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Abstract

Reading strategies have been shown to im-
prove comprehension levels, especially for
readers lacking adequate prior knowledge.
Just as the process of knowledge accumu-
lation is time-consuming for human readers,
it is resource-demanding to impart rich gen-
eral domain knowledge into a deep language
model via pre-training. Inspired by reading
strategies identified in cognitive science, and
given limited computational resources – just
a pre-trained model and a fixed number of
training instances – we propose three gen-
eral strategies aimed to improve non-extractive
machine reading comprehension (MRC): (i)
BACK AND FORTH READING that consid-
ers both the original and reverse order of an
input sequence, (ii) HIGHLIGHTING, which
adds a trainable embedding to the text embed-
ding of tokens that are relevant to the ques-
tion and candidate answers, and (iii) SELF-
ASSESSMENT that generates practice ques-
tions and candidate answers directly from the
text in an unsupervised manner.

By fine-tuning a pre-trained language
model (Radford et al., 2018) with our pro-
posed strategies on the largest general domain
multiple-choice MRC dataset RACE, we
obtain a 5.8% absolute increase in accuracy
over the previous best result achieved by the
same pre-trained model fine-tuned on RACE
without the use of strategies. We further
fine-tune the resulting model on a target MRC
task, leading to an absolute improvement of
6.2% in average accuracy over previous state-
of-the-art approaches on six representative
non-extractive MRC datasets from different
domains (i.e., ARC, OpenBookQA, MCTest,
SemEval-2018 Task 11, ROCStories, and
MultiRC). These results demonstrate the
effectiveness of our proposed strategies and
the versatility and general applicability of
∗This work was done when K. S. was an intern at the

Tencent AI Lab, Bellevue, WA.

our fine-tuned models that incorporate these
strategies. Core code is available at https:
//github.com/nlpdata/strategy/.

1 Introduction

Recent years have seen a growing interest in ma-
chine reading comprehension (MRC) (Rajpurkar
et al., 2016; Choi et al., 2018; Kočiskỳ et al., 2018;
Reddy et al., 2018). In this paper, we mainly fo-
cus on non-extractive MRC (Khashabi et al., 2018;
Ostermann et al., 2018; Clark et al., 2018), in
which a significant percentage of candidate an-
swers are not restricted to text spans from the ref-
erence document or corpus. In comparison to ex-
tractive MRC tasks (Section 2.1), non-extractive
MRC (Section 2.2) requires diverse reading skills
and, as a result, the performance of machine read-
ers on these tasks more accurately indicates the
comprehension ability of machine readers in re-
alistic settings such as exams (Lai et al., 2017).

Recently, significant progress has been achieved
on many natural language processing tasks includ-
ing MRC by fine-tuning a pre-trained general-
purpose language model (Radford et al., 2018; De-
vlin et al., 2018). However, similar to the process
of knowledge accumulation for human readers, it
is time-consuming and resource-demanding to im-
part massive amounts of general domain knowl-
edge from external corpora into a deep language
model via pre-training. For example, it takes a
month to pre-train a 12-layer transformer on eight
P100 GPUs over the BooksCorpus (Zhu et al.,
2015; Radford et al., 2018); Devlin et al. (2018)
pre-train a 24-layer transformer using 64 TPUs
for four days on the BooksCorpus plus English
Wikipedia, a feat not easily reproducible consid-
ering the tremendous computational resources (≈
one year to train on eight P100 GPUs).

