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Abstract

Adversarial training (AT)1 is a powerful reg-
ularization method for neural networks, aim-
ing to achieve robustness to input perturba-
tions. Yet, the specific effects of the robust-
ness obtained from AT are still unclear in the
context of natural language processing. In
this paper, we propose and analyze a neural
POS tagging model that exploits AT. In our ex-
periments on the Penn Treebank WSJ corpus
and the Universal Dependencies (UD) dataset
(27 languages), we find that AT not only im-
proves the overall tagging accuracy, but also
1) prevents over-fitting well in low resource
languages and 2) boosts tagging accuracy for
rare / unseen words. We also demonstrate that
3) the improved tagging performance by AT
contributes to the downstream task of depen-
dency parsing, and that 4) AT helps the model
to learn cleaner word representations. 5) The
proposed AT model is generally effective in
different sequence labeling tasks. These posi-
tive results motivate further use of AT for nat-
ural language tasks.

1 Introduction
Recently, neural network-based approaches have
become popular in many natural language pro-
cessing (NLP) tasks including tagging, parsing,
and translation (Chen and Manning, 2014; Bah-
danau et al., 2015; Ma and Hovy, 2016). How-
ever, it has been shown that neural networks tend
to be locally unstable and even tiny perturba-
tions to the original inputs can mislead the models
(Szegedy et al., 2014). Such maliciously perturbed
inputs are called adversarial examples. Adversar-
ial training (Goodfellow et al., 2015) aims to im-
prove the robustness of a model to input perturba-
tions by training on both unmodified examples and
adversarial examples. Previous work (Goodfellow

1We distinguish AT from Generative Adversarial Net-
works (GANs).

Figure 1: Illustration of our architecture for adversar-
ial POS tagging. Given a sentence, we input the nor-
malized word embeddings (w1,w2,w3) and character
embeddings (showing c1, c2, c3 for w1). Each word is
represented by concatenating its word embedding and
its character-level BiLSTM output. They are fed into
the main BiLSTM-CRF network for POS tagging. In
adversarial training, we compute and add the worst-
case perturbation η to all the input embeddings for reg-
ularization.

et al., 2015; Shaham et al., 2015) on image recog-
nition has demonstrated the enhanced robustness
of their models to unseen images via adversarial
training and has provided theoretical explanations
of the regularization effects.

Despite its potential as a powerful regularizer,
adversarial training (AT) has yet to be explored ex-
tensively in natural language tasks. Recently, Miy-
ato et al. (2017) applied AT on text classification,
achieving state-of-the-art accuracy. Yet, the spe-
cific effects of the robustness obtained from AT are
still unclear in the context of NLP. For example,
research studies have yet to answer questions such
as 1) how can we interpret perturbations or robust-
ness on natural language inputs? 2) how are they
related to linguistic factors like vocabulary statis-
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tics? 3) are the effects of AT language-dependent?
Answering such questions is crucial to understand
and motivate the application of adversarial train-
ing on natural language tasks.

In this paper, spotlighting a well-studied core
problem of NLP, we propose and carefully ana-
lyze a neural part-of-speech (POS) tagging model
that exploits adversarial training. With a BiLSTM-
CRF model (Huang et al., 2015; Ma and Hovy,
2016) as our baseline POS tagger, we apply ad-
versarial training by considering perturbations to
input word/character embeddings. In order to de-
mystify the effects of adversarial training in the
context of NLP, we conduct POS tagging experi-
ments on multiple languages using the Penn Tree-
bank WSJ corpus (Englsih) and the Universal De-
pendencies dataset (27 languages), with thorough
analyses of the following points:

• Effects on different target languages
• Vocabulary statistics and tagging accuracy
• Influence on downstream tasks
• Representation learning of words

In our experiments, we find that our adversarial
training model consistently outperforms the base-
line POS tagger, and even achieves state-of-the-art
results on 22 languages. Furthermore, our anal-
yses reveal the following insights into adversarial
training in the context of NLP:

• The regularization effects of adversarial train-
ing (AT) are general across different languages.
AT can prevent overfitting especially well when
training examples are scarce, providing an ef-
fective tool to process low resource languages.

• AT can boost the tagging performance for rare/
unseen words and increase the sentence-level
accuracy. This positively affects the perfor-
mance of down-stream tasks such as depen-
dency parsing, where low sentence-level POS
accuracy can be a bottleneck (Manning, 2011).

• AT helps the network learn cleaner word em-
beddings, showing stronger correlations with
their POS tags.

We argue that the effects of AT can be interpreted
from the perspective of natural language. Finally,
we demonstrate that the proposed AT model is
generally effective across different sequence label-
ing tasks. This work therefore provides a strong
motivation and basis for utilizing adversarial train-
ing in NLP tasks.

