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Abstract

We extend the classical single-task active
learning (AL) approach. In the multi-task ac-
tive learning (MTAL) paradigm, we select ex-
amples for several annotation tasks rather than
for a single one as usually done in the con-
text of AL. We introduce two MTAL meta-
protocols, alternating selection and rank com-
bination, and propose a method to implement
them in practice. We experiment with a two-
task annotation scenario that includes named
entity and syntactic parse tree annotations on
three different corpora. MTAL outperforms
random selection and a stronger baseline, one-
sided example selection, in which one task is
pursued using AL and the selected examples
are provided also to the other task.

1 Introduction

Supervised machine learning methods have success-
fully been applied to many NLP tasks in the last few
decades. These techniques have demonstrated their
superiority over both hand-crafted rules and unsu-
pervised learning approaches. However, they re-
quire large amounts of labeled training data for every
level of linguistic processing (e.g., POS tags, parse
trees, or named entities). When, when domains
and text genres change (e.g., moving from common-
sense newspapers to scientific biology journal arti-
cles), extensive retraining on newly supplied train-
ing material is often required, since different do-
mains may use different syntactic structures as well
as different semantic classes (entities and relations).

∗ Both authors contributed equally to this work.

Consequently, with an increasing coverage of a
wide variety of domains in human language tech-
nology (HLT) systems, we can expect a growing
need for manual annotations to support many kinds
of application-specific training data.

Creating annotated data is extremely labor-
intensive. The Active Learning (AL) paradigm
(Cohn et al., 1996) offers a promising solution to
deal with this bottleneck, by allowing the learning
algorithm to control the selection of examples to
be manually annotated such that the human label-
ing effort be minimized. AL has been successfully
applied already for a wide range of NLP tasks, in-
cluding POS tagging (Engelson and Dagan, 1996),
chunking (Ngai and Yarowsky, 2000), statistical
parsing (Hwa, 2004), and named entity recognition
(Tomanek et al., 2007).

However, AL is designed in such a way that it se-
lects examples for manual annotation with respect to
a single learning algorithm or classifier. Under this
AL annotation policy, one has to perform a separate
annotation cycle for each classifier to be trained. In
the following, we will refer to the annotations sup-
plied for a classifier as the annotations for a single
annotation task.

Modern HLT systems often utilize annotations re-
sulting from different tasks. For example, a machine
translation system might use features extracted from
parse trees and named entity annotations. For such
an application, we obviously need the different an-
notations to reside in the same text corpus. It is not
clear how to apply the single-task AL approach here,
since a training example that is beneficial for one
task might not be so for others. We could annotate
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the same corpus independently by the two tasks and
merge the resulting annotations, but that (as we show
in this paper) would possibly yield sub-optimal us-
age of human annotation efforts.

There are two reasons why multi-task AL, and
by this, a combined corpus annotated for various
tasks, could be of immediate benefit. First, annota-
tors working onsimilar annotation tasks (e.g., con-
sidering named entities and relations between them),
might exploit annotation data from one subtask for
the benefit of the other. If for each subtask a sepa-
rate corpus is sampled by means of AL, annotators
will definitely lack synergy effects and, therefore,
annotation will be more laborious and is likely to
suffer in terms of quality and accuracy. Second, for
dissimilar annotation tasks – take, e.g., a compre-
hensive HLT pipeline incorporating morphological,
syntactic and semantic data – a classifier might re-
quire features as input which constitute the output
of another preceding classifier. As a consequence,
training such a classifier which takes into account
several annotation tasks will best be performed on
a rich corpus annotated with respect to all input-
relevant tasks. Both kinds of annotation tasks, simi-
lar and dissimilar ones, constitute examples of what
we refer to asmulti-taskannotation problems.

Indeed, there have been efforts in creating re-
sources annotated with respect to various annotation
tasks though each of them was carried out indepen-
dently of the other. In the general language UPenn
annotation efforts for the WSJ sections of the Penn
Treebank (Marcus et al., 1993), sentences are anno-
tated with POS tags, parse trees, as well as discourse
annotation from the Penn Discourse Treebank (Milt-
sakaki et al., 2008), while verbs and verb arguments
are annotated with Propbank rolesets (Palmer et al.,
2005). In the biomedical GENIA corpus (Ohta et
al., 2002), scientific text is annotated with POS tags,
parse trees, and named entities.