From a practical viewpoint, given a limited
number of training instances and a pre-trained

https://github.com/nlpdata/strategy/
https://github.com/nlpdata/strategy/
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model, can we improve machine reading com-
prehension during fine-tuning instead of impart-
ing more prior knowledge into a model via ex-
pensive pre-training? Inspired by reading strate-
gies identified in cognitive science research that
have been shown effective in improving compre-
hension levels of human readers, especially those
who lack adequate prior knowledge of the topic of
the text (Mokhtari and Sheorey, 2002; Mokhtari
and Reichard, 2002; McNamara et al., 2004), we
propose three corresponding domain-independent
strategies to improve MRC based on an existing
pre-trained transformer (Section 3.1):

• BACK AND FORTH READING (“I go back
and forth in the text to find relationships
among ideas in it.”):
consider both the original and reverse order
of an input sequence (Section 3.2)
• HIGHLIGHTING (“I highlight information in

the text to help me remember it.”):
add a trainable embedding to the text embed-
ding of those tokens deemed relevant to the
question and candidate answers (Section 3.3)
• SELF-ASSESSMENT (“I ask myself questions

I would like to have answered in the text, and
then I check to see if my guesses about the
text are right or wrong.”):
generate practice questions and their associ-
ated span-based candidate answers from the
existing reference documents (Section 3.4)

By fine-tuning a pre-trained transformer (Rad-
ford et al., 2018) according to our proposed
strategies on the largest general domain multiple-
choice MRC dataset RACE (Lai et al., 2017)
collected from language exams, we obtain a
5.8% absolute improvement in accuracy over the
previous best result achieved by the same pre-
trained transformer fine-tuned on RACE with-
out the use of strategies (Section 4.2). We fur-
ther fine-tune the resulting model on a target
MRC task. Experiments show that our method
achieves new state-of-the-art results on six repre-
sentative non-extractive MRC datasets that require
a range of reading skills such as commonsense
and multi-sentence reasoning (i.e., ARC (Clark
et al., 2016, 2018), OpenBookQA (Mihaylov
et al., 2018), MCTest (Richardson et al., 2013),
SemEval-2018 Task 11 (Yang et al., 2017), ROC-
Stories (Mostafazadeh et al., 2016), and Mul-
tiRC (Khashabi et al., 2018)) (Section 4.4). These
results indicate the effectiveness of our proposed

strategies and the versatility and generality of our
fine-tuned models that incorporate the strategies.

2 Task Introduction

We roughly categorize machine reading compre-
hension tasks into two groups: extractive (Sec-
tion 2.1) and non-extractive (Section 2.2) based on
the expected answer types.

2.1 Extractive MRC

Recently large-scale extractive MRC datasets have
been constructed (Hermann et al., 2015; Hill et al.,
2016; Onishi et al., 2016; Chen and Choi, 2016;
Mostafazadeh et al., 2016; Bajgar et al., 2016;
Nguyen et al., 2016; Joshi et al., 2017; Ma et al.,
2018), such as SQuAD (Rajpurkar et al., 2016)
and NewsQA (Trischler et al., 2017). Given a ref-
erence document and a question, the expected an-
swer is a short span from the document. In con-
trast, answers in datasets such as SearchQA (Dunn
et al., 2017) and NarrativeQA (Kočiskỳ et al.,
2018) are free-form human generated texts based
on given documents (Nguyen et al., 2016; Reddy
et al., 2018; Choi et al., 2018). However, since
annotators tend to directly copy spans as answers,
the majority of answers are still extractive (Reddy
et al., 2018; Kočiskỳ et al., 2018).

2.2 Non-Extractive MRC

In this section, we primarily discuss multiple-
choice MRC datasets, in which answer options
are not restricted to extractive text spans. Given
a question and a reference document/corpus,
multiple answer options are provided, and at
least one of them is correct. It involves ex-
tensive human efforts to build such a dataset
(e.g., MCTest (Richardson et al., 2013), SemEval-
2018 Task 11 (Ostermann et al., 2018), Mul-
tiRC (Khashabi et al., 2018), and Open-
BookQA (Mihaylov et al., 2018)) by crowdsourc-
ing. Besides crowdsourcing, datasets such as
RACE (Lai et al., 2017) and ARC (Clark et al.,
2018) are collected from language or science ex-
ams designed by educational experts (Penas et al.,
2014; Shibuki et al., 2014; Tseng et al., 2016) to
evaluate the comprehension level of human partic-
ipants. Compared to questions in extractive MRC
tasks, besides surface matching, there are vari-
ous types of complicated questions such as math
word problems, summarization, logical reasoning,
and sentiment analysis, requiring advanced read-
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RACE ARC OpenBookQA MCTest SemEval-2018 Task 11 ROCStories MultiRC