2 Related Work

2.1 POS Tagging

Part-of-speech (POS) tagging is a fundamental
NLP task that facilitates downstream tasks such
as syntactic parsing. While current state-of-the-
art POS taggers (Ling et al., 2015; Ma and Hovy,
2016) yield accuracy over 97.5% on PTB-WSJ,
there still remain issues. The per token accuracy
metric is easy since taggers can easily assign cor-
rect POS tags to highly unambiguous tokens, such
as punctuation (Manning, 2011). Sentence-level
accuracy serves as a more realistic metric for POS
taggers but it still remains low. Another prob-
lem with current POS taggers is that their accuracy
deteriorates drastically on low resource languages
and rare words (Plank et al., 2016). In this work,
we demonstrate that adversarial training (AT) can
mitigate these issues.

It is empirically shown that POS tagging perfor-
mance can greatly affect downstream tasks such as
dependency parsing (Dozat et al., 2017). In this
work, we also demonstrate that the improvements
obtained from our AT POS tagger actually con-
tribute to dependency parsing. Nonetheless, pars-
ing with gold POS tags still yields better results,
bolstering the view that POS tagging is an essen-
tial task in NLP that needs further development.

2.2 Adversarial Training

The concept of adversarial training (Szegedy et al.,
2014; Goodfellow et al., 2015) was originally in-
troduced in the context of image classification to
improve the robustness of a model by training on
input images with malicious perturbations. Previ-
ous work (Goodfellow et al., 2015; Shaham et al.,
2015; Wang et al., 2017) has provided a theoreti-
cal framework to understand adversarial examples
and the regularization effects of adversarial train-
ing (AT) in image recognition.

Recently, Miyato et al. (2017) applied AT to a
natural language task (text classification) by ex-
tending the concept of adversarial perturbations to
word embeddings. Wu et al. (2017) further ex-
plored the possibility of AT in relation extraction.
Both report improved performance on their tasks
via AT, but the specific effects of AT have yet to be
analyzed. In our work, we aim to address this is-
sue by providing detailed analyses on the effects of
AT from the perspective of NLP, such as different
languages, vocabulary statistics, word embedding
distribution, and aim to motivate future research
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that exploits AT in NLP tasks.
AT is related to other regularization methods

that add noise to data such as dropout (Srivastava
et al., 2014) and its variant for NLP tasks, word
dropout (Iyyer et al., 2015). Xie et al. (2017) dis-
cuss various data noising techniques for language
modeling. While these methods produce random
noise, AT generates perturbations that the current
model is particularly vulnerable to, and thus is
claimed to be effective (Goodfellow et al., 2015).

It should be noted that while related in name,
adversarial training (AT) differs from Generative
Adversarial Networks (GANs) (Goodfellow et al.,
2014). GANs have already been applied to NLP
tasks such as dialogue generation (Li et al., 2017)
and transfer learning (Kim et al., 2017; Gui et al.,
2017). Adversarial training also differs from ad-
versarial evaluation, recently proposed for reading
comprehension tasks (Jia and Liang, 2017).

3 Method

In this section, we introduce our baseline POS tag-
ging model and explain how we implement adver-
sarial training on top.

3.1 Baseline POS Tagging Model

Following the recent top-performing models for
sequence labeling tasks (Plank et al., 2016; Lam-
ple et al., 2016; Ma and Hovy, 2016), we employ a
Bi-directional LSTM-CRF model as our baseline
(see Figure 1 for an illustration).

Character-level BiLSTM. Prior work has
shown that incorporating character-level represen-
tations of words can boost POS tagging accuracy
by capturing morphological information present
in each language. Major neural character-level
models include the character-level CNN (Ma and
Hovy, 2016) and (Bi)LSTM (Dozat et al., 2017).
A Bi-directional LSTM (BiLSTM) (Hochreiter
and Schmidhuber, 1997; Schuster and Paliwal,
1997) processes each sequence both forward and
backward to capture sequential information, while
preventing the vanishing / exploding gradient
problem. We observed that the character-level
BiLSTM outperformed the CNN by 0.1% on the
PTB-WSJ development set, and hence in all of our
experiments we use the character-level BiLSTM.
Specifically, we generate a character-level repre-
sentation for each word by feeding its character
embeddings into the BiLSTM and obtaining the
concatenated final states.

Word-level BiLSTM. Each word in a sentence
is represented by concatenating its word embed-
ding and its character-level representation. They
are fed into another level of BiLSTM (word-level
BiLSTM) to process the entire sentence.

CRF. In sequence labeling tasks it is beneficial
to consider the correlations between neighboring
labels and jointly decode the best chain of labels
for a given sentence. With this motivation, we
apply a conditional random field (CRF) (Lafferty
et al., 2001) on top of the word-level BiLSTM to
perform POS tag inference with global normaliza-
tion, addressing the “label bias” problem. Specif-
ically, given an input sentence, we pass the out-
put sequence of the word-level BiLSTM to a first-
order chain CRF to compute the conditional prob-
ability of the target label sequence:

p(y | s;θ)
where θ represents all of the model parameters (in
the BiLSTMs and CRF), s and y denote the in-
put embeddings and the target POS tag sequence,
respectively, for the given sentence.

For training, we minimize the negative log-
likelihood (loss function)

L(θ; s,y) = − log p(y | s;θ) (1)

with respect to the model parameters. Decoding
searches for the POS tag sequence y∗ with the
highest conditional probability using the Viterbi
algorithm. For more detail about the BiLSTM-
CRF formulation, refer to Ma and Hovy (2016).