In this paper, we introducemulti-task active
learning (MTAL), an active learning paradigm for
multiple annotation tasks. We propose a new AL
framework where the examples to be annotated are
selected so that they are as informative as possible
for a set of classifiers instead of a single classifier
only. This enables the creation of a single combined
corpus annotated with respect to various annotation
tasks, while preserving the advantages of AL with

respect to the minimization of annotation efforts.
In a proof-of-concept scenario, we focus on two

highly dissimilar tasks, syntactic parsing and named
entity recognition, study the effects of multi-task AL
under rather extreme conditions. We propose two
MTAL meta-protocols and a method to implement
them for these tasks. We run experiments on three
corpora for domains and genres that are very differ-
ent (WSJ: newspapers, Brown: mixed genres, and
GENIA: biomedical abstracts). Our protocols out-
perform two baselines (random and a stronger one-
sided selection baseline).

In Section 2 we introduce our MTAL framework
and present two MTAL protocols. In Section 3 we
discuss the evaluation of these protocols. Section
4 describes the experimental setup, and results are
presented in Section 5. We discuss related work in
Section 6. Finally, we point to open research issues
for this new approach in Section 7.

2 A Framework for Multi-Task AL

In this section we introduce a sample selection
framework that aims at reducing the human anno-
tation effort in a multiple annotation scenario.

2.1 Task Definition

To measure the efficiency of selection methods, we
define thetraining quality TQ of annotated mate-
rial S as the performancep yielded with a reference
learnerX trained on that material:TQ(X, S) = p.
A selection method can be considered better than an-
other one if a higher TQ is yielded with the same
amount of examples being annotated.

Our framework is an extension of the Active
Learning (AL) framework (Cohn et al., 1996)). The
original AL framework is based on querying in an it-
erative manner those examples to be manually anno-
tated that are most useful for the learner at hand. The
TQ of an annotated corpus selected by means of AL
is much higher than random selection. This AL ap-
proach can be considered assingle-task ALbecause
it focuses on a single learner for which the examples
are to be selected. In a multiple annotation scenario,
however, there are several annotation tasks to be ac-
complished at once and for each task typically a sep-
arate statistical model will then be trained. Thus, the
goal ofmulti-task ALis to query those examples for
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human annotation that are most informative forall
learners involved.

2.2 One-Sided Selection vs. Multi-Task AL

The naive approach to select examples in a multiple
annotation scenario would be to perform a single-
task AL selection, i.e., the examples to be annotated
are selected with respect to one of the learners only.1

In a multiple annotation scenario we call such an ap-
proachone-sidedselection. It is anintrinsic selec-
tion for the reference learner, and anextrinsicselec-
tion for all the other learners also trained on the an-
notated material. Obviously, a corpus compiled with
the help of one-sided selection will have a good TQ
for that learner for which the intrinsic selection has
taken place. For all the other learners, however, we
have no guarantee that their TQ will not be inferior
than the TQ of a random selection process.

In scenarios where the different annotation tasks
are highly dissimilar we can expect extrinsic selec-
tion to be rather poor. This intuition is demonstrated
by experiments we conducted for named entity (NE)
and parse annotation tasks2 (Figure 1). In this sce-
nario, extrinsic selection for the NE annotation task
means that examples where selected with respect
to the parsing task. Extrinsic selection performed
about the same as random selection for the NE task,
while for the parsing task extrinsic selection per-
formed markedly worse. This shows that examples
that were very informative for the NE learner were
not that informative for the parse learner.

2.3 Protocols for Multi-Task AL

Obviously, we can expect one-sided selection to per-
form better for the reference learner (the one for
which an intrinsic selection took place) than multi-
task AL selection, because the latter would be a
compromise for all learners involved in the multi-
ple annotation scenario. However, the goal of multi-
task AL is to minimize the annotation effort over all
annotation tasks and not just the effort for a single
annotation task.

For a multi-task AL protocol to be valuable in a
specific multiple annotation scenario, the TQ for all
considered learners should be

1Of course, all selected examples would be annotated w.r.t.
all annotation tasks.

2See Section 4 for our experimental setup.

1. better than the TQ of random selection,

2. and better than the TQ of any extrinsic selec-
tion.

In the following, we introduce two protocols for
multi-task AL. Multi-task AL protocols can be con-
sideredmeta-protocolsbecause they basically spec-
ify how task-specific, single-task AL approaches can
be combined into one selection decision. By this,
the protocols are independent of the underlying task-
specific AL approaches.

