
Proceedings of NAACL-HLT 2019, pages 735–744
Minneapolis, Minnesota, June 2 - June 7, 2019. c©2019 Association for Computational Linguistics

735

Event Detection without Triggers

Shulin Liu, Yang Li, Xinpeng Zhou, Tao Yang, Feng Zhang
Tencent AI Lab

{forestliu, youngyli, xinpengzhou}@tencent.com
{rigorosyang, jayzhang}@tencent.com

Abstract

The goal of event detection (ED) is to detect
the occurrences of events and categorize them.
Previous work solved this task by recogniz-
ing and classifying event triggers, which is de-
fined as the word or phrase that most clear-
ly expresses an event occurrence. As a con-
sequence, existing approaches required both
annotated triggers and event types in train-
ing data. However, triggers are nonessential
to event detection, and it is time-consuming
for annotators to pick out the “most clear-
ly” word from a given sentence, especially
from a long sentence. The expensive anno-
tation of training corpus limits the applica-
tion of existing approaches. To reduce man-
ual effort, we explore detecting events with-
out triggers. In this work, we propose a novel
framework dubbed as Type-aware Bias Neural
Network with Attention Mechanisms (TBN-
NAM), which encodes the representation of
a sentence based on target event types. Ex-
perimental results demonstrate the effective-
ness. Remarkably, the proposed approach
even achieves competitive performances com-
pared with state-of-the-arts that used annotat-
ed triggers.

1 Introduction

This work tackles the task of event detection (ED),
whose goal is to detect the occurrences of prede-
fined events and categorize them. For example,
consider the following sentence “In Baghdad, a
cameraman died when an American tank fired on
the Palestine Hotel.”, an ideal event detection sys-
tem should recognize two events, Death and At-
tack(suppose that both Death and Attack are in the
predefined event set) .

Previous work typically solved this task by rec-
ognizing and classifying event triggers. Accord-
ing to ACE (Automatic Context Extraction) even-
t evaluation program, event trigger is defined as

the word or phrase that most clearly expresses an
event occurrence. Take the following sentence as
an example:

S: In Baghdad, a cameraman died when
an American tank fired on the Palestine
Hotel.

“died” is the trigger word of Death event, and
“fired” is the trigger word of Attack event. The
majority of existing approaches modeled this task
as word classification (Ji and Grishman, 2008;
Liao and Grishman, 2010; Hong et al., 2011; Li
et al., 2013; Nguyen and Grishman, 2015; Liu
et al., 2016b,a; Chen et al., 2017), which predicted
whether each word in a given sentence is an event
trigger and what type of event it triggered. As a
consequence, these approaches required both an-
notated triggers and event types for training.

However, event triggers are nonessential to this
task. Remind that the goal of event detection is
to recognize and categorize events, thus trigger-
s could be viewed as intermediate results of this
task. Furthermore, it is time-consuming for anno-
tators to pick out the “most clearly” word from a
given sentence, especially from a long sentence,
which limits the application of existing ED ap-
proaches. To reduce manual effort, we explore
detecting events without triggers. In this study,
the only annotated information of each sentence
is the types of events occurred in it. Consider the
aforementioned example S again, its annotation is
{Death, Attack}. On the contrast, previous work
also required an annotated trigger for each even-
t, which means the annotated information of S is
{Death:died, Attack:fired} in previous work.

Without event triggers, it is intuitive to model
this task via text classification. However, there are
two challenges: (1) Multi-label problem: each
sentence may contain arbitrary number of events,
which means it could have zero or multiple target

736

labels. In machine learning, this problem is called
multi-label problem. (2) Trigger absence prob-
lem: previous work illustrated that trigger words
play important roles in event detection(Chen et al.,
2015; Liu et al., 2016a). It is challenging to model
this information without annotated triggers.

To solve the first challenge, we transform multi-
label classification to multiple binary classification
problems. Specifically, a given sentence s attached
each pre-defined event type t forms an instance,
which is expected to be labeled with 0 or 1 ac-
cording to whether s contains an event of type t.
For example, suppose there totally are 3 prede-
fined types of events(denoted by t1, t2 and t3), and
sentence s contains two events of type t1 and t3,
then it could be transformed to the following three
instances:

instance label
< s, t1 > 1
< s, t2 > 0
< s, t3 > 1

Table 1: Example of instances in binary classifications
for sentence s, which contains events of type t1 and t3.