3.2 Adversarial Training

Adversarial training (Goodfellow et al., 2015) is
a powerful regularization method, primarily ex-
plored in image recognition to improve the robust-
ness of classifiers to input perturbations. Given a
classifier, we first generate input examples that are
very close to original inputs (so should yield the
same labels) yet are likely to be misclassified by
the current model. Specifically, these adversarial
examples are generated by adding small perturba-
tions to the inputs in the direction that significantly
increases the loss function of the classifier (worst-
case perturbations). Then, the classifier is trained
on the mixture of clean examples and adversarial
examples to improve the stability to input pertur-
bations. In this work, we incorporate adversarial
training into our baseline POS tagger, aiming to
achieve better regularization effects and to provide
their interpretations in the context of NLP.
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Generating adversarial examples. Adversarial
training (AT) considers continuous perturbations
to inputs, so we define perturbations at the level
of dense word / character embeddings rather than
one-hot vector representations, similarly to Miy-
ato et al. (2017). Specifically, given an input sen-
tence, we consider the concatenation of all the
word / character embeddings in the sentence: s =
[w1,w2, . . . , c1, c2, . . . ]. To prepare an adversar-
ial example, we aim to generate the worst-case
perturbation of a small bounded norm ε that max-
imizes the loss function L of the current model:

η = argmax
η′: ‖η′‖2≤ ε

L(θ̂; s+η′,y)

where θ̂ is the current value of the model param-
eters, treated as a constant, and y denotes the tar-
get labels. Since the exact computation of such η
is intractable in complex neural networks, we em-
ploy the Fast Gradient Method (Liu et al., 2017;
Miyato et al., 2017) i.e. first order approximation
to obtain an approximate worst-case perturbation
of norm ε, by a single gradient computation:

η = ε g/‖g‖2, where g = ∇sL(θ̂; s,y) (2)

ε is a hyperparameter to be determined in the de-
velopment dataset. Note that the perturbation η
is generated in the direction that significantly in-
creases the loss L. We find such η against the cur-
rent model parameterized by θ̂, at each training
step, and construct an adversarial example by

sadv = s+ η

However, if we do not restrict the norm of word
/ character embeddings, the model could trivially
learn embeddings of large norms to make the per-
turbations insignificant. To prevent this issue, we
normalize word/character embeddings so that they
have mean 0 and variance 1 for every entry, as in
Miyato et al. (2017). The normalization is per-
formed every time we feed input embeddings into
the LSTMs and generate adversarial examples. To
ensure a fair comparison, we also normalize input
embeddings in our baseline model.

While Miyato et al. (2017) set the norm of a
perturbation ε (Eq 2) to be a fixed value for all in-
put sentences, to generate adversarial examples for
an entire sentence of a variable length and to in-
clude character embeddings besides word embed-
dings, we make the perturbation size ε adaptive to
the dimension of the concatenated input embed-
ding s ∈ RD. We set ε to be α

√
D (i.e., propor-

tional to
√
D), as the expected squared norm of s

after the embedding normalization is D. The scal-
ing factor α is selected from {0.001, 0.005, 0.01,
0.05, 0.1} based on the development performance
in each treebank. We used 0.01 for PTB-WSJ and
UD-Spanish, and 0.05 for the rest. Note that α=0
would generate no noise (identical to the baseline);
if α = 1, the generated adversarial perturbation
would have a norm comparable to the original em-
bedding, which could change the semantics of the
input sentence (Wu et al., 2017). Hence, the opti-
mal perturbation scale α should lie in between and
be small enough to preserve the semantics of the
original input.

Adversarial training. At each training step, we
generate adversarial examples against the current
model, and train on the mixture of clean examples
and adversarial examples to achieve robustness to
input perturbations. To this end, we define the loss
function for adversarial training as:

L̃ = γL(θ; s,y) + (1− γ)L(θ; sadv,y)
where L(θ; s,y), L(θ; sadv,y) represent the loss
from a clean example and the loss from its adver-
sarial example, respectively, and γ determines the
weighting between them. We used γ = 0.5 in all
our experiments. This objective function can be
optimized with respect to the model parameters θ,
in the same manner as the baseline model.

4 Experiments
To fully analyze the effects of adversarial training,
we train and evaluate our baseline/adversarial POS
tagging models on both a standard English dataset
and a multilingual dataset.

4.1 Datasets

As a standard English dataset, we use the Wall
Street Journal (WSJ) portion of the Penn Treebank
(PTB) (Marcus et al., 1993), containing 45 differ-
ent POS tags. We adopt the standard split: sec-
tions 0-18 for training, 19-21 for development and
22-24 for testing (Collins, 2002; Manning, 2011).