2.3.1 Alternating Selection

Thealternating selectionprotocol alternates one-
sided AL selection. Insj consecutive AL iterations,
the selection is performed as one-sided selection
with respect to learning algorithmXj . After that,
another learning algorithm is considered for selec-
tion for sk consecutive iterations and so on. Depend-
ing on the specific scenario, this enables to weight
the different annotation tasks by allowing them to
guide the selection in more or less AL iterations.
This protocol is a straight-forward compromise be-
tween the different single-task selection approaches.

In this paper we experiment with the special case
of si = 1, where in every AL iteration the selection
leadership is changed. More sophisticated calibra-
tion of the parameterssi is beyond the scope of this
paper and will be dealt with in future work.

2.3.2 Rank Combination

The rank combinationprotocol is more directly
based on the idea to combine single-task AL selec-
tion decisions. In each AL iteration, the usefulness
scoresXj

(e) of each unlabeled examplee from the
pool of examples is calculated with respect to each
learnerXj and then translated into a rankrXj

(e)
where higher usefulness means lower rank number
(examples with identical scores get the same rank
number). Then, for each example, we sum the rank
numbers of each annotation task to get the overall
rankr(e) =

∑n
j=1 rXj

(e). All examples are sorted
by this combined rank andb examples with lowest
rank numbers are selected for manual annotation.3

3As the number of ranks might differ between the single an-
notation tasks, we normalize them to the coarsest scale. Then
we can sum up the ranks as explained above.
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Figure 1: Learning curves for random and extrinsic selection on both tasks: named entity annotation (left) and syntactic
parse annotation (right), using theWSJcorpus scenario

This protocol favors examples which are good for
all learning algorithms. Examples that are highly in-
formative for one task but rather uninformative for
another task will not be selected.

3 Evaluation of Multi-Task AL

The notion of training quality (TQ) can be used to
quantify the effectiveness of a protocol, and by this,
annotation costs in a single-task AL scenario. To ac-
tually quantify the overall training quality in a multi-
ple annotation scenario one would have to sum over
all the single task’s TQs. Of course, depending on
the specific annotation task, one would not want to
quantify the number of examples being annotated
but different task-specific units of annotation. While
for entity annotations one does typically count the
number of tokens being annotated, in the parsing
scenario the number of constituents being annotated
is a generally accepted measure. As, however, the
actual time needed for the annotation of one exam-
ple usually differs for different annotation tasks, nor-
malizing exchange rates have to be specified which
can then be used as weighting factors. In this paper,
we do not define such weighting factors4, and leave
this challenging question to be discussed in the con-
text of psycholinguistic research.

We could quantify the overall efficiency scoreE
of a MTAL protocolP by

E(P ) =
n∑

j=1

αj · TQ(Xj , uj)

whereuj denotes the individual annotation task’s

4Such weighting factors not only depend on the annotation
level or task but also on the domain, and especially on the cog-
nitive load of the annotation task.

number of units being annotated (e.g., constituents
for parsing) and the task-specific weights are defined
by αj . Given weights are properly defined, such a
score can be applied to directly compare different
protocols and quantify their differences.

In practice, such task-specific weights might also
be considered in the MTAL protocols. In the alter-
nating selection protocol, the numbers of consecu-
tive iterationssi each single task protocol can be
tuned according to theα parameters. As for the
rank combination protocol, the weights can be con-
sidered when calculating the overall rank:r(e) =∑n

j=1 βj · rXj
(e) where the parametersβ1 . . . βn re-

flect the values ofα1 . . . αn (though they need not
necessarily be the same).

In our experiments, we assumed the same weight
for all annotation schemata, thus simply settingsi =
1, βi = 1. This was done for the sake of a clear
framework presentation. Finding proper weights for
the single tasks and tuning the protocols accordingly
is a subject for further research.

4 Experiments

4.1 Scenario and Task-Specific Selection
Protocols

The tasks in our scenario comprise one semantic
task (annotation with named entities (NE)) and one
syntactic task (annotation with PCFG parse trees).
The tasks are highly dissimilar, thus increasing the
potential value of MTAL. Both tasks are subject to
intensive research by the NLP community.

The MTAL protocols proposed are meta-
protocols that combine the selection decisions of
the underlying, task-specific AL protocols. In
our scenario, the task-specific AL protocols are
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committee-based (Freund et al., 1997) selection
protocols. In committee-based AL, a committee
consists ofk classifiers of the same type trained
on different subsets of the training data.5 Each
committee member then makes its predictions on
the unlabeled examples, and those examples on
which the committee members disagree most are
considered most informative for learning and are
thus selected for manual annotation. In our scenario
the example grain-size is the sentence level.