In this paradigm, sentences that convey multiple
events will yield multiple positive pairs, thus the
multi-label problem could be well solved.

Furthermore, each type of events are usually
triggered by a set of specific words, which are
called event trigger words. For example, Death
events are usually triggered by “die”, “passed
away”, ”gone”, etc. Therefore, event trigger word-
s are important clues to this task. Since existing
work explicitly exploited annotated trigger words
in their approaches, they can directly model this
observation. However, in our case, annotated trig-
gers are unavailable. To model this information,
we propose a simple but effective model, called
Type-aware Bias Neural Network with Attention
Mechanisms (TBNNAM).

Figure 1 illustrates the framework of TBNNAM.
The input is consisted of two parts: a tokenized
sentence with NER tags and a target event type.
The output o is expected to be 1 if the given sen-
tence conveys an event of the target type, other-
wise 0 (the output should be 1 for the example
given in Figure 1). Specifically, given a sentence,
the proposed model first transforms the input to-
kens into embeddings, and applies an LSTM layer

to calculate a context-dependent representation for
each token. Then it computes an attention vector,
α, based on the target event type, where the trig-
ger word is expected to obtain higher score. Fi-
nally, the sentence representation satt is calculated
based on α. Here, satt is expected to focus on lo-
cal information (trigger word). To capture global
information, the final output, o, is also connected
to the last LSTM units, which encodes the glob-
al information of the input sentence. Furthermore,
to reinforce the influence of positive samples, we
devise a bias objective function in our model . We
call our model “type-aware” because the represen-
tation of a sentence, satt, is calculated based on the
target event type.

We have conducted experimental comparisons
on a widely used benchmark dataset ACE20051.
The results illustrate that our approach outper-
forms all the compared baselines, and even
achieves competitive performances compared with
exiting approaches that used annotated triggers.
We publish our code for further study by the NLP
community.2

In summary, the main contributions of this work
are: (1) To the best of our knowledge, this is the
first work that focuses on detecting events with-
out triggers. Compared with existing approaches,
the proposed method requires less manual anno-
tations. (2) Without triggers, this task encounters
two challenges: multi-label problem and trigger
absence problem. We propose a simple but effec-
tive model, which even achieves competitive re-
sults compared with approaches that using anno-
tated triggers. (3) Since this is the first work on
detecting events without triggers, we implement a
series of baseline models for this task, and system-
atically evaluate and analyze them.

2 Background

2.1 Task Definition

Event detection task requires that certain speci-
fied types of events, which are mentioned in the
annotated data, to be detected. The most com-
mon used benchmark dataset in previous work is
ACE 2005 corpus. This corpus includes 8 type-
s of events, with 33 subtypes. Following previ-
ous work(Ahn, 2006; Ji and Grishman, 2008; Liao
and Grishman, 2010; Hong et al., 2011; Li et al.,

1https://catalog.ldc.upenn.edu/LDC2006T06
2https://github.com/liushulinle/event detection without

triggers

737

Figure 1: The framework of type-aware bias neural network with attention mechanisms. The input is consisted
of two parts: a tokenized sentence with NER tags and a target event type. t1 and t2 are two different embedding
vectors of the target event type. The output o is expected to be 1 if the given sentence conveys an event of the
target type, otherwise 0 (the output should be 1 for the case in this figure). We call it “type-aware” because the
representation of sentence, satt, is calculated based on the target event type.

2013; Chen et al., 2015; Nguyen and Grishman,
2016), we treat them simply as 33 separate event
types and ignore the hierarchical structure among
them. Consider the following sentence “In Bagh-
dad, a cameraman died when an American tank
fired on the Palestine Hotel”, an ideal event detec-
tor should detect two events from this sentence: a
Die event and an Attack event.

2.2 Related Work

Event detection is one of important topics in NLP.
Many approaches have been proposed for this
task. Nearly all the existing methods on ACE
event task follow supervised paradigm. We fur-
ther divide them into feature-based methods and
representation-based methods.