construction method exams exams crowd. crowd. crowd. crowd. crowd.
sources of documents general science science stories narrative text stories mixed-domain
average # of answer options 4.0 4.0 4.0 4.0 2.0 2.0 5.4
# of documents 27,933 14M† 1,326† 660 2,119 3,742 871
# of questions 97,687 7,787 5,957 2,640 13,939 – 9,872

non-extractive answer? (%) 87.0 43.3 83.8 45.3 89.9 100.0 82.1

Table 1: Statistics of multiple-choice machine reading comprehension datasets. Some values come from Reddy
et al. (2018), Kočiskỳ et al. (2018), and Lai et al. (2017) (crowd.: crowdsourcing; †: regarding each sentence/claim
as a document (Clark et al., 2018); ?: correct answer options that are not text snippets from reference documents).

ing skills and prior world knowledge. Besides, in
most cases, we can adopt an objective evaluation
criteria such as accuracy to evaluate system per-
formance (Clark et al., 2016; Lai et al., 2017). As
these kind of datasets are relatively difficult to con-
struct or collect, most existing datasets are small
in size, which hinders the development of state-
of-the-art deep neural models.

In response, in this paper we investigate how to
make use of limited resources to improve MRC,
using seven representative multiple-choice MRC
datasets as case studies. As shown in Table 1,
the majority of the correct answer options in most
of the datasets (except for ARC and MCTest) are
non-extractive. Except for MultiRC, there is ex-
actly one correct answer option for each question.
For ARC and OpenBookQA, a reference corpus
is provided instead of a single reference document
associated with each question.

Here we give a formal task definition. Given
a reference document d, a question q, and asso-
ciated answer options {o1, o2, . . . , om}, the goal
is to select the correct answer option(s). We can
easily adapt our method to an MRC task that only
provides a reference corpus (Section 4.4).

3 Approach

We first introduce a neural reader based on a pre-
trained transformer (Section 3.1) and then elabo-
rate on the strategies that are applied during the
fine-tuning stage — back and forth reading (Sec-
tion 3.2), highlighting (Section 3.3), and self-
assessment (Section 3.4).

3.1 Framework Overview

Our neural reader follows the framework of dis-
criminatively fine-tuning a generative pre-trained
transformer (GPT) (Radford et al., 2018). It adapts
a pre-trained multi-layer transformer (Vaswani
et al., 2017; Liu et al., 2018) language model to a
labeled dataset C, where each instance consists of

a sequence of input tokens x1, . . . , xn, along with
a label y, by maximizing:

∑
x,y

logP (y |x1, . . . , xn) + λ · L(C) (1)

where L is the likelihood from the language
model, λ is the weight of language model, and
P (y |x1, . . . , xn) is obtained by a linear classifi-
cation layer over the final transformer block’s acti-
vation of the language model. For multiple-choice
MRC tasks, x1, . . . , xn come from the concatena-
tion of a start token, a reference document, a ques-
tion, a delimiter token, an answer option, and an
end token; y indicates the correctness of an answer
option. We refer readers to Radford et al. (2018)
for more details.

Apart from placing a delimiter to separate the
answer option from the document and question,
the original framework pays little attention to task-
specific structures in MRC tasks. Inspired by read-
ing strategies, with limited resources and a pre-
trained transformer, we propose three strategies
to improve machine reading comprehension. We
show the whole framework in Figure 1.