For the NE task, we apply the AL approach of
Tomanek et al. (2007). The committee consists of
k1 = 3 classifiers and the vote entropy (VE) (Engel-
son and Dagan, 1996) is employed as disagreement
metric. It is calculated on the token-level as

V Etok(t) = −
1

log k

c∑

i=0

V (li, t)

k
log

V (li, t)

k
(1)

where V (li,t)
k

is the ratio ofk classifiers where the
label li is assigned to a tokent. The sentence level
vote entropyV Esent is then the average over all to-
kenstj of sentences.

For the parsing task, the disagreement score is
based on a committee ofk2 = 10 instances of Dan
Bikel’s reimplementation of Collins’ parser (Bickel,
2005; Collins, 1999). For each sentence in the un-
labeled pool, the agreement between the committee
members was calculated using the function reported
by Reichart and Rappoport (2007):

AF (s) =
1

N

∑

i,l∈[1...N ],i6=l

fscore(mi, ml) (2)

Wheremi andml are the committee members and
N = k2·(k2−1)

2 is the number of pairs of different
committee members. This function calculates the
agreement between the members of each pair by cal-
culating their relative f-score and then averages the
pairs’ scores. The disagreement of the committee on
a sentence is simply1 − AF (s).

4.2 Experimental settings

For the NE task we employed the classifier described
by Tomanek et al. (2007): The NE tagger is based on
Conditional Random Fields (Lafferty et al., 2001)

5We randomly sampledL =
3

4
of the training data to create

each committee member.

and has a rich feature set including orthographical,
lexical, morphological, POS, and contextual fea-
tures. For parsing, Dan Bikel’s reimplementation of
Collins’ parser is employed, using gold POS tags.

In each AL iteration we select100 sentences for
manual annotation.6 We start with a randomly cho-
sen seed set of200 sentences. Within a corpus we
used the same seed set in all selection scenarios. We
compare the following five selection scenarios: Ran-
dom selection (RS), which serves as our baseline;
one-sided AL selection for both tasks (calledNE-AL
and PARSE-AL); and multi-task AL selection with
the alternating selection protocol (alter-MTAL) and
the rank combination protocol (ranks-MTAL).

We performed our experiments on three dif-
ferent corpora, namely one from the newspaper
genre (WSJ), a mixed-genre corpus (Brown ), and a
biomedical corpus (Bio ). Our simulation corpora
contain both entity annotations and (constituent)
parse annotations. For each corpus we have a pool
set (from which we select the examples for annota-
tion) and an evaluation set (used for generating the
learning curves). TheWSJcorpus is based on the
WSJ part of the PENN TREEBANK (Marcus et al.,
1993); we used the first 10,000 sentences of section
2-21 as the pool set, and section 00 as evaluation set
(1,921 sentences). TheBrown corpus is also based
on the respective part of the PENN TREEBANK. We
created a sample consisting of 8 of any 10 consec-
utive sentences in the corpus. This was done as
Brown contains text from various English text gen-
res, and we did that to create a representative sample
of the corpus domains. We finally selected the first
10,000 sentences from this sample as pool set. Every
9th from every 10 consecutive sentences package
went into the evaluation set which consists of 2,424
sentences. For bothWSJandBrown only parse an-
notations though no entity annotations were avail-
able. Thus, we enriched both corpora with entity
annotations (three entities: person, location, and or-
ganization) by means of a tagger trained on the En-
glish data set of the CoNLL-2003 shared task (Tjong
Kim Sang and De Meulder, 2003).7 TheBio corpus

6Manual annotation is simulated by just unveiling the anno-
tations already contained in our corpora.

7We employed a tagger similar to the one presented by Set-
tles (2004). Our tagger has a performance of≈ 84% f-score on
the CoNLL-2003 data; inspection of the predicted entities on
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is based on the parsed section of the GENIA corpus
(Ohta et al., 2002). We performed the same divi-
sions as forBrown , resulting in 2,213 sentences in
our pool set and 276 sentences for the evaluation set.
This part of the GENIA corpus comes with entity an-
notations. We have collapsed the entity classes an-
notated in GENIA (cell line, cell type, DNA, RNA,
protein) into a single, biological entity class.

