
NAACL HLT 2016

The 2016 Conference of the
North American Chapter of the

Association for Computational Linguistics:
Human Language Technologies

Proceedings of the Demonstrations Session

June 12-17, 2016
San Diego, California, USA



c©2016 The Association for Computational Linguistics

Order copies of this and other ACL proceedings from:

Association for Computational Linguistics (ACL)
209 N. Eighth Street
Stroudsburg, PA 18360
USA
Tel: +1-570-476-8006
Fax: +1-570-476-0860
acl@aclweb.org

ii



Introduction

Welcome to the Demonstrations Session of NAACL HLT 2016 in San Diego.

The demonstrations session is an opportunity for researchers and developers to present their systems
and programs related to natural language processing. We were fortunate to receive 32 outstanding
papers, of which we accepted 20.

These systems will be displayed during the poster session on Monday and Tuesday of the conference.
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Abstract 

This paper presents rstWeb, a new browser-

based interface for Rhetorical Structure Theo-

ry and other discourse relation annotations. 

Expanding on previous tools for RST, rstWeb 

allows annotators to work online using only a 

browser. Project administrators can easily col-

lect multiple annotations of the same docu-

ments on a central server, keep track of anno-

tation processes and assign tasks and annota-

tion schemes to users. A local version using an 

embedded web framework is also available, 

running offline on a desktop browser under 

the localhost. 

1 Introduction 

Since its introduction by Mann & Thompson 

(1988) Rhetorical Structure Theory has enjoyed 

continuing interest as a framework for the analysis 

of discourse relations, including the development 

of large scale corpora (especially the RST Dis-

course Treebank; RSTDT, Carlson et al. 2003) and 

automatic parsers (Joty et al. 2013, Surdeanu et al. 

2015). However while the development of RST 

corpora and parsing has continued, there has been 

less progress in creating more up-to-date, collabo-

rative and online interfaces for annotation, which 

would facilitate the development of new manually 

annotated data sets. Most work to date has used ei-

ther the original RSTTool (O’Donnell 2000), a lo-

cal desktop application written in Tcl/Tk, or its ex-

tension, the ISI RST Annotation Tool by Daniel 

Marcu (see: http://www.isi.edu/~marcu/ 

discourse/AnnotationSoftware.html). 

Both tools are not being actively developed at pre-

sent, and installing and running them across plat-

forms can be challenging.  

Meanwhile for other annotation tasks, online 

web interfaces have been developed which allow 

annotators to be trained and to work using only a 

browser, substantially facilitating the recruitment, 

curation and validation of data (e.g. Arborator, 

Gerdes 2013 for dependency syntax, or WebAnno, 

Yimam et al. 2013, for a variety of tasks). These 

server-based tools let project managers collect data 

centrally, without exchanging files with annotators, 

and track progress or log annotation processes au-

tomatically, while substantially reducing admin-

istration effort. The software presented here is 

meant to do the same for RST. Specifically it al-

lows: 

 

 Annotation using only a browser 

 Import and export of RSTTool’s .rs3 format 

 Import of plain text (discourse unit per line) 

 Support for multiple annotated versions of 

documents across users 

 Enforcement of uniform annotation schemes 

across users 

 Undo/redo functionality 

 Logging of annotation steps 

 Administration for user assignments, projects 

and guideline links 

 Single mode for adding/deleting spans, multi-

nuclear relations and satellite linking (no 

mode switching, see below) 

The following section describes the technical infra-

structure of rstWeb and the main requirements and 

workflows of the software. Section 3 briefly re-

ports on a project employing rstWeb as an annota-
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tion interface and estimates the reduction of user 

actions compared to previous tools based on anno-

tation logs from RSTDT. Section 4 discusses some 

applications to discourse annotation outside RST. 

Section 5 ends with discussion for further work. 

2 Software architecture 

rstWeb
1
 is written in Python with a SQLite back-

end, and these are required for the server running 

the software. In order to stay light-weight and re-

sponsive, JavaScript is used for the browser-based 

client, making the server-side demand almost no 

resources. jQuery and jsPlumb are used to render 

edges and animations. Following a static form-

submit architecture (cf. Arborator, Gerdes 2013), 

no running services are used: Python scripts are 

exposed via a Web server (e.g. Apache), and call-

ing them from a browser accesses the DB to serial-

ize HTML for the client. For local machine use, a 

service script using the CherryPy framework can 

be used, requiring local users to install Python and 

CherryPy (http://www.cherrypy.org/). The 

software is platform independent, running on Mac, 

Linux and Windows platforms. Figure 1 gives a 

schematic overview of the system’s architecture. 
 

 
Figure 1: rstWeb schematic architecture. 

 

Four scripts are exposed to the user, used to 

open and administrate projects (‘open’ and ‘admin’ 

scripts), and to annotate in two modes described 

below: ‘segmentation’ and ‘structuring’. 
                                                      
1
 http://corpling.uis.georgetown.edu/rstweb/info  

To annotate documents, users log in to the inter-

face, where they can open any documents that have 

been assigned to them. Each user has their own 

copy of each assigned document, meaning that 

multiple users can annotate the same document in 

parallel for inter-annotator agreement experiments, 

though the tool does not support automatic calcula-

tion of agreement measures at present. Once a 

document has been opened, the user can move 

freely between two modes: segmentation of Ele-

mentary Discourse Units (EDUs), and structuring 

the units into an RST tree (see Figure 3 below). 

In designing the annotation workflow, a central 

objective was to avoid constant switching between 

modes: in RSTTool, segmenting units, linking, un-

linking, grouping them in spans or adding multinu-

clear relations, all required changing the ‘mode’ to 

do just that task; single clicks could then be used to 

carry out the action. This meant it was more con-

venient to complete multiple tasks of the same kind 

(e.g. spanning or unlinking) consecutively, which 

required some planning and reduced flexibility, or 

alternatively that frequent switching needed to be 

done. For rstWeb, the attempt was made to allow 

all operations on any node to be available simulta-

neously. This attempt has been successful for all 

tasks except for segmentation. An initial attempt to 

allow users to segment units within the RST dia-

gram proved cumbersome, since reading EDUs in 

small boxes left-to-right is more difficult than 

reading the running text in one big box.  

As a result, a dedicated segmentation mode was 

developed, the interface for which is shown in Fig-

ure 2. This interface closely resembles RSTTool’s 

segmentation mode.  
 

 
Figure 2: Discourse segmentation editor. 

 

Users can move between modes and choose to re-

segment while structuring: if a unit in a tree is 

segmented, the first portion of the divided segment 

retains the original function, and the second is cre-

ated without attachment. Merging two units causes 
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them to retain the attachment and label of the first 

unit. The tool has client-side undo/redo function-

ality, without submitting to the server, though un-

do/redo steps are logged as in the ISI tool.
2
 

The other mode, structuring, is where the bulk 

of annotation work is done (see Figure 3). rstWeb 

supports the same tree structures as other tools, in-

cluding crossing edges. However unlike earlier 

tools, there is no need to switch between annota-

tion modes to connect or unlink nodes, add spans, 

or add multinuclear relations. These actions are 

handled by small buttons surrounding each node 

junction: X for unlinking, T for adding a span and Λ 

for multinuclear nodes (see Figure 3). User reports 

suggest that this facilitates annotation substantially. 

Finally, administrators can manage user as-

signments and import documents from plain text 

files (one EDU per line) or .rs3 files (RSTTool 

format), or export annotations in .rs3 format.
3
 

Documents can be grouped into projects, which 

can be given a guidelines URL for users to consult.  