For multilingual POS tagging experiments, to
compare with prior work, we use treebanks from
Universal Dependencies (UD) v1.2 (Nivre et al.,
2015) (17 POS) with the given data splits. We ex-
periment on languages for which pre-trained Poly-
glot word embeddings (Al-Rfou et al., 2013) are
available, resulting in 27 languages listed in Table
2. We regard languages with less than 60k tokens
of training data as low-resource (Table 2, bottom),
as in Plank et al. (2016).
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Model Accuracy
Toutanova et al. (2003) 97.27
Manning (2011) 97.28
Collobert et al. (2011) 97.29
Søgaard (2011) 97.50
Ling et al. (2015) 97.78
Ma and Hovy (2016) 97.55
Yang et al. (2017) 97.55
Hashimoto et al. (2017) 97.55
Ours – Baseline (BiLSTM-CRF) 97.54
Ours – Adversarial 97.58

Table 1: POS tagging accuracy on the PTB-WSJ test
set, with other top-performing systems.

4.2 Training & Evaluation Details

Model settings. We initialize word embeddings
with 100-dimensional GloVe (Pennington et al.,
2014) for English, and with 64-dimensional Poly-
glot (Al-Rfou et al., 2013) for other languages. We
use 30-dimensional character embeddings, and set
the state sizes of character/word-level BiLSTM to
be 50, 200 for English, 50, 100 for low resource
languages, and 50, 150 for other languages. The
model parameters and character embeddings are
randomly initialized, as in Ma and Hovy (2016).
We apply dropout (Srivastava et al., 2014) to input
embeddings and BiLSTM outputs for both base-
line and adversarial training, with dropout rate 0.5.

Optimization. We train the model parameters
and word/character embeddings by the mini-batch
stochastic gradient descent (SGD) with batch size
10, momentum 0.9, initial learning rate 0.01 and
decay rate 0.05. We also use a gradient clipping of
5.0 (Pascanu et al., 2012). The models are trained
with early stopping (Caruana et al., 2001) based
on the development performance.

Evaluation. We evaluate per token tagging ac-
curacy on test sets. We repeat the experiment three
times and report the statistical significance.

4.3 Results

PTB-WSJ dataset. Table 1 shows the POS tag-
ging results. As expected, our baseline (BiLSTM-
CRF) model (accuracy 97.54%) performs on par
with other state-of-the-art systems. Built upon
this baseline, our adversarial training (AT) model
reaches accuracy 97.58% thanks to its regulariza-
tion power, outperforming recent POS taggers ex-
cept Ling et al. (2015). The improvement over the
baseline is statistically significant, with p-value <
0.05 on the t-test. We provide additional analysis
on this result in later sections.

Our Models Plank et al. (2016) Berend Nguyen et
Baseline Adversarial BiLSTM TNT CRF (2017) al. (2017)

bg 98.34 98.53 97.97 96.84 96.36 95.63 97.4
cs 98.70 98.81 98.24 96.82 96.56 95.83 –
da 96.63 96.74 96.35 94.29 93.83 93.32 95.8
de• 94.29 94.35 93.38 92.64 91.38 90.73 92.7
en 95.72 95.82 95.16 94.55 93.35 93.47 94.7
es 96.26 96.44 95.74 94.55 94.23 94.69 95.9
eu• 94.55 94.71 95.51 93.35 91.63 90.63 93.7
fa 97.38 97.51 97.49 95.98 95.65 96.11 96.8
fi• 94.54 95.40 95.85 93.59 90.32 89.19 94.6
fr 96.48 96.63 96.11 94.51 95.14 94.96 96.0
he 97.34 97.43 96.96 93.71 93.63 95.28 –
hi 97.12 97.21 97.10 94.53 96.00 96.09 96.4
hr• 96.12 96.32 96.82 94.06 93.16 93.53 –
id 93.95 94.03 93.41 93.16 92.96 92.02 93.1
it 98.04 98.08 97.95 96.16 96.43 96.28 97.5
nl 92.64 93.09 93.30 88.54 90.03 85.10 91.4
no 97.88 98.08 98.03 96.31 96.21 95.67 97.4
pl• 97.34 97.57 97.62 95.57 93.96 93.95 96.3
pt 97.94 98.07 97.90 96.27 96.32 95.50 97.5
sl• 97.81 98.11 96.84 94.92 94.77 92.70 97.1
sv 96.39 96.70 96.69 95.19 94.45 94.62 –

Avg 96.45 96.65 96.40 94.55 94.11 93.59 95.55

el 98.18 98.24 – – – 97.12 –
et• 90.79 91.32 – – – 86.30 –
ga 90.66 91.11 – – – 88.82 –
hu• 93.39 94.02 – – – 89.47 –
ro 91.24 91.46 – – – 88.99 –
ta 82.91 83.16 – – – 81.80 –

Avg 91.20 91.55 – – – 88.41 –

Table 1: POS tagging accuracy (test) for 27 UD
v1.2 treebanks. The first column shows languages
and the rest show tagging accuracy of different
models. For Plank et al. (2016), we include the
traditional baselines TNT and CRF, and their state-
of-the-art model that employs a multi-task BiL-
STM. Berend (2017) and Nguyen et al. (2017) are
two recent works reporting POS tagging perfor-
mance on UD v1.2. Languages with • are mor-
phologically rich, and those at the bottom (‘el’ to
‘ta’) are low-resourced, containing less than 60k
tokens in their training sets.
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Table 2: POS tagging accuracy (test) for 27 UD v1.2
treebanks, with other recent works, Plank et al. (2016),
Berend (2017) and Nguyen et al. (2017). For Plank
et al. (2016), we include the traditional baselines TNT
and CRF, and their state-of-the-art model that employs
a multi-task BiLSTM. Languages with • are morpho-
logically rich, and those at the bottom (‘el’ to ‘ta’) are
low-resource, containing less than 60k tokens in their
training sets.