5 Results

In this section we present and discuss our results
when applying the five selection strategies (RS, NE-
AL, PARSE-AL, alter-MTAL, and ranks-MTAL) to
our scenario on the three corpora. We refrain from
calculating the overall efficiency score (Section 3)
here due to the lack of generally accepted weights
for the considered annotation tasks. However, we
require from a good selection protocol to exceed the
performance of random selection and extrinsic se-
lection. In addition, recall from Section 3 that we
set the alternate selection and rank combination pa-
rameters tosi = 1, βi = 1, respectively to reflect a
tradeoff between the annotation efforts of both tasks.

Figures 2 and 3 depict the learning curves for
the NE tagger and the parser onWSJandBrown ,
respectively. Each figure shows the five selection
strategies. As expected, on both corpora and both
tasks intrinsic selection performs best, i.e., for the
NE tagger NE-AL and for the parser PARSE-AL.
Further, random selection and extrinsic selection
perform worst. Most importantly, both MTAL pro-
tocols clearly outperform extrinsic and random se-
lection in all our experiments. This is in contrast
to NE-AL which performs worse than random se-
lection for all corpora when used as extrinsic selec-
tion, and for PARSE-AL that outperforms the ran-
dom baseline only forBrown when used as extrin-
sic selection. That is, the MTAL protocols suggest a
tradeoff between the annotation efforts of the differ-
ent tasks, here.

OnWSJ, both for the NE and the parse annotation
tasks, the performance of the MTAL protocols is
very similar, though ranks-MTAL performs slightly
better. For the parser task, up to 30,000 constituents
MTAL performs almost as good as does PARSE-
AL. This is different for the NE task where NE-AL

WSJandBrown revealed a good tagging performance.

clearly outperforms MTAL. OnBrown , in general
we see the same results, with some minor differ-
ences. On the NE task, extrinsic selection (PARSE-
AL) performs better than random selection, but it is
still much worse than intrinsic AL or MTAL. Here,
ranks-MTAL significantly outperforms alter-MTAL
and almost performs as good as intrinsic selection.
For the parser task, we see that extrinsic and ran-
dom selection are equally bad. Both MTAL proto-
cols perform equally well, again being quite similar
to the intrinsic selection. On the BIO corpus8 we ob-
served the same tendencies as in the other two cor-
pora, i.e., MTAL clearly outperforms extrinsic and
random selection and supplies a better tradeoff be-
tween annotation efforts of the task at hand than one-
sided selection.

Overall, we can say that in all scenarios MTAL
performs much better than random selection and ex-
trinsic selection, and in most cases the performance
of MTAL (especially but not exclusively, ranks-
MTAL) is even close to intrinsic selection. This is
promising evidence that MTAL selection can be a
better choice than one-sided selection in multiple an-
notation scenarios. Thus, considering all annotation
tasks in the selection process (even if the selection
protocol is as simple as the alternating selection pro-
tocol) is better than selecting only with respect to
one task. Further, it should be noted that overall the
more sophisticated rank combination protocol does
not perform much better than the simpler alternating
selection protocol in all scenarios.

Finally, Figure 4 shows the disagreement curves
for the two tasks on theWSJcorpus. As has already
been discussed by Tomanek and Hahn (2008), dis-
agreement curves can be used as a stopping crite-
rion and to monitor the progress of AL-driven an-
notation. This is especially valuable when no anno-
tated validation set is available (which is needed for
plotting learning curves). We can see that the dis-
agreement curves significantly flatten approximately
at the same time as the learning curves do. In the
context of MTAL, disagreement curves might not
only be interesting as a stopping criterion but rather
as a switching criterion, i.e., to identify when MTAL
could be turned into one-sided selection. This would
be the case if in an MTAL scenario, the disagree-

8The plots for theBio are omitted due to space restrictions.
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Figure 2: Learning curves for NE task onWSJ(left) andBrown (right)
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Figure 3: Learning curves for parse task onWSJ(left) andBrown (right)

ment curve of one task has a slope of (close to) zero.
Future work will focus on issues related to this.

6 Related Work

There is a large body of work on single-task AL ap-
proaches for many NLP tasks where the focus is
mainly on better, task-specific selection protocols
and methods to quantify the usefulness score in dif-
ferent scenarios. As to the tasks involved in our
scenario, several papers address AL for NER (Shen
et al., 2004; Hachey et al., 2005; Tomanek et al.,
2007) and syntactic parsing (Tang et al., 2001; Hwa,
2004; Baldridge and Osborne, 2004; Becker and Os-
borne, 2005). Further, there is some work on ques-
tions arising when AL is to be used in real-life anno-
tation scenarios, including impaired inter-annotator
agreement, stopping criteria for AL-driven annota-
tion, and issues of reusability (Baldridge and Os-
borne, 2004; Hachey et al., 2005; Zhu and Hovy,
2007; Tomanek et al., 2007).