3 Annotating in rstWeb 

rstWeb has been employed in the annotation of the 

GUM corpus (Zeldes 2016)
4
, an open-access multi-

layer corpus including RST analyses, constructed 

                                                      
2 Step logging has been used in the evaluation of annotation 

methodology, for example in Marcu et al. (1999). 
3 This format can also be imported into corpus search tools 

supporting RST, such as ANNIS (Krause & Zeldes 2016). 
4 http://corpling.uis.georgetown.edu/gum 

via classroom annotation and extended yearly. The 

corpus contains texts from 4 genres: travel guides, 

how-to guides, online news and interviews. In the 

most recent round of data collection, encompassing 

29 documents, RST annotation was done with rst-

Web, instead of the previously used RSTTool. 

Documents were comparable in length (Ø 58.31 

EDUs) with those in the RST Discourse Treebank 

with Ø 56.59 EDUs (Carlson et al. 2003). This 

suggests that the system can be used successfully 

for text sizes on par with the benchmark resource 

for RST. The amount of errors based on instructor 

corrections using rstWeb compared to RSTTool 

was very similar (see Zeldes 2016). 

To give an idea of the mode changes required 

by a multi-mode workflow, switching between 

linking/unlinking/grouping and creating multinu-

clear clusters as in older tools, we can examine an-

notation step files from the RST Discourse Tree-

banks. Table 1 gives the necessary mode change 

rates per node (including non-terminals), and the 

proportion of changes per annotation step in 10 

random Wall Street Journal documents from 

RSTDT (including undo actions, but excluding 

segmentation operations). 

Although the tools are different and therefore 

hard to compare directly, rstWeb logs from the 

GUM data suggest a similar rate of Ø 0.43 action 

type changes per step, indicating that annotators 

generally use mode changes as needed in either 

environment, meaning the multimode interface 

should save a substantial amount of clicking. 

Figure 3: Structurer interface with an RST tree. The three buttons around each node allow users to unlink edg-

es, create grouping spans or add multinuclear clusters above nodes, without switching annotation modes. 
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doc cha steps nodes cha/stp cha/node 

wsj_0602 74 143 128 0.5174 0.5781 

wsj_0654 16 30 37 0.5333 0.4324 

wsj_0667 18 25 33 0.72 0.5454 

wsj_1146 207 546 636 0.3791 0.3254 

wsj_1169 15 30 34 0.5 0.4411 

wsj_1306 32 72 93 0.4444 0.3440 

wsj_1387 113 209 271 0.5406 0.4169 

wsj_2336 25 45 61 0.5555 0.4098 

wsj_2373 12 39 58 0.3076 0.2068 

wsj_2386 55 177 255 0.3107 0.2156 

Ø 56.7 131.6 160.6 0.4809 0.3916 

Table 1: Mode change proportions per step and node in 10 

WSJ documents from the RST Discourse Treebank. 

 

During a previous round of data collection for 

GUM, RST annotations for the same corpus with 

the same text types were created using RSTTool. 

Feedback from students who switched from work-

ing with RSTTool to rstWeb, as well as from in-

structors (including a trained teaching assistant), 

has been very positive. 

4 Using rstWeb for other resources 

Data has successfully been imported into rstWeb 

from several existing RST-annotated sources, in-

cluding the RST Discourse Treebank (converted to 

.rs3) and the German Potsdam Commentary Cor-

pus (Stede & Neumann 2014). Although the soft-

ware has been designed specifically for RST anno-

tation, it may be possible to use it for other types of 

annotation, especially those representing binary re-

lations between clauses. In particular, it is possible 

to disable the buttons generating spans and/or mul-

tinuclear nodes: this could be useful for other 

(shallow) discourse parsing frameworks or subsets 

of these, in which annotators would not be allowed 

to create multinuclear nodes or possibly any form 

of hierarchy. 

For some forms of annotation, and particularly 

for explicit connectives (e.g. marking up a word 

such as ‘because’) and gaps inside clauses (clause 

parts with no relations), as used e.g. in the Penn 

Discourse Treebank (Prasad et al. 2008), the inter-

face is not suitable, since each unit of annotation 

must be broken off as a segment. For connectives, 

this could be a single word, which would be im-

practical to view in the RST style diagram. How-

ever for simple binary relation classification be-

tween clauses with similar schemas, the ad-

vantages of the online, browser-based interface 

may make it a useful option (cf. Figure 4, using the 

Expansion.Conjunction and Expan-

sion.Restatement relations from PDTB; multinu-

clear buttons have been disabled, but hierarchies 

are still enabled).  
 

 
Figure 4: PDTB style hierarchical binary relations without 

connective annotation. Multinuclear buttons are disabled. 

5 Conclusion 

rstWeb offers a new, actively maintained tool for 

online, browser-based annotation of Rhetorical 

Structure Theory. The static script strategy of the 

backend means that server load when running rst-

Web is negligible: it is not running at all unless a 

user has just submitted or requested data. Using 

CherryPy as a localhost container means that serv-

er code can be used offline or by single users who 

do not have access to a server – all code updates to 

the server version carry over to the local version. 

Using the browser as an interface means that users 

can work in a familiar environment, without in-

stalling software (at least for server based pro-

jects), that administrators do not need to exchange 

files with annotators, and that the system is cross-

platform compatible without resorting to heavier 

Java based frameworks.  

In future work, some additional features could 

be added to the software. In particular, it is current-

ly not possible to edit the inventory of RST rela-

tions after the import of a document. Also, support 

for ‘schemas’, i.e. added span annotations to mark 

a unit as a ‘title’ etc., which was supported in pre-

vious tools, is not currently implemented, but is 

planned for an upcoming version. Finally, built in 

facilities for measuring inter-annotator agreement 

are interesting possible addition to the software. 
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Abstract

We present the design and evaluation of a
web-based peer review system that uses natu-
ral language processing to automatically eval-
uate and provide instant feedback regarding
the presence of solutions in peer reviews. Stu-
dent reviewers can then choose to either revise
their reviews to address the system’s feedback,
or ignore the feedback and submit their orig-
inal reviews. A system deployment in multi-
ple high school classrooms shows that our so-
lution prediction model triggers instant feed-
back with high precision, and that the feed-
back is successful in increasing the number of
peer reviews with solutions.

1 Introduction

Peer review provides learning opportunities for stu-
dents in their roles as both author and reviewer, and
is a promising approach for helping students im-
prove their writing (Lundstrom and Baker, 2009).
However, one limitation of peer review is that stu-
dent reviewers are generally novices in their disci-
plines and typically inexperienced in constructing
helpful textual reviews (Cho and Schunn, 2007). Re-
search in the learning sciences has identified prop-
erties of helpful comments in textual reviews, e.g.,
localizing where problems occur in a paper and sug-
gesting solutions to problems (Nelson and Schunn,
2009), or providing review justifications such as ex-
planations of judgments (Gielen et al., 2010). Re-
search in computer science, in turn, has used nat-
ural language processing and machine learning to
build models for automatically identifying helpful

Text review input

Potentially revised text review
(output to Phase #3)

Comment-Level 
Solution Prediction

Instant 
Feedback

Instant-feedback SWoRD
(Phase #2)

NO

NOYES

YES

NO

YES

Submission 
order > 

threshold?

1

S-ratio > 
threshold?

2

Comments 
revised?

3

Figure 1: Architecture of Instant-feedback SWoRD.

review properties, including localization and solu-
tion (Xiong and Litman, 2010; Nguyen and Lit-
man, 2013; Xiong et al., 2012; Nguyen and Litman,
2014), as well as quality and tone (Ramachandran
and Gehringer, 2015). While such prediction mod-
els have been evaluated intrinsically (i.e., with re-
spect to predicting gold-standard labels), few have
actually been incorporated into working peer review
systems and evaluated extrinsically (Ramachandran
and Gehringer, 2013; Nguyen et al., 2014).