In feature-based methods, a diverse set of s-
trategies has been exploited to convert classifica-
tion clues into feature vectors. Ahn (2006) us-
es the lexical features(e.g., full word), syntactic
features (e.g., dependency features) and external-
knowledge features(WordNet (Miller, 1998)) to
extract the event. Inspired by the hypothesis of
One Sense Per Discourse (Yarowsky, 1995), Ji
and Grishman (2008) combined global evidence
from related documents with local decisions for
the event extraction. To capture more clues from
the texts, Gupta and Ji (2009), Liao and Grishman
(2010) and Hong et al. (2011) proposed the cross-
event and cross-entity inference for the ACE event
task. Li et al. (2013) proposed a joint model to

capture the combinational features of triggers and
arguments. Liu et al. (2016b) proposed a global in-
ference approach to employ both latent local and
global information for event detection.

In recent years, representation-based methods
have dominated the research. In this paradigm,
candidate event mentions are represented by em-
beddings, which typically are fed into neural net-
works. Chen et al. (2015) and Nguyen and Gr-
ishman (2015) are the first work in this paradig-
m. Their models are based on CNNs (Convolu-
tional Neural Networks). To model the dependen-
cy of triggers and arguments, Nguyen and Grish-
man (2016) proposed a joint event extraction ap-
proach based RNNs(Recurrent Neural Networks).
Liu et al. (2017) proposed to encode argument in-
formation in event detection via supervised atten-
tion mechanisms. Recently, Nguyen and Grish-
man (2018) and Sha et al. (2018) proposed to ex-
ploit syntactic information for event detection.

All the existing approaches required annotated
triggers. The expensive annotation of training da-
ta limits the application of these approaches. To
reduce manual effort, we perform this task with-
out event triggers.

3 Methodology

To deal the multi-label problem, we model this
task via multiple binary classifications. Given a
sentence, it will be fed into a binary classifier with
each candidate event type. We add the label NA to

738

sentences that do not contain any events. To cap-
ture the hidden trigger information, we propose
a simple but effective model, called Type-aware
Bias Neural Network with Attention Mechanisms
(TBNNAM). Our model is “type-aware” because it
calculates the representation of a sentence based
on the target event type. Figure 1 illustrates the
framework of TBNNAM. The input is consisted of
two parts: a tokenized sentence with NER tags and
a target event type. The output o is expected to be
1 if the given sentence conveys an event of the tar-
get type, otherwise 0. Next, we describe the struc-
ture of this model in bottom-up order.

3.1 Input Tokens
Given a sentence, we use Stanford CoreNLP tool-
s3(Manning et al., 2014) to convert texts into to-
kens. The ACE 2005 corpus annotated not only
events but also entities for each given sentence.
Following previous work, we exploit the annotat-
ed entity tags in our model(Li et al., 2013; Chen
et al., 2015; Nguyen and Grishman, 2015, 2016;
Liu et al., 2016b).

3.2 Word/Entity Embeddings
Word embeddings learned from a large amount of
unlabeled data have been shown to be able to cap-
ture the meaningful semantic regularities of word-
s(Bengio et al., 2003; Erhan et al., 2010). Much
work(Socher et al., 2012; Zeng et al., 2014) has
shown its power in many NLP tasks.

In this work, we use the Skip-gram mod-
el(Mikolov et al., 2013) to learn word embeddings
on the NYT corpus4. Furthermore, we random-
ly initialized an embedding table for each entity
tags. All the input word tokens and entity tags will
be transformed into low-dimensional vectors by
looking up these embedding tables. In this work,
we denote the dimension of word embeddings by
dw, and that of entity embeddings by de.

3.3 Event Type Embeddings
As illustrated in Figure 1, an event type is trans-
formed into two embedding vectors: t1 and t2.
The first one (colored with brown) is designed to
capture local information (hidden trigger word),
and the latter one (colored with red) is designed
to capture global information. Both of them are
randomly initialized. The dimension of event type
embeddings is denoted by devt.