3.2 Back and Forth Reading (BF)

For simplicity, we represent the original input se-
quence of GPT during fine-tuning (Radford et al.,
2018) as [dq $ o], where [, $, and ] represent the
start token, delimiter token, and end token, respec-
tively. Inspired by back and forth reading, we con-
sider both the original order and the reverse order
[o $ qd]. The token order within d, q, and o is still
preserved. We fine-tune two GPTs that use [dq $ o]
and [o $ qd] as the input sequence respectively, and
then we ensemble the two models. We also con-
sider other similar pairs of input sequences such
as [qd $ o] and [o $ dq] in the experiments (Sec-
tion 4.3).
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Figure 1: Framework Overview. Strategy 1, 2, and 3 refer to back and forth reading (BF) (Section 3.2), highlighting
(HL) (Section 3.3), and self-assessment (SA) (Section 3.4), respectively.

3.3 Highlighting (HL)

In the original implementation (Radford et al.,
2018), during the fine-tuning stage of GPT, the text
embedding of a document is independent of its as-
sociated questions and answer options. Inspired
by highlights used in human reading, we aim to
make the document encoding aware of the associ-
ated question-answer option pair (q, oi). We fo-
cus on the content words in questions and answer
options since they appear to provide more useful
information (Mirza and Bernardi, 2013), and we
identify them via their part of speech (POS) tags,
one of: noun, verb, adjective, adverb, numeral, or
foreign word.

Formally, we let T be the set of POS tags of
the content words. We let d denote the sequence
of the text embedding of document d. We use dj

to represent the jth token in d and dj to denote
the text embedding of dj . Given d and a (q, oi)
pair, we define a highlight embedding hj

i for the
jth token in d as:

hj
i =


`+ if the POS tag of dj belongs to T ,

and dj appears in either q or oi
`− otherwise

(2)

where `+ and `− are two trainable vectors of the
same dimension as dj .

Following the above definition, the sequence of
the highlight embedding hi = h1

i ,h
2
i , . . . ,h

n
i

is of the same length as d. We replace d with
di = d + hi when we encode a document. More
specifically, we use the concatenation of b, di, q,
l, oi, and e as the new input of GPT during fine-
tuning (Section 3.1), where b, l, and e denote the
embedding of the start token, delimiter token, and
end token, respectively, and q and oi represent the
sequence of the text embedding of q and oi, re-
spectively.

3.4 Self-Assessment (SA)

While in previous work (Radford et al., 2018), the
original GPT is directly fine-tuned on an MRC end
task, we instead develop a fine-tuning approach in-
spired by the self-assessment reading strategy. In
particular, we propose a simple method to gener-
ate questions and their associated multiple span-
based answer options, which cover the content of
multiple sentences from a reference document. By
first fine-tuning a pre-trained model on these prac-
tice instances, we aim to render the resulting fine-
tuned model more aware of the input structure and
to integrate information across multiple sentences
as may be required to answer a given question.

Concretely, we randomly generate no more than
nq questions and associated answer options based
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on each document from the end task (i.e., RACE
in this paper). We describe the steps as follows.

• Input: a reference document from the end
task.
• Output: a question and four answer options

associated with the reference document.
1. Randomly pick no more than ns sentences

from the document and concatenate these
sentences together.

2. Randomly pick no more than nc non-
overlapping spans from the concatenated sen-
tences. Each span randomly contains no
more than nt tokens within a single sentence.
We concatenate the selected spans to form the
correct answer option. We remove the se-
lected spans from the concatenated sentences
and use the remaining text as the question.

3. Generate three distractors (i.e., wrong answer
options) by randomly replacing spans in the
correct answer option with randomly picked
spans from the document.

where nq, ns, nc, and nt are used to control the
number and difficulty level of the questions.