The SWoRD research project1 involves different
active research threads for improving the utility of
an existing web-based peer review system. Our re-
search in the SWoRD project aims at building instant
feedback components for improving the quality of
textual peer reviews. Our initial work focused on
improving review localization (Nguyen et al., 2014).
Here we focus on increasing the presence of solu-
tions in reviews. When students submit reviews,

1https://sites.google.com/site/swordlrdc/new-features
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Analyze Louv's rhetorical strategies - Draft #1 
Review Document by AuntLisa 

 

Assignment Description 

The passage below is from Last Child in the Woods (2008) by Richard Louv. Read 
the passage carefully. Then, in a well-developed essay, analyze the rhetorical 
strategies Louv uses to develop his argument about the separation between 

people and nature. Support your analysis with specific references to the text ... 

1. Thesis 
Provide feedback on the quality of the author’s thesis. 

Comment 1: (*Required) 

 

Thesis. Did the author include a clear, specific thesis in his or her introduction? 

 
… 

 
 

Your comments need to suggest solutions: 

If you point out a problem, make sure that you provide a solution to fix that problem. 

 

 

 

 

 

Download Document 

  

 1 – The author did not include a thesis in his or her introduction                   

Save Submit 

I've revised my 

comments. 
Please submit. 

I don't know how 

to suggest a 

solution to a 

problem. Could 

you show me 
some examples? 

My comments 

don't have the 

issue that you 

described. Please 

submit 
comments. 

The thesis is well stated though the points listed in your 
thesis are not all clearly expounded upon in the body of 

the essay. Pathos and logos are mentioned only twice 
throughout the entire essay, not including the thesis 
staement and ethos isnt mentioned at all a second time.  

Add solution   Already exists? 

                     Yes     No 🔘 

The essay is organized in a simple and easy to understand 
way, with simple language and high vocabulary used, 
though it would be better to directly state what you will 
talk about in your body paragraphs in your thesis so they 
can be more connected. 

Figure 2: Screenshots of original review interface (left) and new instant feedback interface (right). For readability, the review

interface shows only one comment prompt and its associated rating prompt. The instant feedback interface displays a solution feed-

back message and three possible reviewer reactions (top), and highlights problem-only (middle) and solution (bottom) comments.

natural language processing is used to automatically
predict whether a solution is present in each peer
review comment (Figure 1). If not enough critical
comments are predicted to contain explicit solutions
for how to make the paper better, students are taken
from the original review interface to a new instant
feedback interface which scaffolds them in produc-
tively revising the original peer reviews (Figure 2).

Sections 2 and 3 describe the Instant-feedback
workflow, and the supporting natural language pro-
cessing techniques. Section 4 demonstrates the
promise of our system in supporting student review
revision in a recent system deployment.

2 Instant-feedback SWoRD

SWoRD2 was developed to support web-based re-
ciprocal peer review, especially in large classes in-
volving writing in the disciplines where writing and
revision are hard to support due to lack of resources.
A typical peer review exercise in SWoRD involves
three main phases: (1) student authors submit pa-
pers to SWoRD, (2) student reviewers download pa-
pers assigned to them and submit peer reviews of
the papers, and (3) student authors submit paper re-
visions that address the peer reviews they received.
To further enhance the utility of SWoRD, we have

2SWoRD is now licensed by Panther Learning Systems Inc.
– www.peerceptiv.com. A free version for users willing to trial
instant feedback is available at https://sword.lrdc.pitt.edu.

developed Instant-feedback SWoRD, with the goal
of helping student reviewers increase the presence
of solutions in the peer review comments produced
during Phase 2 of the typical peer review exercise.

Figures 2 and 1 illustrate technical details
of Instant-feedback SWoRD. As in the original
SWoRD, student reviewers create a new review ses-
sion by opening the review interface (Figure 2,
left). Now, however, whenever the SUBMIT button
is clicked, the “text review input” is passed to the
“Submission order check” (Figure 1, diamond #1).
The submission order threshold3 specifies how many
times a review will be processed for instant feedback
(e.g., 0 means no instant feedback, 1 means only
the original comments are analyzed, 2 means revised
comments are also analyzed, etc.). If the threshold
is not reached, each comment in the review is an-
alyzed by the “Comment-level Solution Prediction
Component” (see Section 3) and classified as a Solu-
tion, Problem-only, or Non-criticism. Problem-only
comments point out problems without providing so-
lutions, while Non-criticisms such as summaries or
praise do not require solutions. To measure how
many problem comments have solutions, we define
S-RATIO as number of solution comments over the
sum of solution and problem-only comments. If the
predicted S-RATIO is less than or equal to a thresh-
old4 (Figure 1, diamond #2), instant feedback is trig-

3The deployment in Section 4 used a threshold of 1.
4For the deployment in Section 4, S-RATIO was tuned to 0.7
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gered to scaffold students in revising problem-only
comments. Otherwise the review is deemed accept-
able and stored for later use by Phase 3.

When instant feedback is triggered, the instant
feedback interface (Figure 2, right) displays a mes-
sage at the top suggesting that comments may need
to be revised to include solutions, followed by but-
tons representing the 3 possible reviewer responses:
revise the review and resubmit (left), view some pre-
defined example comments with solutions before re-
sponding (center), or submit the review without revi-
sion (right). To call the reviewer’s attention to com-
ments that might need revision, the interface turns
text boxes around predicted problem-only comments
to red (Figure 2, middle right). For these comments,
the system also generates option buttons that ask re-
viewers to provide feedback on the prediction. We
hypothesized that asking students to reason about
the absence of solutions in their own comments
would promote review revision. Their feedback on
the system’s predictions also provides new anno-
tated examples for future re-training of the predic-
tion model (described in Section 3). Conversely, the
interface highlights predicted solution comments in
green (Figure 2, bottom right) along with displaying
a thumbs-up icon. This highlighting was designed
to draw reviewer attention to examples of solutions
in their own comments. Finally, for reviews that are
revised and resubmitted, Instant-feedback SWoRD
increases the submission order and re-checks the
threshold (diamond #1 in Figure 1). Unrevised re-
views are instead stored for Phase 3 of SWoRD.

3 Comment-level Solution Prediction

To support the instant feedback interface described
in the prior section, we developed a 3-way classi-
fication model for predicting a review comment’s
feedback type: Solution, Problem-only, or Non-
criticism. Challenges emerge from the fact that
SWoRD serves a wide range of classes ranging from
high school to graduate school and from STEM to
language arts. Consequently, our prediction model
has to process peer review comments that greatly
differ in style and vocabulary. We thus focused on
modeling how students suggested solutions by de-
veloping the following feature sets that abstracted

using development data from prior classes.

over specific lexicons and paper topics:
• Simple: word count and order of the comment.
• Keywords: we semi-automatically created 10 key-

word sets to model different content patterns, extending
prior work (Xiong et al., 2010): Solution, Idea, Sugges-
tion, Location, Connective, Positive, Negative, Summary,
Error, Negation. For each set, we count the total occur-
rences of its keywords in the comment.
• Location phrases: we observed in our training data

that solution content usually co-occurs with location in-
formation in comments. Thus, we extracted words and
phrases that signal positional localization in comments
of training data. This feature set includes hand-crafted
regular expressions of location patterns (e.g., on page
5) (Xiong et al., 2010), location seed words (manu-
ally collected, e.g., page, thesis, conclusion), and loca-
tion bigrams (automatically extracted given the location
seeds, e.g., transition paragraph). For each location seed,
phrase or regular expression, we count its occurrences or
matches in the comment.
• Paper content: motivated by topic word features in