3http://stanfordnlp.github.io/CoreNLP
4https://catalog.ldc.upenn.edu/LDC2008T19

3.4 LSTM Layer
As shown in Figure 1, the LSTM layer is run over
the sequence of concatenation of word and entity
embeddings. LSTM has three gates(input i, for-
get f and output o), and a cell memory vector c.
The input gate can determine how incoming vec-
tors x(t) alter the state of the memory cell. The
output gate can allow the memory cell to have an
effect on the outputs. Finally, the forget gate al-
lows the cell to remember or forget its previous
state.

3.5 Attention Layer
Each type of events are usually triggered by a set
of specific words, which are called event trigger
words. For example, Death events are usually
triggered by “die”, “passed away”, ”gone”, etc.
Therefore, event trigger words are important clues
to this task. However, this information is hidden
in our task, because annotated triggers are unavail-
able. To model the hidden triggers, we introduce
attention mechanisms in our approach.

As illustrated in Figure 1, the attention vector α
is calculated based on the target event type embed-
ding t1 and the hidden states h yielded by LSTM.
Specifically, the attention score for the k-th token
in a given sentence is calculated by the following
equation:

αk =
exp(hk · tT1)∑
i exp(hi · tT1)

(1)

In this model, trigger words of the target even-
t type are expected to obtain higher scores than
other words. Finally, the representation of the sen-
tence, satt, is computed by the following equation:

satt = αTH (2)

where α = [α1, ..., αn] is the attention vector,
H = [h1,h2, ...,hn] is a matrix, hk is the LSTM’s
output for the k-th token, and satt is the represen-
tation of the given sentence.

3.6 Output Layer
As illustrated in Figure 1, the final output o is con-
nected to two components: vatt and vglobal. On
one hand, vatt is calculated by the dot produc-
t of satt and t1, which is designed to capture local
features (specifically, features about hidden trigger
words). On the other hand, the last output of the L-
STM layer, hn, encodes global information of the
whole sentence, thus vglobal = hn · tT2 is expected

739

to capture global features of a sentence. Finally, o
is defined as the weighted sum of vatt and vglobal:

o = σ(λ · vatt + (1− λ) · vglobal) (3)

where σ is the Sigmoid function, λ ∈ [0, 1] is
a hyper-parameter for trade-off between vatt and
vglobal.

3.7 Bias Loss Function
We devise a bias loss function to reinforce the in-
fluence of positive samples because of the follow-
ing reasons. 1) positive samples are much less
than negative samples. In our approach, each
training sample is a <sentence,event type> pair,
whose label is 1 or 0 according to whether the giv-
en sentence conveys an event of type t. For ex-
ample, we totally have 33 target event types, if a
sentence only contains one event, then it will be
transformed into 32 negative pairs and 1 positive
pair. The majority of sentences convey at most t-
wo events, thus negative samples are much more
than positive samples. 2) positive samples are
more informative than negatives. A positive pair
< s, t > means that s conveys an event of type
t, whereas negative pair means s does not convey
any event of type t. Apparently, the former is more
informative.

Given all of the (suppose T) training instances
(x(i), y(i)), the loss function is defined as follows:

J(θ) =
1

T

T∑
i=1

(o(xi)−y(i))2(1+y(i) ·β)+δ||θ||2

(4)
where x is a pair consisted of a sentence and a
target event type, y ∈ {0, 1}, θ is the parameter
of our model and δ > 0 is the weight of L2 nor-
malization term. (1 + y(i) · β) is the bias term.
Specifically, the value of this term is 1 for negative
samples (y(i) is 0) and 1 + β for positive samples
(y(i) is 1), where β ≥ 0.

3.8 Training
We train the model by using a simple optimization
technique called stochastic gradient descent (S-
GD) over shuffled mini-batches with the Adadelta
rule (Zeiler, 2012). Regularization is implemented
by a dropout and L2 norm.

Given a instance x, the model assign it a label ỹ
according to the following equation:

ỹ =

{
0 o(x) < 0.5
1 otherwise

(5)

Figure 2: The framework of binary classification based
approaches. The output o is expected to be 1 if the giv-
en sentence conveys an event of the target type, other-
wise 0.

where x is a pair < s, t >, o(x) is the output of
the model for x, and ỹ is the final predicted result.