4 Experiment

4.1 Experiment Settings

For most of the hyperparameters, we follow the
work of Radford et al. (2018). We use the same
preprocessing procedure and the released pre-
trained transformer. We generate 119k instances
based on the reference documents from the train-
ing and development set of RACE (Lai et al.,
2017), with nq = 10, ns = 3, nc = 4, and nt = 4
(Section 3.4). We first fine-tune the original pre-
trained model on these automatically generated in-
stances with 1 training epoch (data flow 1 boxed
in Figure 1). We then fine-tune the model on a
large-scale general domain MRC dataset RACE
with 5 training epochs (data flow 2 boxed in Fig-
ure 1). Finally, we fine-tune the resulting model
on one of the aforementioned six out-of-domain
MRC datasets (at max 10 epochs). See data flow 3
boxed in Figure 1. When we fine-tune the model
on different datasets, we set the batch size to 8,
language model weight λ to 2. We ensemble mod-
els by averaging logits after the linear layer. For
strategy highlighting (Section 3.3), the content-
word POS tagset T = {NN, NNP, NNPS, NNS,
VB, VBD, VBG, VBN, VBP, VBZ, JJ, JJR, JJS,

RB, RBR, RBS, CD, FW}, and we randomly ini-
tialize `+ and `−.

Approach # RACE-M|RACE-H|RACE

MMN (Tang et al., 2019) 9 64.7 | 55.5 | 58.2
GPT (Radford et al., 2018) 1 62.9 | 57.4 | 59.0
Human performance (Lai et al., 2017) 1 85.1 | 69.4 | 73.3

GPT?
1 60.9 | 57.8 | 58.7
2 62.6 | 58.4 | 59.6
9 63.5 | 59.3 | 60.6

GPT?

+
Strategies

SA 1 63.2 | 59.2 | 60.4
HL 1 67.4 | 61.5 | 63.2
BF 2 67.3 | 60.7 | 62.6
SA + HL 1 69.2 | 61.5 | 63.8
SA + HL + BF 2 70.9 | 63.2 | 65.4
SA + HL + BF 9 72.0 | 64.5 | 66.7

Table 2: Accuracy (%) on the test set of RACE (#:
number of (ensemble) models; SA: Self-Assessment;
HL: Highlighting; BF: Back and Forth Reading; ?: our
implementation).

4.2 Evaluation on RACE

In Table 2, we first report the accuracy of the
state-of-the-art models (MMN and original fine-
tuned GPT) and Amazon Turkers (Human perfor-
mance). We then report the performance of our
implemented fine-tuned GPT baselines and our
models (GPT+Strategies). Results are shown on
the RACE dataset (Lai et al., 2017) and its two
subtasks: RACE-M collected from middle school
exams and RACE-H collected from high school
exams.

Our single and ensemble models outperform
previous state-of-the-art (i.e., GPT and GPT (9×))
by a large margin (63.8% vs. 59.0%; 66.7%
vs. 60.6%). The two single-model strategies –
self-assessment and highlighting – improve over
the single-model fine-tuned GPT baseline (58.7%)
by 1.7% and 4.5%, respectively. Using the back
and forth reading strategy, which involves two
models, gives a 3.0% improvement in accuracy
compared to the ensemble of two original fine-
tuned GPTs (59.6%). Strategy combination fur-
ther boosts the performance. By combining self-
assessment and highlighting, our single model
achieves a 5.1% improvement in accuracy over the
fine-tuned GPT baseline (63.8% vs. 58.7%). We
apply all the strategies by ensembling two such
single models that read an input sequence in either
the original or the reverse order, leading to a 5.8%
improvement in accuracy over the ensemble of
two original fine-tuned GPTs (65.4% vs. 59.6%).

To further analyze performance, we roughly di-
vide the question types into five categories: de-
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tail (facts and details), inference (reasoning abil-
ity), main (main idea or purpose of a docu-
ment), attitude (author’s attitude toward a topic
or tone/source of a document), and vocabulary
(vocabulary questions) (Qian and Schedl, 2004;
Lai et al., 2017) and annotate all the instances of
the RACE development set. As shown in Fig-
ure 2, compared to the fine-tuned GPT baseline,
our single-model strategies (SA and HL) consis-
tently improve the results across all categories.
Compared to other strategies, highlighting is likely
to lead to bigger gains for most question types.

detail inference main attitude vocabulary
50

60

70

80
 GPT
 SA
 HL
 BF

Figure 2: Performance on different question types.