(Kim et al., 2006), this feature set was designed to model
how much of a paper’s content/topic was mentioned in
the comment. We first extracted bigrams with TF-IDF
above average in the training data, and collected uni-
grams that make-up these bigrams, e.g., ‘civil’ and ‘war’
in ‘civil war’.5 Domain unigram feature is the number of
collected unigrams in the comment. Window size feature
is the length of maximal common text span between the
comment and the paper (Ernst-Gerlach and Crane, 2008).
Similarity feature searches for the highest similarity score
between paper sentence to the comment. We extract 5 pa-
per sentences (1 covering the common span, 2 preceding,
and 2 following). For each pair of paper sentence and the
comment, we apply different similarity scores (e.g., Lev-
enshtein, cosine) to 4 abstractions of the pair (sequence
of tokens, sequence of part-of-speech, sequence of nouns,
sequence of verbs), and return the pair’s sum score. Fea-
ture value is the highest sum score over all pairs.

Our solution prediction model was trained with
logistic regression using annotated peer review com-
ments from two university classes (Computer Sci-
ence, History) and a high-school class (Literature).
During learning, we used a cost matrix to favor in-
stant feedback precision over recall by penalizing
relevant error types. We thought it would be better
to miss some feedback opportunities than to incor-
rectly trigger instant feedback (e.g., asking students
to revise reviews where all comments already con-

5Starting with unigrams gave us a noisy set and degraded
model performance. We plan to apply LDA (Blei et al., 2003)
for this task in future.
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Model Acc. κ F1:Sln F1:Prb F1:Non

BoW 0.50 0.24 0.40 0.51 0.57
SWoRD 0.62 0.44 0.55 0.59 0.72

Table 1: Comment-level solution prediction performance. Acc:

Accuracy, F1 by class label is reported – Sln: Solution, Prb:

Problem-only, Non: Non-criticism.

tained solutions) or to incorrectly display comments
as red or green in the feedback interface.

4 Preliminary Evaluation

In Spring 2015, SWoRD with instant-feedback was
deployed in 9 high-school Advanced Placement
(AP) classes. We conducted preliminary evalua-
tions to answer two research questions: (1) How
precisely does the system predict peer review solu-
tion and trigger the instant feedback? (2) How does
the instant feedback impact review revisions? We
collected peer review submissions which were inter-
vened by Instant-feedback SWoRD (i.e., triggered
instant feedback), and their immediately subsequent
resubmissions (if any), then had an expert manu-
ally code the collected comments for their feed-
back types: solution, problem-only, non-criticism
(double-coded data had inter-rater κ 0.87).

Only intervened reviews were used to evaluate
model performance because subsequent resubmis-
sions were not predicted. In our deployment, 134
of 1428 reviews were intervened, containing 891
comments: 223 Solution, 340 Problem-only, and
328 Non-criticism. Table 1 shows that our deployed
model outperforms a Bag-of-Words (BoW) base-
line6 in 3-way classification. Given that the AP data
was never used for model training, the obtained per-
formance is promising and encourages us to improve
the model with more data.

Regarding instant feedback precision, we calcu-
lated the true S-RATIO for each intervened review
(using gold standard labels). Table 2 shows that
given the 0.7 threshold used for this deployment,
Instant-feedback SWoRD incorrectly triggered in-
stant feedback for 24 submissions (column 3) out
of 134, yielding a precision 0.82. Because Instant-
feedback SWoRD does not let student reviewers
know the S-RATIO threshold, students should only
think that the instant feedback was incorrect when

6Used 1,2,3-grams as features.

True S-RATIO ≤ 1.0 > 0.7 = 1.0
#intervened 134 24 (18%) 16 (12%)

Table 2: True S-RATIO of intervened submission

they provided solutions for all mentioned problems
(true S-RATIO = 1). From this student perspective,
Instant-feedback SWoRD had 16 incorrect triggers
(column 4), achieving a precision 0.88.

Finally, to evaluate the impact of instant feedback
on review revision, we considered the 74 subsequent
resubmissions. We collected comments that were re-
vised or newly-added to the resubmissions (no com-
ment was deleted), and obtained 115 comments.
Pairing 111 revised comments with their original
versions, we observed that 73 (66%) comments
were fixed from problem-only to solution, 3 (3%)
from non-criticism to solution, only 1 comment
(0.9%) was edited from solution to non-criticism,
and none from solution to problem-only. All of
the 4 newly-added comments mentioned problems
and provided solutions. These results suggest that
Instant-feedback SWoRD does indeed help review-
ers revise their comments to include more solutions.

5 Conclusions and Future Work

This paper presented Instant-feedback SWoRD,
which was designed to increase the presence of so-
lutions in peer reviews. Evaluation results showed
that Instant-feedback SWoRD achieved high perfor-
mance in predicting solution in review comments
and in triggering instant feedback. Moreover, for
reviewers who revised their reviews after receiving
instant feedback, the number of comments with so-
lution increased. In future work, we plan to use more
data from a wider range of classes to re-train the
currently deployed prediction model. Also, a com-
prehensive comparison of our approach to studies of
similar tasks would give us insight into features and
algorithms for performance improvement.
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Abstract

In this paper, we present Farasa, a fast and
accurate Arabic segmenter. Our approach
is based on SVM-rank using linear kernels.
We measure the performance of the seg-
menter in terms of accuracy and efficiency,
in two NLP tasks, namely Machine Trans-
lation (MT) and Information Retrieval (IR).
Farasa outperforms or is at par with the state-
of-the-art Arabic segmenters (Stanford and
MADAMIRA), while being more than one
order of magnitude faster.

1 Introduction

Word segmentation/tokenization is one of the most
important pre-processing steps for many NLP task,
particularly for a morphologically rich language
such as Arabic. Arabic word segmentation involves
breaking words into its constituent prefix(es), stem,
and suffix(es). For example, the word “wktAbnA”1

“ A 	JK. A�J»ð” (gloss: “and our book”) is composed of the

prefix “w” “ð” (and), stem “ktAb” “H. A�J»” (book),

and a possessive pronoun “nA” “ A 	K” (our). The task
of the tokenizer is to segment the word into “w+
ktAb +nA” “ A 	K+ H. A�J» +ð”. Segmentation has been
shown to have significant impact on NLP applica-
tions such as MT and IR.

Many Arabic segmenters have been proposed in
the past 20 years. These include rule based analyz-
ers (Beesley et al., 1989; Beesley, 1996; Buckwal-
ter, 2002; Khoja, 2001), light stemmers (Aljlayl and

1Buckwalter encoding is used exclusively in this paper

Frieder, 2002; Darwish and Oard, 2007), and sta-
tistical word segmenters (Darwish, 2002; Habash et
al., 2009; Diab, 2009; Darwish et al., 2014). Statis-
tical word segmenters are considered state-of-the-art
with reported segmentation accuracy above 98%.

We introduce a new segmenter, Farasa (“insight”
in Arabic), an SVM-based segmenter that uses a va-
riety of features and lexicons to rank possible seg-
mentations of a word. The features include: like-
lihoods of stems, prefixes, suffixes, their combina-
tions; presence in lexicons containing valid stems or
named entities; and underlying stem templates.