4 Baseline Systems

Since this is the first work to perform event de-
tection without triggers, we implement a series of
baseline systems for comparisons, which could be
divided into two categories: binary classification
based methods and multi-class classification based
methods.

4.1 Binary Classification

Similar with the proposed approach, baseline sys-
tems in this group solved this task via binary clas-
sification. Figure 2 illustrates the framework of
these methods. These models take a sentence and
a target event type as input. Then all the inputs are
transformed into embeddings by looking up em-
bedding tables. These models have the same loss
function as the proposed approach (see Equation
4). The key component of these models is sen-
tence encoder. According to the strategy of encod-
ing sentence, we implement three models for com-
parison: BC-CNN, BC-LSTMlast, BC-LSTMavg.

• BC-CNN employs a CNN model to encode
sentence.

• BC-LSTMlast employs LSTM model, and use
the hidden state of the last token as the repre-
sentation of a given sentence.

• BC-LSTMavg also employs LSTM model, but
use the average of all hidden states as the rep-
resentation of a given sentence.

740

Figure 3: The framework of multi-class classification
based approaches.

4.2 Multi-class Classification

All existing approaches model the task of even-
t detection (with triggers) via multi-class classi-
fication5. Given a sentence, these methods pre-
dict whether each token is an event trigger and
what type of event it triggered. We also imple-
ment several multi-class classification based sys-
tems for comparison. Since annotated triggers are
unavailable in our task, the sentence is the input
of our model. Figure 3 illustrates the framework
of these models. Following existing work(Chen
et al., 2015; Liu et al., 2017), we employ a negative
log-likelihood loss function in the soft-max classi-
fier: J(θ) = − 1

T

∑T
i=1 log(p(y

(i)|x(i), θ)), where
(x(i), y(i)) is a training sample, y(i) is a label from
the valid label set (all the predefined event type-
s plus a NA for none event), T is the total num-
ber of training instances, θ is the parameters of
the model. According to the strategy of encoding
sentence, we implement three models: MC-CNN,
MC-LSTMlast and MC-LSTMavg.

• MC-CNN employs a CNN model to encode
sentence.

• MC-LSTMlast employs LSTM model, and
use the hidden state of the last token as the
representation of a given sentence.

• MC-LSTMavg also employs LSTM model,
but use the average of all hidden states as the
representation of a given sentence.

5Multi-class classification means a classification task with
more than two classes, but each sample belongs to only one
class. “multi-class” is different from “multi-label”.

5 Experimental Results

5.1 Experimental Setup

In this section, we introduce the dataset, evalua-
tion metrics and the settings of hyper parameters.

5.1.1 Dataset
Our experiments are conducted on ACE 2005
dataset. Following the evaluation of previous
work(Li et al., 2013; Chen et al., 2015; Nguyen
and Grishman, 2016; Liu et al., 2017), we ran-
domly selected 30 articles from different genres
as the development set, and subsequently conduct-
ed a blind test on a separate set of 40 ACE 2005
newswire documents. We used the remaining 529
articles as our training set.

This work focuses on detecting events without
triggers. Therefore, we remove trigger annotations
from the corpus. Specifically, we employ Stanford
CoreNLP Toolkit to split each document into sen-
tences, and assign each sentence with a set of la-
bels according to the original annotations in ACE
2005 corpus. If a sentence does not contain any
event, we assign it with a special label, NA. If a
sentence contains multiple events of the same type
(less than 3% in ACE corpus), we only keep one
label for each type. Table 2 shows several samples
of the our corpus.

sentence labels
They got married in 1985. {Marry}

They got married in 1985, and
divorced 3 years latter.

{Marry,
Divorce}

They are very happy every day. {NA}

Table 2: Examples of instances in our corpus (without
event trigger annotations).

5.1.2 Evaluation Metrics
Following previous work (Liao and Grishman,
2010; Li et al., 2013; Chen et al., 2015; Liu et al.,
2017), we use precision (P), recall (R) and F1-
measure (F1) to evaluate the results.

Precision: the proportion of correctly predicted
events in total predicted events.