Compared to human performance, there is still
a considerable room for improvements, especially
on RACE-M. We take a close look at the instances
from the RACE-M development set that all our
implementations fail to answer correctly. We no-
tice that 82.0% of them require one or multiple
types of world knowledge (e.g., negation resolu-
tion, commonsense, paraphrase, and mathemat-
ical/logic knowledge (Sugawara et al., 2017b,a,
2018)), especially when correct answer options
are not explicitly mentioned in the reference doc-
ument. For example, we need the knowledge —
the type of thing that is written by a writer can
probably be a book — to answer the question “fol-
low your heart is a ” from the context “Follow
your heart by Andrew Matthews, an Australian
writer, tells us that making our dreams real is life’s
biggest challenge”. Besides, 19.7% of these failed
instances require coreference resolution. It might
be promising to leverage coreference resolvers to
connect nonadjacent relevant sentences.

4.3 Further Discussions on Strategies

Besides the strategies introduced in Section 3, we
also explore other reading strategies such as SUM-
MARIZATION (“I take an overall view of the text
to see what it is about before carefully reading
it.”) by appending an extractive summary (Boudin
et al., 2015) before each reference document,
which is shown less effective for machine read-
ing comprehension in our experiments compared
to the strategies we focus on. In this section, we
further discuss the three strategies.

Back and Forth Reading We notice that the in-
put order difference between two ensemble mod-
els is likely to yield performance gains. Besides
ensembling two models that use input sequence
[dq $ o] and [o $ qd] respectively, we also inves-
tigate other reverse or almost reverse pairs. For
example, we can achieve better results by ensem-
bling [qd $ o] and [o $ dq] (61.0%) or [qd $ o] and
[o $ qd] (61.7%), compared to the ensemble of
two original fine-tuned GPTs (both of them use
[d $ qo]) on the RACE dataset (59.6% in Table 2).

Highlighting We try two variants to define
highlight embeddings (Equation 2 in Section 3.3)
by considering the content of questions only or
answer options only. Experiments show that us-
ing partial information yields a decrease in accu-
racy (60.6% and 61.0%, respectively) compared to
63.2% (Table 2), achieved by considering the con-
tent words in a question and its answer options.
We attempt to also highlight the coreferential men-
tions of the content words, which does not lead to
further gains, though.

Self-Assessment We explore alternative ap-
proaches to generate questions. For example,
we use the Wikipedia articles from SQuAD (Ra-
jpurkar et al., 2016) instead of the general domain
documents from the end task RACE. We gener-
ate the same number of questions as the number
of questions we generate using RACE following
the same steps mentioned in Section 3.4. Exper-
iments show that this method also improves the
accuracy of the fine-tuned GPT baseline (59.7%
vs. 58.7%). As self-assessment can be somehow
regarded as a data augmentation method, we in-
vestigate other unsupervised question generation
methods such as sentence shuffling and paraphras-
ing via back-translation (Ding and Zhou, 2018; Yu
et al., 2018). Our experiments demonstrate that
neither of them results in performance improve-
ments on the RACE dataset.
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Task Metric Previous STOA GPT GPT (2×) GPT+Strategies GPT+Strategies (2×)

ARC-Easy Acc. Clark et al. (2018) 62.6 57.0 57.1 66.6 68.9
ARC-Challenge Acc. Ni et al. (2018) 36.6 38.2 38.4 40.7 42.3
OpenBookQA Acc. Mihaylov et al. (2018) 50.2 52.0 52.8 55.2 55.8
MCTest-MC160 Acc. Chung et al. (2018) 76.4 65.4 65.8 80.0 81.7
MCTest-MC500 Acc. Chung et al. (2018) 72.3 61.5 61.0 78.7 82.0
SemEval Acc. Chen et al. (2018) 84.1 88.0 88.6 88.8 89.5
ROCStories Acc. Radford et al. (2018) 86.5 87.1 87.5 88.0 88.3