We carried out extensive tests comparing Farasa
with two state-of-the-art segmenters: MADAMIRA
(Pasha et al., 2014), and the Stanford Arabic seg-
menter (Monroe et al., 2014), on two standard NLP
tasks namely MT and IR. The comparisons were
done in terms of accuracy and efficiency. We
trained Arabic↔English Statistical Machine Trans-
lation (SMT) systems using each of the three seg-
menters. Farasa performs clearly better than Stan-
ford’s segmenter and is at par with MADAMIRA,
in terms of BLEU (Papineni et al., 2002). On the
IR task, Farasa outperforms both with statistically
significant improvements. Moreover, we observed
Farasa to be at least an order of magnitude faster
than both. Farasa also performs slightly better than
the two in an intrinsic evaluation. Farasa has been
made freely available.2

2 Farasa

Features: In this section we introduce the
features and lexicons that we used for seg-

2Tool available at: http://alt.qcri.org/tools/farasa/
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mentation. For any given word (out of con-
text), all possible character-level segmentations
are found and ones leading to a sequence of
prefix1+...+prefixn+stem+suffix1+...+suffixm,
where: prefix1..n are valid prefixes; suffix1..m
are valid suffixes; and prefix and suffix sequences
are legal, are retained. Our valid prefixes are: f, w,
l, b, k, Al, s. � , È@ , ¼ , H. , È ,ð , 	¬. Our valid
suffixes are: A, p, t, k, n, w, y, At, An, wn, wA,
yn, kmA, km, kn, h, hA, hmA, hm, hn, nA, tmA,
tm, and tn @ð , 	àð , 	à@ , �H@ , ø
 , ð , 	à , ¼ , �H , �è , @
	á�K , Õç�' , AÖ �ß , A 	K , 	áë , Ñë , AÒë , Aë , è , 	á» , Õ» , AÒ» , 	áK
.

Using these prefixes and suffixes, we generated a list
of valid prefix and suffix sequences. For example,
sequences where a coordinating conjunction (w or
f) precedes a preposition (b, l, k), which in turn
precedes a determiner (Al), is legal, for example
in the word fbAlktab H. A�JºËAJ. 	̄ (gloss: “and in
the book”) which is segmented to (f+b+Al+ktAb
H. A�J» + È@ + H. + 	¬). Conversely, a determiner is
not allowed to precede any other prefix. We used
the following features:
- Leading Prefixes: conditional probability that a
leading character sequence is a prefix.
- Trailing Suffixes: conditional probability that a
trailing character sequence is a suffix.
- LM Prob (Stem): unigram probability of stem
based on a language model that we trained from a
corpus containing over 12 years worth of articles of
Aljazeera.net (from 2000 to 2011). The corpus is
composed of 114,758 articles containing 94 million
words.
- LM Prob: unigram probability of stem with first
suffix.
- Prefix|Suffix: probability of prefix given suffix.
- Suffix|Prefix: probability of suffix given prefix.
- Stem Template: whether a valid stem template
can be obtained from the stem. Stem templates are
patterns that transform an Arabic root into a stem.
For example, apply the template CCAC on the root
“ktb” “I. �J»” produces the stem “ktAb” “H. A�J»”
(meaning: book). To find stem templates, we used
the module described in Darwish et al. (2014).
- Stem Lexicon: whether the stem appears in a
lexicon of automatically generated stems. This can
help identify valid stems. This list is generated by

placing roots into stem templates to generate a stem,
which is retained if it appears in the aforementioned
Aljazeera corpus.
- Gazetteer Lexicon: whether the stem that has
no trailing suffixes appears in a gazetteer of person
and location names. The gazetteer was extracted
from Arabic Wikipedia in the manner described by
(Darwish et al., 2012) and we retained just word
unigrams.
- Function Words: whether the stem is a function
word such as “ElY” “úÎ«” (on) and “mn” “ 	áÓ”
(from).
- AraComLex: whether the stem appears in the
AraComLex Arabic lexicon, which contains 31,753
stems of which 24,976 are nouns and 6,777 are
verbs (Attia et al., 2011).
- Buckwalter Lexicon: whether the stem appears
in the Buckwalter lexicon as extracted from the
AraMorph package (Buckwalter, 2002).
- Length Difference: difference in length from the
average stem length.

Learning: We constructed feature vectors for each
possible segmentation and marked correct seg-
mentation for each word. We then used SVM-
Rank (Joachims, 2006) to learn feature weights. We
used a linear kernel with a trade-off factor between
training errors and margin (C) equal to 100, which
is based on offline experiments done on a dev set.
During test, all possible segmentations with valid
prefix-suffix combinations are generated, and the
different segmentations are scored using the clas-
sifier. We had two varieties of Farasa. In the
first, FarasaBase, the classifier is used to segment all
words directly. It also uses a small lookup list of
concatenated stop-words where the letter “n” “ 	à” is

dropped such as “EmA” “ AÔ«” (“En+mA” “ AÓ+ 	á«”),

and “mmA” “ AÜØ” (“mn+mA” “ AÓ + 	áÓ”). In the sec-
ond, FarasaLookup, previously seen segmentations
during training are cached, and classification is ap-
plied on words that were unseen during training.
The cache includes words that have only one seg-
mentation during training, or words appearing 5 or
more times with one segmentation appearing more
than 70% of times.

Training and Testing: For training, we used parts
1 (version 4.1), 2 (version 3.1), and 3 (version 2) of
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MADAMIRA Farasabase Farasalookup

Accuracy 98.76% 98.76% 98.94%

Table 1: Segmentation Accuracy

the the Penn Arabic Treebank (ATB). Many of the
current results reported in the literature are done on
subsets of the Penn Arabic Treebank (ATB). Testing
done on a subset of the ATB is problematic due to its
limited lexical diversity, leading to artificially high
results. We created a new test set composed of 70
WikiNews articles (from 2013 and 2014) that cover
a variety of themes, namely: politics, economics,
health, science and technology, sports, arts, and cul-
ture. The articles are evenly distributed among the
different themes (10 per theme). The articles contain
18,271 words. Table 1 compares segmentation accu-
racy for both versions of Farasa with MADAMIRA,
where both were configured to segment all possible
affixes. We did not compare to Stanford, because
it only segments based on the ATB segmentation
scheme. Farasalookup performs slightly better than
MADAMIRA. From analyzing the errors in Farasa,
we found that most of the errors were due to either:
foreign named entities such as “lynks” “�º	JJ
Ë”
(meaning: Linux) and “bAlysky” “ú
¾��
ËAK.” (mean-

ing: Palisky); or to long words with more than four
segmentations such as ”wlmfAj}thmA” “ AÒî �DJk. A 	®ÖÏð”

(“w+l+mfAj}+t+hmA” “ AÒë + �H + úk. A 	®Ó + È + ð”)
(meaning “and to surprise both of them”). Perhaps,
adding larger gazetteers of foreign names would
help reduce the first kind of errors. For the sec-
ond type of errors, the classifier generates the cor-
rect segmentation, but it receives often a slightly
lower score than the incorrect segmentation. Per-
haps adding more features can help correct such er-
rors.

3 Machine Translation

Setup: We trained Statistical Machine Translation
(SMT) systems for Arabic↔English, to compare
Farasa with Stanford and MADAMIRA3. The com-
parison was done in terms of BLEU (Papineni et al.,
2002) and processing times. We used concatenation
of IWSLT TED talks (Cettolo et al., 2014) (contain-
ing 183K Sentences) and NEWS corpus (containing

3Release-01292014-1.0 was used in the experiments

Seg iwslt12 iwslt13 Avg Time

MADAMIRA 30.4 30.8 30.6 4074
Stanford 30.0 30.5 30.3 395
Farasa 30.2 30.8 30.5 80

Table 2: Arabic-to-English Machine Translation,
BLEU scores and Time (in seconds)

202K Sentences) to train phrase-based systems.