Recall: the proportion of correctly predicted
events in total gold events of the dataset.

F1-measure: 2×P×R
P+R

5.1.3 Hyper Parameters
Hyper parameters are tuned on the developmen-
t dataset via grid search. In all experiments, we

741

Figure 4: Experimental results on development dataset
with different setting of λ.

methods P(%) R(%) F1(%)
MC-CNN 73.3 46.3 56.8
BC-CNN 76.6 52.9 62.6

MC-LSTMlast 57.9 42.3 48.9
BC-LSTMlast 69.8 52.2 59.7
MC-LSTMavg 60.3 42.7 50.0
BC-LSTMavg 68.1 49.2 57.1

Table 3: Experimental results on ACE 2005 corpus.
Methods with name MC-* are based on multi-class
classification, and methods with name BC-* are based
on binary classification.

set the dimension of word embeddings as 200, the
dimension of entity type embeddings as 50, batch
size as 100, the hyper parameter for the L2 norm
as 10−5, β in the bias term as 1.0. Furthermore,
we also tune λ in Equation 3 on the development
dataset. Figure 4 illustrates experimental result-
s with different settings of λ, finally we set λ as
0.25. And in all the CNN-based baseline systems,
the sizes of filter windows are set to 1, 2, 3 with
100 feature maps each.

5.2 Multi-class Classification vs. Binary
Classification

Table 3 illustrates the experimental results, where
methods with name MC-* are based on multi-class
classification, and methods with name BC-* are
based on binary classification. According to the
strategy to encode a sentence, methods in Table 3
are grouped into three parts. From the table, we
make the following observations:

• In each group, binary classification based ap-
proach significantly outperforms multi-class
classification based approach. The reason is
that BC-* can solve the multi-label problem,
but MC-* can not. Moreover, MC-* achieve
much lower recall than BC-*, because they
predict at most one event for each sentence.

methods P(%) R(%) F1(%)
BC-CNN 76.6 52.9 62.6

BC-LSTMlast 69.8 52.2 59.7
BC-LSTMavg 68.1 49.2 57.1
BC-LSTMatt 68.3 64.5 66.3

our TBNNAM 76.2 64.5 69.9
Nguyen’s CNN† 71.8 66.4 69.0

Chen’s DMCNN† 75.6 63.6 69.1
Liu’s PSL† 75.3 64.4 69.4

DS-DMCNN‡† 75.7 66.0 70.5

Table 4: Experimental results on ACE 2005 corpus.
Methods in the first group are baseline systems. Meth-
ods in the second group are the proposed approaches.
Methods in the last group are state-of-the-art ED sys-
tems. † requiring annotated triggers, ‡ using external
data

• Methods with CNN as sentence encoder
achieve better performance than that with L-
STM. The reason is that trigger words are im-
portant clues to event detection, and CNN is
good at extracting such local features.

5.3 Overall Performances
In this section, we illustrates the results of the
proposed approach (see Table 4). The results
of baseline systems are listed in the first group.
Methods in the second group are the proposed
approaches. They have the same model structure
as Figure 1. In BC-LSTMatt, λ (see Equation 3) is
set as 1.0, which is designed to show the effects
of the proposed attention strategy. In TBNNAM,
λ is set as 0.25, which is designed to employ
both local information (captured by the attention
mechanism) and global information (captured by
the last output of LSTM). Methods in the last
group are state-of-the-art ED systems on ACE
2005 dataset. We give a brief introduction of them
as follows:
1). Nguyen’s CNN: the CNN model proposed by
Nguyen and Grishman (2015)
2). Chen’s DMCNN: the dynamic multi-pooling
CNN model proposed by Chen et al. (2015)
3). Liu’s PSL: the soft probabilistic soft logic
model proposed by Liu et al. (2016b)
4). DS-DMCNN: the DMCNN model augmented
with automatic labeled data, proposed by Chen
et al. (2017)

From the table, we make the following observa-
tions:

742

Figure 5: Visualization of attention weight vector α of sample instances learned by our model.

• BC-LSTMatt outperforms all the baseline
systems with remarkable gains, which
demonstrates the effectiveness of the pro-
posed attention mechanism.