MultiRC
F1m Khashabi et al. (2018) 66.5 69.3 70.3 71.5 73.1
F1a Khashabi et al. (2018) 63.2 67.2 67.7 69.2 70.5
Acc.† Khashabi et al. (2018) 11.8 15.2 16.5 22.6 21.8

Average Acc. 60.1 58.1 58.5 65.1 66.3

Table 3: Performance (%) on the test sets of ARC, OpenBookQA, MCTest, SemEval-2018 Task 11, and ROCSto-
ries and the development set of MultiRC (Acc.: Accuracy; F1m: macro-average F1; F1a: micro-average F1; †:
using the joint exact match accuracy (i.e., EM0 reported by the official evaluation (Khashabi et al., 2018))). RACE
is used as the source task for all our implementations.

Approach ARC OpenBookQA MCTest SemEval ROCStories MultiRC Average
Easy | Challenge - MC160 |MC500 - - - -

Acc. Acc. Acc. Acc. Acc. F1m | F1a | Acc.† Acc.

GPT 54.0 | 30.3 50.0 58.8 | 52.0 87.3 86.7 69.3 | 66.2 | 11.9 53.9
GPT (2×) 53.9 | 30.7 50.0 60.0 | 54.0 88.0 87.0 69.3 | 66.5 | 13.1 54.6
GPT+Strategies 61.9 | 35.0 54.2 67.5 | 64.7 87.6 87.4 68.8 | 67.4 | 16.2 59.3
GPT+Strategies (2×) 63.1 | 35.4 55.0 70.8 | 64.8 88.1 88.1 69.7 | 67.9 | 16.9 60.3

Table 4: Performance (%) on the test sets of ARC, OpenBookQA, MCTest, SemEval-2018 Task 11, and ROC-
Stories and the development set of MultiRC using the target data only (i.e., without the data flow 1 and 2 boxed
in Figure 1) (Acc.: Accuracy; F1m: macro-average F1; F1a: micro-average F1; †: using the joint exact match
accuracy (i.e., EM0 reported by the official evaluation (Khashabi et al., 2018))).

4.4 Adaptation to Other Non-Extractive
Machine Reading Comprehension Tasks

We follow the philosophy of transferring the
knowledge from a high-performing model pre-
trained on a large-scale supervised data of a source
task to a target task, in which only a small amount
of training data is available (Chung et al., 2018).
RACE has been used to pre-train a model for
other MRC tasks as it contains the largest num-
ber of general domain non-extractive questions
(Table 1) (Ostermann et al., 2018; Wang et al.,
2018a). In our experiment, we also treat RACE
as the source task and regard six representa-
tive non-extractive multiple-choice MRC datasets
from multiple domains as the target tasks.

We require some task-specific modifications
considering the different structures of these
datasets. In ARC and OpenBookQA, there is no
reference document associated with each ques-
tion. Instead, a reference corpus is provided,
which consists of unordered science-related sen-
tences relevant to questions. We therefore first use
Lucene (McCandless et al., 2010) to retrieve the
top 50 sentences by using the non-stop words in a
question and one of its answer options as a query.
The retrieved sentences are used to form the ref-
erence document for each answer option. In Mul-

tiRC, a question could have more than one correct
answer option. Therefore, we use a sigmoid func-
tion instead of softmax at the final layer (Figure 1)
and regard the task as a binary (i.e., correct or
incorrect) classification problem over each (docu-
ment, question, answer option) instance. When we
adapt our method to the non-conventional MRC
dataset ROCStories, which aims at choosing the
correct ending to a four-sentence incomplete story
from two answer options (Mostafazadeh et al.,
2016), we leave the question context empty as no
explicit questions are provided. Since the test set
of MultiRC is not publicly available, we report the
performance of the model that achieves the highest
micro-average F1 (F1a) on the development set.
For other tasks, we select the model that achieves
the highest accuracy on the development set and
report the accuracy on the test set.