Systems: We used Moses (Koehn et al., 2007),
a state-of-the-art toolkit with the the settings de-
scribed in (Durrani et al., 2014a): these include a
maximum sentence length of 80, Fast-Aligner for
word-alignments (Dyer et al., 2013), an interpolated
Kneser-Ney smoothed 5-gram language model with
KenLM (Heafield, 2011), used at runtime, MBR
decoding (Kumar and Byrne, 2004), Cube Pruning
(Huang and Chiang, 2007) using a stack size of
1,000 during tuning and 5,000 during testing. We
tuned with the k-best batch MIRA (Cherry and Fos-
ter, 2012). Among other features, we used lexical-
ized reordering model (Galley and Manning, 2008),
a 5-gram Operation Sequence Model (Durrani et al.,
2011), Class-based Models (Durrani et al., 2014b)4

and other default parameters. We used an unsuper-
vised transliteration model (Durrani et al., 2014c) to
transliterate the OOV words. We used the standard
tune and test set provided by the IWSLT shared task
to evaluate the systems.

In each experiment, we simply changed the seg-
mentation pipeline to try different segmentation.
We used ATB scheme for MADAMIRA which has
shown to outperform its alternatives (S2 and D3)
previously (Sajjad et al., 2013).

Results: Table 2 compares the Arabic-to-English
SMT systems using the three segmentation tools.
Farasa performs better than Stanford’s Arabic seg-
menter giving an improvement of +0.25, but slightly
worse than MADAMIRA (-0.10). The differences
are not statistically significant. For efficiency, Farasa
is faster than Stanford and MADAMIRA by a fac-
tor of 5 and 50 respectively.5 The run-time of
MADAMIRA makes it cumbersome to run on big-
ger corpora like the multiUN (UN) (Eisele and

4We used mkcls to cluster the data into 50 clusters.
5Time is the average of 10 runs on a machine with 8 Intel

i7-3770 cores, 16 GB RAM, and 7 Seagate disks in software
RAID 5 running Linux 3.13.0-48
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Seg iwslt12 iwslt13 Avg Time

MADAMIRA 19.6 19.1 19.4 1781
Stanford 17.4 17.2 17.3 692
Farasa 19.2 19.3 19.3 66

Table 3: English-to-Arabic Machine Translation,
BLEU scores and Time (in seconds)

Chen, 2010) which contains roughly 4M sentences.
This factor becomes even daunting when training a
segmented target-side language model for English-
to-Arabic system. Table 3 shows results from
English-to-Arabic system. In this case, Stanford per-
forms significantly worse than others. MADAMIRA
performs slightly better than Farasa. However, as
before, Farasa is more than multiple orders of mag-
nitude faster.

4 Information Retrieval

Setup: We also used extrinsic IR evaluation to
determine the quality of stemming compared to
MADAMIRA and the Stanford segmenter. We per-
formed experiments on the TREC 2001/2002 cross
language track collection, which contains 383,872
Arabic newswire articles, containing 59.6 million
words), and 75 topics with their relevance judgments
(Oard and Gey, 2002). This is presently the best
available large Arabic information retrieval test col-
lection. We used Mean Average Precision (MAP)
and precision at 10 (P@10) as the measures of good-
ness for this retrieval task. Going down from the top
a retrieved ranked list, Average Precision (AP) is the
average of precision values computed at every rel-
evant document found. P@10 is the same as MAP,
but the ranked list is restricted to 10 results. We used
SOLR (ver. 5.6)6 to perform all experimentation.
SOLR uses a tf-idf ranking model. We used a paired
2-tailed t-test with p-value less than 0.05 to ascer-
tain statistical significance. For experimental setups,
we performed letter normalization, where we con-
flated: variants of “alef”, “ta marbouta” and “ha”,
“alef maqsoura” and “ya”, and the different forms
of “hamza”. Unlike MT, Arabic IR performs better
with more elaborate segmentation which improves
matching of core units of meaning, namely stems.
For MADAMIRA, we used the D34MT scheme,
where all affixes are segmented. Stanford tokenizer
only provides the ATB tokenization scheme. Farasa

6http://lucene.apache.org/solr/

Stemming MAP P@10 Time

Words 0.20 0.34 -
MADAMIRA 0.26 w,s 0.39 w 21:27:21
Stanford 0.22 w 0.37 03:43:25
Farasa 0.28 w,s,m 0.43 w,s,m 00:15:26

Table 4: Retrieval Results in MAP and P@10 and
Processing Time (in hh:mm:ss). For statistical sig-
nificance, w = better than words, s = better than
Stanford, and m = better than MADAMIRA

was used with the default scheme, where all affixes
are segmented.

Results: Table 4 summarizes the retrieval re-
sults for using words without stemming and using
MADAMIRA, Stanford, and Farasa for stemming.
The table also indicates statistical significance and
reports on the processing time that each of the seg-
menters took to process the entire document collec-
tion. As can be seen from the results, Farasa out-
performed using words, MADAMIRA, and Stan-
ford significantly. Farasa was an order of magni-
tude faster than Stanford and two orders of magni-
tude faster than MADAMIRA.

5 Analysis

The major advantage of using Farasa is speed, with-
out loss in accuracy. This mainly results from op-
timization described earlier in the Section 2 which
includes caching and limiting the context used for
building the features vector. Stanford segmenter
uses a third-order (i.e., 4-gram) Markov CRF model
(Green and DeNero, 2012) to predict the correct seg-
mentation. On the other hand, MADAMIRA bases
its segmentation on the output of a morphological
analyzer which provides a list of possible analyses
(independent of context) for each word. Both text
and analyses are passed to a feature modeling com-
ponent, which applies SVM and language models to
derive predictions for the word segmentation (Pasha
et al., 2014). This hierarchy could explain the slow-
ness of MADAMIRA versus other tokenizers.

6 Conclusion

In this paper we introduced Farasa, a new Ara-
bic segmenter, which uses SVM for ranking. We
compared our segmenter with state-of-the-art seg-
menters MADAMIRA and Stanford, on standard
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MT and IR tasks and demonstrated Farasa to be sig-
nificantly better (in terms of accuracy) than both on
the IR tasks and at par with MADAMIRA on the
MT tasks. We found Farasa by orders of magnitude
faster than both. Farasa has been made available for
use7 and will be added to Moses for Arabic tokeniza-
tion.
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Abstract
We present iAppraise: an open-source frame-
work that enables the use of eye-tracking for
MT evaluation. It connects Appraise, an open-
source toolkit for MT evaluation, to a low-cost
eye-tracking device, to make its usage acces-
sible to a broader audience. It also provides a
set of tools for extracting and exploiting gaze
data, which facilitate eye-tracking analysis. In
this paper, we describe different modules of
the framework, and explain how the tool can
be used in a MT evaluation scenario. Dur-
ing the demonstration, the users will be able to
perform an evaluation task, observe their own
reading behavior during a replay of the ses-
sion, and export and extract features from the
data.

1 Introduction

Evaluation is one of the difficult problems in Ma-
chine Translation (MT). Despite its clear draw-
backs,1 human evaluation remains the most reliable
method to evaluate MT systems and track the ad-
vances in Machine Translation. Appraise is an open-
source toolkit designed to facilitate the human eval-
uation of machine translation (Federmann, 2012). It
has been adopted as the preferred tool in the WMT
evaluation campaigns (Bojar et al., 2013), and thus,
it is currently used by dozens of researchers.