• TBNNAM achieves better performance than
BC-LSTMatt (69.9% vs. 66.3%), which
means that global information captured by
the last state of LSTM is also important to
this task. Such global information and local
information captured by the attention mecha-
nisms are complementary to each other.

• All state-of-the-art ED systems require an-
notated triggers. Without trigger annotation-
s, our approach achieves competitive results,
even outperforms some of them.

5.4 Analysis of Weight α

Figure 5 shows several examples of the attention
vector α learned by our model. In the first case,
“died” is the most significant keyword for the
Death event, and our model succeeded to capture
this feature by assigning it with a large attention s-
core. Similarly, in the second case, “fired” is a key
clue of Attack event, and our model also learned
it and assigned it with a large attention score. Ac-
tually, “died” and “fired” are the trigger words of
Death and Attack events, respectively. Therefore,
we argue that, although annotated triggers are u-
navailable, our model still can exploit trigger in-
formation for this task. Moreover, our approach
also could model the dependencies among differ-
ent events, which has been demonstrated useful
for this task(Liao and Grishman, 2010; Liu et al.,
2016b). For example, Attack events often co-occur
with Death events. In Case1 and Case2 (Figure 5),
our approach models such information by paying
attention on both words “died” and “fired”. Fur-
thermore, the 3-rd case is a negative sample, thus

methods P(%) R(%) F1(%)
BC-LSTMatt\Bias 74.5 57.2 64.7

BC-LSTMatt 68.3 64.5 66.3
TBNNAM\Bias 76.6 59.8 67.2

TBNNAM 76.2 64.5 69.9

Table 5: Results of systems without/with bias term in
loss function, where *\Bias do not use bias term.

there is no key clues. Our model assigned each
token with nearly equivalent attention score.

5.5 Effects of Bias Term in Loss Function

In this section, we illustrates the effectiveness of
the bias term in Equation 4. Table 5 shows ex-
perimental results. Methods named with “*\Bias”
do not use bias term. From the table, we ob-
serve that systems with bias term in loss function
significantly outperform those without bias term,
which demonstrates the correctness of our analy-
sis in Section 3.7 that positive samples should be
reinforced during training.

6 Conclusions

Existing event detection approaches required an-
notated triggers, which limits their applications
because of the expensive annotations. To reduce
manual effort, we investigate performing this task
without event triggers. In this setting, event detec-
tion task encounters two challenges: multi-label
problem and trigger absence problem. We pro-
pose a simple but effective model to solve them,
which computes the representation of a sentence
according to the target event type. Experimental
results demonstrate its effectiveness. Remarkably,
the proposed approach even achieves competitive
performances compared with state-of-the-arts that
used annotated triggers.

743

References
David Ahn. 2006. The stages of event extraction. In

Proceedings of the Workshop on Annotating and
Reasoning about Time and Events, pages 1–8. As-
sociation for Computational Linguistics.

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and
Christian Janvin. 2003. A neural probabilistic lan-
guage model. The Journal of Machine Learning Re-
search, 3:1137–1155.

Yubo Chen, Shulin Liu, Xiang Zhang, Kang Liu, and
Jun Zhao. 2017. Automatically labeled data genera-
tion for large scale event extraction. In Proceedings
of the 55th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Paper-
s), pages 409–419, Vancouver, Canada.

Yubo Chen, Liheng Xu, Kang Liu, Daojian Zeng,
and Jun Zhao. 2015. Event extraction via dynam-
ic multi-pooling convolutional neural networks. In
Proceedings of the 53rd Annual Meeting of the As-
sociation for Computational Linguistics, pages 167–
176. Association for Computational Linguistics.

Dumitru Erhan, Yoshua Bengio, Aaron Courville,
Pierre-Antoine Manzagol, Pascal Vincent, and Samy
Bengio. 2010. Why does unsupervised pre-training
help deep learning? The Journal of Machine Learn-
ing Research, 11:625–660.

Prashant Gupta and Heng Ji. 2009. Predicting un-
known time arguments based on cross-event prop-
agation. In Proceedings of the ACL-IJCNLP 2009
Conference Short Papers, pages 369–372. Associa-
tion for Computational Linguistics.