Multilingual dataset (UD). Experimental re-
sults are summarized in Table 2. Our AT model
shows clear advantages over the baseline in all of
the 27 languages (average improvement ∼0.25%;
see the two shaded columns). Considering that
our baseline (BiLSTM-CRF) is already a top per-
forming model for POS tagging, these improve-
ments made by AT are substantial. The improve-
ments are also statistically significant for all the
languages, with p-value < 0.05 on the t-test, sug-
gesting that the regularization by AT is generally
effective across different languages. Moreover,
our AT model achieves state-of-the-art on nearly
all of the languages, except the five where Plank
et al. (2016)’s multi-task BiLSTM yielded better
results. Among the five, most languages are mor-
phologically rich (•).2 We suspect that their joint
training of word rarity may be of particular help in
processing morphologically complex words.

2We followed the criteria of morphological richness used
in Nguyen et al. (2017).
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Figure 2: Learning curves for three representative languages (Romanian is low-resource). We show the transition
of loss (defined in Eq 1) on the development sets.

English (WSJ)

Word Frequency 0 1-10 10-100 100- Total

# Tokens 3240 7687 20908 97819 129654
Baseline 92.25 95.36 96.03 98.19 97.53

Adversarial 92.01 95.52 96.10 98.23 97.57

French (UD)
Word Frequency 0 1-10 10-100 100- Total

# Tokens 356 839 1492 *4523* *7210*
Baseline 87.64 94.05 94.03 98.43 96.48

Adversarial 87.92 94.88 94.03 98.50 96.63

Table 3: POS tagging accuracy (test) on different sub-
sets of words, categorized by their frequency of occur-
rence in training. The second row shows the number
of tokens in the test set that are in each category. The
third and fourth rows show the performance of our two
models. Better scores are underlined. The biggest im-
provement is in bold.

Additionally, we see that our AT model achieves
notably large improvements over the baseline in
resource-poor languages (the bottom of Table 2),
with average improvement 0.35%, as compared to
that for resource-rich languages, 0.20%. To fur-
ther visualize the regularization effects, we present
the learning curves for three representative lan-
guages, English (WSJ), French (UD-fr) and Ro-
manian (UD-ro, low-resource), based on the de-
velopment loss (see Figure 2). For all the three
languages, we can observe that the AT model (red
solid line) prevents overfitting better than the base-
line (black dotted line), and this advantage is more
significant in low resource languages. For exam-
ple, in Romanian, the baseline model starts to in-
crease development loss after 1,000 iterations even
with dropout, whereas the AT model keeps im-
proving until 2,500 iterations, achieving notably
lower development loss (0.4 down). These results
illustrate that AT can prevent overfitting especially
well on small datasets and can augment the regu-
larization power beyond dropout. AT can also be
viewed as an effective means of data augmenta-
tion, where we generate and train with new exam-
ples the current model is particularly vulnerable to
at every time step, enhancing the robustness of the

English (WSJ)

Word Frequency 0 1-10 10-100 100- Total

# Tokens 6480 15374 41815 195637 259306
Baseline 97.76 97.71 97.80 97.45 97.53

Adversarial 98.06 97.71 97.89 97.47 97.57

French (UD)
Word Frequency 0 1-10 10-100 100- Total

# Tokens 712 *1678* 2983 *9045* *14418*
Baseline 95.08 97.08 97.58 96.11 96.48

Adversarial 95.37 97.26 97.79 96.23 96.63

Table 4: POS tagging accuracy (test) on neighboring
words. We cluster all words in the test set in the same
way as Table 3 and consider the tagging performance
on the neighbors (left and right) of these words in the
test text.

model. AT can therefore be a promising tool to
process low resource languages.

5 Analysis
In the previous sections, we demonstrated the reg-
ularization power of adversarial training (AT) on
different languages, based on the overall POS tag-
ging performance and learning curves. In this sec-
tion, we conduct further analyses on the robust-
ness of AT from NLP specific aspects such as word
statistics, sequence modeling, downstream tasks,
and word representation learning.

We find that AT can boost tagging accuracy on
rare words and neighbors of unseen words (§5.1).
Furthermore, this robustness against rare / unseen
words leads to better sentence-level accuracy and
downstream dependency parsing (§5.2). We il-
lustrate these findings using two major languages,
English (WSJ) and French (UD), which have sub-
stantially large training and testing data to dis-
cuss vocabulary statistics and sentence-level per-
formance. Finally, we study the effects of AT on
word representation learning (§5.3), and the appli-
cability of AT to different sequential tasks (§5.4).