According to the eye-mind hypothesis (Just and
Carpenter, 1980) people cognitively process objects
that are in front of their eyes. This has enabled
researchers to analyze and understand how people
perform certain tasks like reading (Rayner, 1998;

1It is subjective, expensive, time-consuming, boring, etc.

Garrod, 2006; Harley, 2013). In recent times, eye-
tracking has also been used in Machine Translation
to identify and classify translation errors (Stymne
et al., 2012), to evaluate the usability of automatic
translations (Doherty and O’Brien, 2014), and to im-
prove the consistency of the human evaluation pro-
cess (Guzmán et al., 2015), etc. Furthermore, track-
ing how evaluators consume MT output, can help to
reduce human evaluation subjectivity, as we could
use evidence of what people do (i.e. unbiased read-
ing patterns) and not only what they say they think
(i.e. user-biased evaluation scores). However, the
main limitation for the adoption of eye-tracking re-
search has been the steep learning curve that is asso-
ciated with eye-tracking analysis and the high-cost
of eye-tracking devices.

In this paper, we present iAppraise: an open-
source framework that enables the use of eye-
tracking for MT evaluation, and facilitates the repli-
cation and dissemination of eye-tracking research in
MT. First, it is designed to work with the increas-
ingly popular, low-cost2 eye-tracker eyeTribe. Sec-
ondly, it provides a set of tools for extracting and ex-
ploiting gaze features, which facilitate eye-tracking
analysis. Lastly, it integrates fully with the Appraise
toolkit, making it accessible to a larger audience.

Our setup allows to track eye-movements during
the MT evaluation process. The data generated can
be used to visualize a re-enactment of the evaluation
session in real-time, thus providing useful qualita-
tive insights on the evaluation; or to extract features
for further quantitative analysis.

2It costs less than a hundred US dollars, and provides capa-
bilities on par with previous generation eye-trackers.
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The applications for this toolkit are multiple. Us-
ing reading patterns from evaluators could be a use-
ful tool for MT evaluation: (i) to shed light into
the evaluation process: e.g. the general reading be-
havior that evaluators follow to complete their task;
(ii) to understand which parts of a translation are
more difficult for the annotator; and (iii) to develop
automatic evaluation systems that use reading pat-
terns to predict translation quality. In an effort car-
ried using this framework, we proposed a model to
predict the quality of the MT output. Our results
showed that reading patterns obtained from the eye-
movements of the evaluators can help to anticipate
the evaluation scores to be given by them. We found
that the features extracted from the eye-tracking data
(discussed in Section 2.6) capture more than just the
fluency of a translation. Details of findings are re-
ported in (Sajjad et al., 2016). In this paper, we
describe the overall architecture of iAppraise: the
communication modules, the user interface, and the
analysis package.

2 iAppraise: Eye Tracking for Appraise

Appraise (Federmann, 2012) is an open-source
toolkit,3 used for for manual evaluation of machine
translation output. However, it also allows to col-
lect human judgments on a number of annotation
tasks (such as ranking, error classification, quality
estimation and post-editing) and provides an envi-
ronment to maintain and export the collected data.
The toolkit is based on the Django web frame-
work that supports database modeling and object-
relational mapping, and uses Twitter’s Bootstrap as
a template for the interface design.

iAppraise consist of a series of modules that ex-
tend Appraise to integrate eye-tracking from the eye-
Tribe4 into the translation evaluation tasks. Below
we briefly describe the architecture of the toolkit.

2.1 Overall Architecture

In Figure 1 we present the overall architecture of our
toolkit. First, the iAppraise Adapter communicates
directly with the EyeTribe eye-tracker through its
API and propagates the gaze events to the iAppraise
UI (User Interface).

3Available at: github.com/cfedermann/Appraise
4http://dev.theEyeTribe.com/api/

The iAppraise UI module takes the gaze events,
and translates their coordinates into local browser
coordinates. It also converts all the textual material
in the display into traceable objects, that can detect
Gaze when a user is looking at them. Additionally,
the module contains a view-task whose layout is op-
timized for the recognition of gaze events.

When a traceable object in iAppraise UI detects
that a user is looking at it, it stores this information,
augmented with UI details from the gaze data. This
data is later stored in iAppraise Model/DB at the end
of each evaluation session. Finally, the iAppraise
Analysis module is designed to extract useful eye-
tracking features from the generated data. These can
be used for modeling or analysis.

Figure 1: iAppraise architecture

2.2 iAppraise Communication Interfaces

The EyeTribe eye-tracker, running at 30Hz or 60Hz,
broadcasts gaze data through a TCP port (Eye-
Tribe default port 6555) using JSON (JavaScript Ob-
ject Notation) formatted messages. The iAppraise
Adapter employs two sockets, one that listens to the
eye-tracker, and the other to pass the data to the iAp-
praise UI.
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2.3 iAppraise User Interface

To facilitate the usage of eye-tracking data for ma-
chine translation evaluation, we added an evaluation
task to the original Appraise.5 This task has a layout
and graphical elements, that have been optimized
for the use of eye-tracking. The template has two
main content regions: Reference and Translation.
The task for this view requires to score the quality
of a translation by comparing it to the provided ref-
erence. The annotator is required to use a slider (see
Figure 2) to provide a score. In return, he/she gets
feedback in the form of stars, that reflect how close
his/her score is to an optional gold-standard score.
In principle, the stars are part of a gamification strat-
egy used to keep the evaluator engaged. If the gold
standard scores are not be available this option can
be turned off.

2.4 iAppraise Model/DB

Figure 2: iAppraise Eye-Tracking Evaluation task
layout with feedback. From top to bottom: Refer-
ence and Translation sentences, slider for scoring,
and feedback in a form of stars.

To handle data flow and gather information resulted
from the eye-tracking and user interaction, a new
data model was added to Appraise. This data model
stores the data received from the iAppraise UI into
a database. Table 1 shows the different attributes
and the description of the fields for the data recorded
during an eye-tracking task.

5appraise/templates/evaluation/
eyetracking.htm

Attribute Description

Task attributes
pscore Eye-tracker precision at the time of the

recording. Computed as the number of
words observed in a random sample of
words.

score Score given by the user

Gaze attributes
region Active region where the gaze landed
gazex Actual coordinate x of the gaze
gazey Actual coordinate y of the gaze
data JSON EyeTribe message6

Environment attributes
scaling The ratio of the (vertical) size of one

physical pixel on the current display to
the size of one device independent pix-
els(dips)

zoom Window zooming level
scrollx Number of horizontal pixels the current

document has been scrolled from the
upper left corner of the window

scrolly Number of vertical pixels the current
document has been scrolled from the
upper left corner of the window

clientWidth Window width
div0Height Window height
innerHeight The inner height of the browser window
outerHeight The outer height of the browser window

Table 1: Description of attributes stored in the
database.

2.5 Eyetacking Replay

The eye-tracking data collected during the evalua-
tion session can be visualized as a re-enactment or
replay. This allows to analyze the evaluator during
the task, or to perform some basic troubleshooting.
The replay highlights the background of words in
the sequence that they were observed (See Figure 3
for demonstration).

2.6 iAppraise Analysis

The iAppraise Analysis module extracts useful
features from the iAppraise DB that can be used to
analyze the evaluation process or a train a prediction
model. It consists of several auxiliary scripts that
parse the data and extract features described below:

19



Figure 3: iAppraise Eye-Tracking task replay;
words gets highlighted in the sequence that they
were observed.

