy brand Creative Zen T-mac Olympus

7 Versace Hollister Zen Lebron James Hp

8 LV Aeropostal iPod nano Nash Lexmark

9 Mac American Eagle outfitters iPod touch KG Pentax

10 Dooney Guess iRiver Bonds Xerox

Table 6: Examples of comparators for different entities

Chanel Gap iPod Kobe Canon
Chanel handbag Gap coupons iPod nano Kobe Bryant stats Canon t2i

Chanel sunglass Gap outlet iPod touch Lakers Kobe Canon printers

Chanel earrings Gap card iPod best buy Kobe espn Canon printer drivers

Chanel watches Gap careers iTunes Kobe Dallas Mavericks Canon downloads

Chanel shoes Gap casting call Apple Kobe NBA Canon copiers

Chanel jewelry Gap adventures iPod shuffle Kobe 2009 Canon scanner

Chanel clothing Old navy iPod support Kobe san Antonio Canon lenses

Dior Banana republic iPod classic Kobe Bryant 24 Nikon

Table 7: Related queries returned by Google related searches for the same target entities in Table 6. The bold

ones indicate overlapped queries to the comparators in Table 6.

657

nificantly improves recall in both tasks while

maintains high precision. Our examples show

that these comparator pairs reflect what users are

really interested in comparing.

Our comparator mining results can be used for

a commerce search or product recommendation

system. For example, automatic suggestion of

comparable entities can assist users in their com-

parison activities before making their purchase

decisions. Also, our results can provide useful

information to companies which want to identify

their competitors.

In the future, we would like to improve extrac-

tion pattern application and mine rare extraction

patterns. How to identify comparator aliases such

as „LV’ and „Louis Vuitton‟ and how to separate

ambiguous entities such “Paris vs. London” as

location and “Paris vs. Nicole” as celebrity are

all interesting research topics. We also plan to

develop methods to summarize answers pooled

by a given comparator pair.

6 Acknowledgement

This work was done when the first author

worked as an intern at Microsoft Research Asia.

References

Mary Elaine Califf and Raymond J. Mooney. 1999.

Relational learning of pattern-match rules for in-

formation extraction. In Proceedings of AAAI’99

/IAAI’99.

Claire Cardie. 1997. Empirical methods in informa-

tion extraction. AI magazine, 18:65–79.

Dan Gusfield. 1997. Algorithms on strings, trees, and

sequences: computer science and computational

biology. Cambridge University Press, New York,

NY, USA

Taher H. Haveliwala. 2002. Topic-sensitive pagerank.

In Proceedings of WWW ’02, pages 517–526.

Glen Jeh and Jennifer Widom. 2003. Scaling persona-

lized web search. In Proceedings of WWW ’03,

pages 271–279.

Nitin Jindal and Bing Liu. 2006a. Identifying compar-

ative sentences in text documents. In Proceedings

of SIGIR ’06, pages 244–251.

Nitin Jindal and Bing Liu. 2006b. Mining compara-

tive sentences and relations. In Proceedings of

AAAI ’06.

Zornitsa Kozareva, Ellen Riloff, and Eduard Hovy.

2008. Semantic class learning from the web with

hyponym pattern linkage graphs. In Proceedings of

ACL-08: HLT, pages 1048–1056.

Greg Linden, Brent Smith and Jeremy York. 2003.

Amazon.com Recommendations: Item-to-Item

Collaborative Filtering. IEEE Internet Computing,

pages 76-80.

Raymond J. Mooney and Razvan Bunescu. 2005.

Mining knowledge from text using information ex-

traction. ACM SIGKDD Exploration Newsletter,

7(1):3–10.

Dragomir Radev, Weiguo Fan, Hong Qi, and Harris

Wu and Amardeep Grewal. 2002. Probabilistic

question answering on the web. Journal of the

American Society for Information Science and

Technology, pages 408–419.

Deepak Ravichandran and Eduard Hovy. 2002.

Learning surface text patterns for a question ans-

wering system. In Proceedings of ACL ’02, pages

41–47.

Ellen Riloff and Rosie Jones. 1999. Learning dictio-

naries for information extraction by multi-level

bootstrapping. In Proceedings of AAAI ’99

/IAAI ’99, pages 474–479.

Ellen Riloff. 1996. Automatically generating extrac-

tion patterns from untagged text. In Proceedings of

the 13th National Conference on Artificial Intelli-

gence, pages 1044–1049.

Stephen Soderland. 1999. Learning information ex-

traction rules for semi-structured and free text. Ma-

chine Learning, 34(1-3):233–272.

658