5.1 Word-level Analysis

Poor tagging accuracy on rare/unseen words is one
of the bottlenecks in current POS taggers (Man-
ning, 2011; Plank et al., 2016). Aiming to reveal
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English (WSJ)

Sentence- Stanford Parser Parsey McParseface
level Acc. UAS LAS UAS LAS

Baseline 59.08 91.53 89.30 91.68 87.92
Adversarial 59.61 91.57 89.35 91.73 87.97
(w/ gold tags) – (92.07) (90.63) (91.98) (88.60)

French (UD)
Sentence- Parsey Universal
level Acc. UAS LAS

Baseline 52.35 84.85 80.36
Adversarial 53.36 85.01 80.55
(w/ gold tags) – (85.05) (80.75)

Table 5: Sentence-level accuracy and downstream de-
pendency parsing performance by our baseline / adver-
sarial POS taggers.

the effects of AT on rare / unseen words, we ana-
lyze tagging performance at the word level, con-
sidering vocabulary statistics.

Word frequency. To define rare /unseen words,
we consider each word’s frequency of occurrence
in the training set. We categorize all words in the
test set based on this frequency and study the test
tagging accuracy for each group (see Table 3).3 In
both languages, the AT model achieves large im-
provements over the baseline on rare words (e.g.,
frequency 1-10 in training), as opposed to more
frequent words. This result again corroborates the
data augmentation power of AT under small train-
ing examples. On the other hand, we did not ob-
serve meaningful improvements on unseen words
(frequency 0 in training). A possible explanation
is that AT can facilitate the learning of words with
at least a few occurrences in training (rare words),
but is not particularly effective in inferring the
POS tags of words for which no training examples
are given (unseen words).

Neighboring words. One important character-
istic of natural language tasks is the sequential
nature of inputs (i.e., sequence of words), where
each word influences the function of its neighbor-
ing words. Since our model uses BiLSTM-CRF
for that reason, we also study the tagging perfor-
mance on the neighbors of rare/unseen words, and
analyze the effects of AT with the sequence model
in mind. In Table 4, we cluster all words in the test
set based on their frequency in training again, and
consider the tagging accuracy on the neighbors
(left and right) of these words in the test text. We
observe that AT tends to achieve large improve-

3To conduct the analysis, we picked the median result
from the three repeated experiments.

ments over the baseline on the neighbors of unseen
words (training frequency 0), while the improve-
ments on the neighbors of more frequent words re-
main moderate. Our AT model thus exhibits strong
stability to uncertain neighbors, as compared to
the baseline. We suspect that because we gener-
ate adversarial examples against entire input sen-
tences, training with adversarial examples makes
the model more robust not only to perturbations in
each word but also to perturbations in its neighbor-
ing words, leading to greater stability to uncertain
neighbors.

5.2 Sentence-level & Downstream Analysis

In the word-level analysis, we showed that AT
can boost tagging accuracy on rare words and the
neighbors of unseen words, enhancing overall ro-
bustness on rare/unseen words. In this section, we
discuss the benefit of our improved POS tagger in
a major downstream task, dependency parsing.

Most of the recent state-of-the-art dependency
parsers take predicted POS tags as input (e.g.
Chen and Manning (2014); Andor et al. (2016);
Dozat and Manning (2017)). Dozat et al. (2017)
empirically show that their dependency parser
gains significant improvements by using POS tags
predicted by a Bi-LSTM POS tagger, while POS
tags predicted by the UDPipe tagger (Straka et al.,
2016) do not contribute to parsing performance as
much. This observation illustrates that POS tag-
ging performance has a great influence on depen-
dency parsing, motivating the hypothesis that the
POS tagging improvements gained from our ad-
versarial training help dependency parsing.

To test the hypothesis, we consider three
settings in dependency parsing of English and
French: using POS tags predicted by the baseline
model, using POS tags predicted by the AT model,
and using gold POS tags. For English (PTB-WSJ),
we first convert the treebank into Stanford Depen-
dencies (SD) using Stanford CoreNLP (ver 3.8.0)
(Manning et al., 2014), and then apply two well-
known dependency parsers: Stanford Parser (ver
3.5.0) (Chen and Manning, 2014) and Parsey Mc-
Parseface (SyntaxNet) (Andor et al., 2016). For
French (UD), we use Parsey Universal from Syn-
taxNet. The three parsers are all publicly available
and pre-trained on corresponding treebanks.

Table 5 shows the results of the experiments.
We can observe improvements in both languages
by using the POS tags predicted by our AT POS
tagger. As Manning (2011) points out, when pre-
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English (WSJ)

POS Cluster NN VB JJ RB Avg.

1) Initial (GloVe) 0.243 0.426 0.220 0.549 0.359
2) Baseline 0.280 0.431 0.309 0.667 0.422
3) Adversarial 0.281 0.436 0.306 0.675 0.424

French (UD)

POS Cluster NOUN VERB ADJ ADV Avg.