Yu Hong, Jianfeng Zhang, Bin Ma, Jianmin Yao,
Guodong Zhou, and Qiaoming Zhu. 2011. Using
cross-entity inference to improve event extraction.
In Proceedings of the 49th Annual Meeting of the
Association for Computational Linguistics: Human
Language Technologies, pages 1127–1136. Associ-
ation for Computational Linguistics.

Heng Ji and Ralph Grishman. 2008. Refining even-
t extraction through cross-document inference. In
Proceedings of ACL-08: HLT, pages 254–262. As-
sociation for Computational Linguistics.

Qi Li, Heng Ji, and Liang Huang. 2013. Joint event
extraction via structured prediction with global fea-
tures. In Proceedings of the 51st Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 73–82.

Shasha Liao and Ralph Grishman. 2010. Using doc-
ument level cross-event inference to improve event
extraction. In Proceedings of the 48th Annual Meet-
ing of the Association for Computational Linguistic-
s, pages 789–797.

Shulin Liu, Yubo Chen, Shizhu He, Kang Liu, and Jun
Zhao. 2016a. Leveraging framenet to improve au-
tomatic event detection. In Proceedings of the 54th

Annual Meeting of the Association for Computation-
al Linguistics, volume 1, pages 2134–2143. Associ-
ation for Computational Linguistics.

Shulin Liu, Yubo Chen, Kang Liu, and Jun Zhao. 2017.
Exploiting argument information to improve even-
t detection via supervised attention mechanisms. In
Proceedings of the 55th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 1789–
1798, Vancouver, Canada. Association for Compu-
tational Linguistics.

Shulin Liu, Kang Liu, Shizhu He, and Jun Zhao. 2016b.
A probabilistic soft logic based approach to exploit-
ing latent and global information in event classifi-
cation. In Proceedings of the thirtieth AAAI Con-
ference on Artificail Intelligence, pages 2993–2999.
Association for Computational Linguistics.

Christopher D. Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven J. Bethard, and David Mc-
Closky. 2014. The Stanford CoreNLP natural lan-
guage processing toolkit. In Association for Compu-
tational Linguistics (ACL) System Demonstrations,
pages 55–60.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013. Efficient estimation of word rep-
resentations in vector space. arXiv preprint arX-
iv:1301.3781.

George Miller. 1998. WordNet: An electronic lexical
database. MIT press.

Huu Thien Nguyen and Ralph Grishman. 2015. Event
detection and domain adaptation with convolutional
neural networks. In Proceedings of the 53rd Annual
Meeting of the Association for Computational Lin-
guistics, pages 365–371. Association for Computa-
tional Linguistics.

Huu Thien Nguyen and Ralph Grishman. 2016. Mod-
eling skip-grams for event detection with convolu-
tional neural networks. In Proceedings of the 2016
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 886–891. Association for
Computational Linguistics.

Thien Huu Nguyen and Ralph Grishman. 2018. Graph
convolutional networks with argument-aware pool-
ing for event detection.

Lei Sha, Feng Qian, Baobao Chang, and Zhifang Sui.
2018. Jointly extracting event triggers and argu-
ments by dependency-bridge rnn and tensor-based
argument interaction. In AAAI.

Richard Socher, Brody Huval, Christopher D Manning,
and Andrew Y Ng. 2012. Semantic compositionali-
ty through recursive matrix-vector spaces. In Pro-
ceedings of the 2012 joint conference on empiri-
cal methods in natural language processing, pages
1201–1211. Association for Computational Linguis-
tics.

744

David Yarowsky. 1995. Unsupervised word sense dis-
ambiguation rivaling supervised methods. In 33rd
Annual Meeting of the Association for Computation-
al Linguistics. Association for Computational Lin-
guistics.

Matthew D Zeiler. 2012. Adadelta: An adaptive learn-
ing rate method. arXiv preprint arXiv:1212.5701.

Daojian Zeng, Kang Liu, Siwei Lai, Guangyou Zhou,
and Jun Zhao. 2014. Relation classification via con-
volutional deep neural network. In Proceedings of
COLING 2014, pages 2335–2344.