Multi-task AL is methodologically related to ap-
proaches of decision combination, especially in the
context of classifier combination (Ho et al., 1994)
and ensemble methods (Breiman, 1996). Those ap-
proaches focus on the combination of classifiers in

order to improve the classification error rate for one
specific classification task. In contrast, the focus of
multi-task AL is on strategies to select training ma-
terial for multi classifier systems where all classifiers
cover different classification tasks.

7 Discussion

Our treatment of MTAL within the context of the
orthogonal two-task scenario leads to further inter-
esting research questions. First, future investiga-
tions will have to focus on the question whether
the positive results observed in our orthogonal (i.e.,
highly dissimilar) two-task scenario will also hold
for a more realistic (and maybe more complex) mul-
tiple annotation scenario where tasks are more sim-
ilar and more than two annotation tasks might be
involved. Furthermore, several forms ofinterde-
pendenciesmay arise between the single annotation
tasks. As a first example, consider the (functional)
interdependencies (i.e., task similarity) in higher-
level semantic NLP tasks of relation or event recog-
nition. In such a scenario, several tasks including
entity annotations and relation/event annotations, as
well as syntactic parse data, have to be incorporated
at the same time. Another type of (data flow) inter-

867



10000 20000 30000 40000

0.
01

0
0.

01
4

0.
01

8

tokens

di
sa

gr
ee

m
en

t

RS
NE−AL
PARSE−AL
alter−MTAL
ranks−MTAL

10000 20000 30000 40000

5
10

15
20

25
30

35
40

constituents

di
sa

gr
ee

m
en

t

RS
NE−AL
PARSE−AL
alter−MTAL
ranks−MTAL

Figure 4: Disagreement curves for NE task (left) and parse task (right) onWSJ

dependency occurs in a second scenario where ma-
terial for several classifiers that are data-dependent
on each other – one takes the output of another clas-
sifier as input features – has to be efficiently anno-
tated. Whether the proposed protocols are beneficial
in the context of such highly interdependent tasks is
an open issue. Even more challenging is the idea
to provide methodologies helping to predict in an
arbitrary application scenario whether the choice of
MTAL is truly advantageous.

Another open question is how to measure and
quantify the overallannotation costsin multiple an-
notation scenarios. Exchange rates are inherently
tied to the specific task and domain. In practice, one
might just want to measure the time needed for the
annotations. However, in a simulation scenario, a
common metric is necessary to compare the perfor-
mance of different selection strategies with respect
to the overall annotation costs. This requires stud-
ies on how to quantify, with a comparable cost func-
tion, the efforts needed for the annotation of a textual
unit of choice (e.g., tokens, sentences) with respect
to different annotation tasks.

Finally, the question ofreusability of the anno-
tated material is an important issue. Reusability in
the context of AL means to which degree corpora
assembled with the help of any AL technique can be
(re)used as a general resource, i.e., whether they are
well suited for the training of classifiers other than
the ones used during the selection process.This is
especially interesting as the details of the classifiers
that should be trained in a later stage are typically
not known at the resource building time. Thus, we
want to select samples valuable to afamily of clas-
sifiers using the various annotation layers. This, of
course, is only possible if data annotated with the

help of AL is reusable by modified though similar
classifiers (e.g., with respect to the features being
used) – compared to the classifiers employed for the
selection procedure.

The issue of reusability has already been raised
but not yet conclusively answered in the context of
single-task AL (see Section 6). Evidence was found
that reusability up to a certain, though not well-
specified, level is possible. Of course, reusability
has to be analyzed separately in the context of var-
ious MTAL scenarios. We feel that these scenarios
might both be more challenging and more relevant
to the reusability issue than the single-task AL sce-
nario, since resources annotated with multiple lay-
ers can be used to the design of a larger number of a
(possibly more complex) learning algorithms.

8 Conclusions

We proposed an extension to the single-task AL ap-
proach such that it can be used to select examples for
annotation with respect to several annotation tasks.
To the best of our knowledge this is the first paper on
this issue, with a focus on NLP tasks. We outlined
a problem definition and described a framework for
multi-task AL. We presented and tested two proto-
cols for multi-task AL. Our results are promising as
they give evidence that in a multiple annotation sce-
nario, multi-task AL outperforms naive one-sided
and random selection.
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