1) Initial (polyglot) 0.215 0.233 0.210 0.540 0.299
2) Baseline 0.258 0.271 0.262 0.701 0.373
3) Adversarial 0.263 0.272 0.263 0.720 0.379

Table 6: Cluster tightness evaluation for word embed-
dings, based on the cosine similarity measure. Higher
scores indicate better clustering (cleaner word vector
distribution). Each row corresponds to word vectors 1)
at the beginning, 2) after baseline training, and 3) after
adversarial training.

English (WSJ)

Perturbation scale α 0 0.001 0.01 0.05 0.1 0.5

Avg. cluster tightness 0.422 0.423 0.424 0.429 0.436 0.429

Table 7: Average cluster tightness for word embed-
dings trained with varied perturbation scale α (0 indi-
cates baseline training).

dicted POS tags are used for downstream depen-
dency parsing, a single bad mistake in a sentence
can greatly damage the usefulness of the POS tag-
ger. The robustness of our AT POS tagger against
rare/unseen words helps to mitigate such an issue.
This advantage can also be observed from the AT
POS tagger’s notably higher sentence-level accu-
racy than the baseline (see Table 5 left). Nonethe-
less, gold POS tags still yield better parsing results
as compared to the baseline/AT POS taggers, sup-
porting the claim that POS tagging needs further
improvement for downstream tasks.

5.3 Effects on Representation Learning

Next, we perform an analysis on representation
learning of words (word embeddings) for the En-
glish (PTB-WSJ) and French (UD) experiments.
We hypothesize that adversarial training (AT)
helps to learn better word embeddings so that the
POS tag prediction of a word cannot be influenced
by a small perturbation in the input embedding.

To verify this hypothesis, we cluster all words
in the test set based on their correct POS tags4 and
evaluate the tightness of the word vector distribu-
tion within each cluster. We compare this cluster-
ing quality among the three settings: 1) beginning
(initialized with GloVe or Polyglot), 2) after base-

4We excluded words with multiple tags in the test text.

line training (50 epochs), and 3) after adversarial
training (50 epochs), to study the effects of AT on
word representation learning.

For evaluating the tightness of word vector dis-
tribution, we employ the cosine similarity metric,
which is widely used as a measure of the closeness
between two word vectors (e.g., Mikolov et al.
(2013); Pennington et al. (2014)). To measure the
tightness of each cluster, we compute the cosine
similarity for every pair of words within, and then
take the average. We also report the average tight-
ness across all the clusters.

The evaluation results are summarized in Ta-
ble 6. We report the tightness scores for the four
major clusters: noun, verb, adjective, and adverb
(from left to right). As can be seen from the table,
for both languages, adversarial training (AT) re-
sults in cleaner word embedding distributions than
the baseline, with a higher cosine similarity within
each POS cluster, and with a clear advantage in the
average tightness across all the clusters. In other
words, the learned word vectors show stronger
correlations with their POS tags. This result con-
firms that training with adversarial examples can
help to learn cleaner word embeddings so that the
meaning / grammatical function of a word cannot
be altered by a small perturbation in its embed-
ding. This analysis provides a means to interpret
the robustness to input perturbations, from the per-
spective of NLP.

Relation with perturbation size ε. We also
study how the size of added perturbations influ-
ences word representation learning in adversarial
training. Recall that we set the norm of a pertur-
bation ε to be α

√
D, where D is the dimension of

the concatenated input embeddings (see §3.2). For
instance, α = 0 would produce no noise; α = 1
would generate a perturbation of a norm equiv-
alent to the original word embeddings. We hy-
pothesize that AT facilitates word representation
learning when α is small enough to preserve the
semantics of input words, but can hinder the learn-
ing when α is too large. To test the hypothesis,
we repeat the clustering evaluation for word em-
beddings trained with varied perturbation scale α:
0, 0.001, 0.01, 0.05, 0.1, 0.5 (see Table 7). We
observe that the quality of learned word embed-
ding distribution keeps improving as α goes up
from 0 to 0.1, but starts to drop around α = 0.5.
We also find that this optimal α in word embed-
ding learning (i.e., 0.1) is larger than the α which
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Model F1
Tsuruoka et al. (2011) 93.81
Collobert et al. (2011) 94.32
Yang et al. (2017) 94.66
Suzuki and Isozaki (2008) 95.15
Søgaard and Goldberg (2016) 95.56
Hashimoto et al. (2017) 95.77
Peters et al. (2017) 96.37
Ours – Baseline (BiLSTM-CRF) 95.18
Ours – Adversarial 95.25

Table 8: Chunking F1 scores on the CoNLL-2000 task,
with other top performing models.

Model F1
Collobert et al. (2011) 89.59
Huang et al. (2015) 90.10
Chiu and Nichols (2016) 90.91
Lample et al. (2016) 90.94
Luo et al. (2015) 91.20
Ma and Hovy (2016) 91.21
Peters et al. (2017) 91.93
Ours – Baseline (BiLSTM-CRF) 91.22
Ours – Adversarial 91.56

Table 9: NER F1 scores on the CoNLL-2003 (English)
task, with other top performing models.

yielded the best tagging performance on develop-
ment sets (i.e., 0.01 or 0.05). A possible expla-
nation is that while word embeddings can adapt
to relatively large α (e.g., 0.1) during training, as
adversarial perturbations are generated at the em-
bedding level, such α could change the semantics
of the input from the current tagging model’s per-
spective and hinder the training of tagging.