We first fine-tune GPT using our proposed three
strategies on RACE and further fine-tune the re-
sulting model on one of the six target tasks (see
Table 3). During the latter fine-tuning stage, be-
sides the highlighting embeddings inherited from
the previous fine-tuning stage, we also apply the
strategy back and forth reading, and we do not
consider self-assessment since the model has al-
ready benefited from the high-quality RACE in-
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stances during the first fine-tuning stage. We com-
pare with the baselines that are first fine-tuned
on RACE and then fine-tuned on a target task
without the use of strategies, which already out-
perform previous state-of-the-art (SOTA) on four
out of six datasets (OpenBookQA, SemEval-2018
Task 11, ROCStories, and MultiRC). By using the
strategies, we obtain a 7.8% absolute improve-
ment in average accuracy over the ensemble base-
line (58.5%) and a 6.2% absolute improvement
over previous SOTA (60.1%).

To further investigate the contribution of the
strategies, we directly fine-tune GPT on a target
task without using the labeled data in RACE (i.e.,
we only keep data flow 3 in Figure 1). Compared
to the baseline that is fine-tuned without using
strategies (54.6%), we obtain a 10.4% relative im-
provement in average accuracy (60.3%) and espe-
cially large improvements on datasets ARC, Open-
BookQA, and MCTest (Table 4).

5 Related Work

5.1 Methods for Multiple-Choice Machine
Reading Comprehension

We primarily discuss methods applied to large-
scale datasets such as RACE (Lai et al., 2017).
Researchers develop a variety of methods with at-
tention mechanisms (Chen et al., 2016; Dhingra
et al., 2017; Xu et al., 2018; Tay et al., 2018; Tang
et al., 2019) for improvement such as adding an
elimination module (Parikh et al., 2018) or ap-
plying hierarchical attention strategies (Zhu et al.,
2018; Wang et al., 2018b). These methods seldom
take the rich external knowledge (other than pre-
trained word embeddings) into considerations. In-
stead, we investigate different strategies based on
an existing pre-trained transformer (Radford et al.,
2018) (Section 3.1), which leverages rich linguis-
tic knowledge from external corpora and achieves
state-of-the-art performance on a wide range of
natural language processing tasks including ma-
chine reading comprehension.

5.2 Transfer Learning for Machine Reading
Comprehension and Question Answering

Transfer learning techniques have been success-
fully applied to machine reading comprehen-
sion (Golub et al., 2017; Chung et al., 2018) and
question answering (Min et al., 2017; Wiese et al.,
2017). Compared to previous work, we simply
fine-tune our model on the source data and then

further fine-tune the entire model on the target
data. The investigation of methods such as adding
additional parameters or an L2 loss and fine-tuning
only part of the parameters is beyond the scope of
this work.

5.3 Data Augmentation for Machine Reading
Comprehension Without Using External
Datasets

Previous methods augment the training data for
extractive machine reading comprehension and
question answering by randomly reordering words
or shuffling sentences (Ding and Zhou, 2018; Li
and Zhou, 2018) or generating questions through
paraphrasing (Yang et al., 2017; Yuan et al., 2017),
which require a large amount of training data or
limited by the number of training instances (Yu
et al., 2018). In comparison, our problem (i.e.,
question and answer options) generation method
does not rely on any existing questions in the train-
ing set, and the generated questions can involve
the content of multiple sentences in a reference
document.

6 Conclusions

Inspired by previous research on reading strate-
gies for improved comprehension levels of human
readers, we propose three strategies (i.e., back and
forth reading, highlighting, and self-assessment),
aiming at improving machine reading comprehen-
sion using limited resources: a pre-trained lan-
guage model and a limited number of training in-
stances. By applying the proposed three strategies,
we obtain a 5.8% absolute improvement in accu-
racy over the state-of-the-art performance on the
RACE dataset. By fine-tuning the resulting model
on a new target task, we achieve new state-of-
the-art results on six representative non-extractive
MRC datasets from multiple domains that re-
quire a diverse range of reading skills. These re-
sults consistently indicate the effectiveness of our
proposed strategies and the general applicability
of our fine-tuned model that incorporates these
strategies.
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