5.4 Other Sequence Labeling Tasks

Finally, to further confirm the applicability of AT,
we experiment with our BiLSTM-CRF AT model
in different sequence labeling tasks: chunking and
named entity recognition (NER).
Chunking can be performed as a sequence label-
ing task that assigns a chunking tag (B-NP, I-VP,
etc.) to each word. We conduct experiments on the
CoNLL 2000 shared task with the standard data
split: PTB-WSJ Sections 15-18 for training and
20 for testing. We use Section 19 as the develop-
ment set and employ the IOBES tagging scheme,
following Hashimoto et al. (2017).
NER aims to assign an entity type to each word,
such as person, location, organization, and misc.
We conduct experiments on the CoNLL-2003 (En-
glish) shared task (Tjong Kim Sang and De Meul-
der, 2003), adopting the IOBES tagging scheme as
in (Lample et al., 2016; Ma and Hovy, 2016).

The results are summarized in Table 8 and 9.

AT enhanced F1 score from the baseline BiLSTM-
CRF model’s 95.18 to 95.25 for chunking, and
from 91.22 to 91.56 for NER, also significantly
outperforming Ma and Hovy (2016). These im-
provements made by AT are bigger than that for
English POS tagging, most likely due to the larger
room for improvement in chunking and NER. The
improvements are again statistically significant,
with p-value < 0.05 on the t-test. The experimen-
tal results suggest that the proposed adversarial
training scheme is generally effective across dif-
ferent sequence labeling tasks.

Our BiLSTM-CRF AT model did not reach the
performance by Hashimoto et al. (2017)’s multi-
task model and Peters et al. (2017)’s state-of-the-
art system that incorporates pretrained language
models. It would be interesting future work to
combine the strengths of these joint models (e.g.,
syntactic and semantic aids) and adversarial train-
ing (e.g., robustness).

6 Conclusion
We proposed and carefully analyzed a POS tag-
ging model that exploits adversarial training (AT).
In our multilingual experiments, we find that AT
achieves substantial improvements on all the lan-
guages tested, especially on low resource ones. AT
also enhances the robustness to rare/unseen words
and sentence-level accuracy, alleviating the ma-
jor issues of current POS taggers, and contribut-
ing to the downstream task, dependency parsing.
Furthermore, our analyses on different languages,
word / neighbor statistics and word representation
learning reveal the effects of AT from the perspec-
tive of NLP. The proposed AT model is applica-
ble to general sequence labeling tasks. This work
therefore provides a strong basis and motivation
for utilizing AT in natural language tasks.
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Gábor Berend. 2017. Sparse coding of neural word em-
beddings for multilingual sequence labeling. TACL
.

Rich Caruana, Steve Lawrence, and C Lee Giles. 2001.
Overfitting in neural nets: Backpropagation, conju-
gate gradient, and early stopping. In NIPS.

Danqi Chen and Christopher D Manning. 2014. A fast
and accurate dependency parser using neural net-
works. In EMNLP.

Jason PC Chiu and Eric Nichols. 2016. Named entity
recognition with bidirectional lstm-cnns. In TACL.

Michael Collins. 2002. Discriminative training meth-
ods for hidden markov models. In EMNLP.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
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Udpipe: Trainable pipeline for processing conll-u
files performing tokenization, morphological analy-
sis, pos tagging and parsing. In LREC.

Jun Suzuki and Hideki Isozaki. 2008. Semi-supervised
sequential labeling and segmentation using giga-
word scale unlabeled data. ACL-HLT .

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever,
Joan Bruna, Dumitru Erhan, Ian Goodfellow, and
Rob Fergus. 2014. Intriguing properties of neural
networks. In ICLR.

Erik F Tjong Kim Sang and Fien De Meulder.
2003. Introduction to the conll-2003 shared task:
Language-independent named entity recognition. In
CoNLL.

Kristina Toutanova, Dan Klein, Christopher D. Man-
ning, and Yoram Singer. 2003. Feature-rich part-of-
speech tagging with a cyclic dependency network.
In HLT-NAACL.

Yoshimasa Tsuruoka, Yusuke Miyao, and Jun’ichi
Kazama. 2011. Learning with lookahead: Can
history-based models rival globally optimized mod-
els? In CoNLL.

Beilun Wang, Ji Gao, and Yanjun Qi. 2017. A theoret-
ical framework for robustness of (deep) classifiers
against adversarial samples. In ICLR.

Yi Wu, David Bamman, and Stuart Russell. 2017. Ad-
versarial training for relation extraction. In EMNLP.

Ziang Xie, Sida I Wang, Jiwei Li, Daniel Levy, Aiming
Nie, Dan Jurafsky, and Andrew Y Ng. 2017. Data
noising as smoothing in neural network language
models. In ICLR.

Zhilin Yang, Ruslan Salakhutdinov, and William W.
Cohen. 2017. Transfer learning for sequence tag-
ging with hierarchical recurrent networks. In ICLR.

986