Jump features While reading text, the gaze of
a person does not visit every single word, but ad-
vances in jumps called saccades. These jumps
can go forward (progressions) or backward (regres-
sions). We classify the word-transitions according
to the direction of the jump and distance between
the start and end words. For subsequent words n,
n + 1, this would mean a forward jump of distance
equal to 1. All jumps with distance greater than 4
are sorted into a 5+ bucket. Additionally, we sepa-
rate the features for reference and translation jumps.
We also count the total number of jumps.

Total jump distance We aggregate jump dis-
tances7 to count the total distance covered while
evaluating a sentence. We count reference and trans-
lation distance features separately. Such information
is useful in analyzing the complexity and readability
of the translation.

Inter-region jumps While reading a translation,
evaluators can jump between the translation and a
reference to compare them. Intuitively, more jumps
of this type could signify that the translation is
harder to evaluate. Here we count the number of
reference↔translation transitions.

7Jump count and distance features have also shown to be
useful in SMT decoders (Durrani et al., 2011).

Dwell time The amount of time a person fixates on
a region is a crucial marker for processing difficulty
in sentence comprehension (Clifton et al., 2007) and
moderately correlates with the quality of a transla-
tion (Doherty et al., 2010). We count the time spent
by the reader on each particular word. We separate
reference and translation features.

Lexicalized features The features discussed
above do not associate gaze movements with the
words being read. We believe that this information
can be critical to judge the overall difficulty of the
reference sentence, and to evaluate which transla-
tion fragments are problematic to the reader. To
compute the lexicalized features, we extract streams
of reference and translation lexical sequences based
on the gaze jumps, and score them using a tri-gram
language model. Let Ri = r1, r2, . . . , rm be a
sub-sequence of gaze movement over reference and
there are R1, R2, . . . , Rn sequences, the lex feature
is computed as follows:

lex(R) =
n∑
i

log p(Ri)
|Ri|

p(Ri) =
m∑
j

p(rj |rj−1, rj−2)

The normalization factor |Ri| is used to make
the probabilities comparable. We also use un-
normalized scores as additional feature. A similar
set of features lex(T ) is computed for the transla-
tions. All features are normalized by the length of
the sentence.

In a related effort, we used the above features
to predict the quality scores given by an evaluator.
More details on the model and how effective each
of the features were, please refer to Sajjad et al.
(2016).

3 iAppraise Demonstration Script

iAppraise demonstration will allow the users to ex-
periment with the tool and the eye tracking device.
The users will be able to perform an evaluation task,
observe a replay of their own eye movements, and
to export their gaze data. We will also demonstrate
the basic functioning for additional tools and scripts.
This includes using the exported data to extract fea-
tures and information about the evaluation task.
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The iAppraise server is available as an open-
source project, and can also be downloaded as an
already-configured virtual machine that can be de-
ployed on any environment.

4 Conclusion

In this paper, we presented iAppraise, a framework
to provide eye-tracking capabilities to directly Ap-
praise. Here we described the different components
that make up the framework. The main goal of the
framework is to provide a tool that lowers the entry-
level bar to using eye-tracking in the MT commu-
nity. iAppraise has several advantages: (i) it con-
nects low-cost eye-trackers to an open-source MT
analysis platform; and (ii) it provides a set of anal-
ysis tools that allow the use of the gaze information
effortlessly. We expect that in the future, more re-
searchers will adopt iAppraise to explore the human
consumption of text in other NLP tasks.
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Abstract

This paper introduces Linguistica 5, a soft-
ware for unsupervised learning of linguistic
structure. It is a descendant of Goldsmith’s
(2001, 2006) Linguistica. Open-source and
written in Python, the new Linguistica 5 is
both a graphical user interface software and a
Python library. While Linguistica 5 inherits its
predecessors’ strength in unsupervised learn-
ing of natural language morphology, it incor-
porates significant improvements in multiple
ways. Notable new features include tools for
data visualization as well as straightforward
extensions for both its components and em-
bedding in other programs.

1 Introduction

The unsupervised learning of linguistic structure has
been an important area of investigation in various
disciplines. In natural language processing, unsu-
pervised methods have the practical advantage over
supervised ones that relatively less training data
(which is time-consuming and costly to prepare)
is required. In linguistics and cognitive science,
a deeper understanding of how linguistic structure
can be learned from unstructured data without su-
pervision sheds light on human language acquisi-
tion. In this paper, we introduce Linguistica 5, a
Python-based software for research on the unsuper-
vised learning of linguistic structure. This software
is a descendant of Linguistica 4 and its previous ver-
sions (Goldsmith, 2001; Goldsmith, 2006) dealing
mainly with morphology.1

1http://linguistica.uchicago.edu/

In the following, we explain the axioms guiding
the development of Linguistica 5 in section 2. In
section 3, the dual design of both a graphical user
interface (GUI) and a Python library is introduced.
Section 4 demonstrates data visualization using the
GUI. Section 5 exemplifies how Linguistica 5 can be
used in conjunction with other computational tools
in research. Section 6 concludes the paper.

2 Axioms

In the development of Linguistica 5, we adhere
closely to the axioms of reproducible, accessible,
and extensible research.

• Reproducibility: Research using Linguistica 5
is reproducible, in the sense of Claerbout and
Karrenbach (1992). Linguistica 5 is open-
source. The source code is publicly hosted at
an online repository with detailed documenta-
tion (see footnote 1).

• Accessibility: Similar to all previous versions,
Linguistica 5 has a graphical user interface to
make it accessible to a wide audience. How-
ever, Linguistica 5 significantly departs from
them by the introduction of data visualization
tools. This is especially important for ex-
ploring potentially interesting patterns in large
datasets; more on this in section 4.

• Extensibility: Linguistica 5 facilitates extensi-
ble research in two ways. First, Linguistica 5
is highly modular, which makes the addition
of new components in further research straight-
forward. Second, apart from having a GUI, it
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is also a Python library, which can be called
in other Python programs for computational re-
search. Section 5 provides an example.

3 Dual interface design: GUI and Python
library

Previous versions of Linguistica are written in C++
and built in the Qt framework. These versions are
designed to be GUI software out of the box. The ma-
jor drawback is that the core backend is intimately
tied with the GUI code, which makes further devel-
opment and debugging difficult. To solve this prob-
lem, the new Linguistica 5 takes a radically different
approach.

First, we choose Python to be the new program-
ming language for Linguistica, because it has been
widely used in computational linguistics and natu-
ral language processing for its strengths in fast cod-
ing, strong library support for machine learning and
other computational tools.

Second, the focus of the Linguistica 5 develop-
ment is its backend as a Python library, with a GUI
wrapper written in PyQt. This new architecture has
several advantages. In terms of the user interface,
there are two independent choices. As in previous
versions of Linguistica, the GUI allows convenient
data analysis – and visualization, a new development
in Linguistica 5 (see section 4). Another novelty is
that Linguistica 5 is a Python library by design. Re-
searchers are able to use Linguistica 5 in a computa-
tionally dynamic and automatic fashion by calling it
in their own programs for any research and compu-
tational work of their interest.

4 Data visualization

Research along the lines of Linguistica has focused
on natural language morphology. Still within the
realm of unsupervised learning of linguistic struc-
ture, Linguistica 5 represents an important step for-
ward by attempting to (i) induce structure that goes
beyond morphology, and (ii) use it to improve results
in morphological learning. Given large datasets,
data visualization has become indispensable for both
exploring new questions as well as uncovering un-
known ones. The increased interest in visualization
of linguistic data and resources is reflected by spe-
cialized research venues created recently, e.g., the

Workshop on Visualization as Added Value in the
Development, Use and Evaluation of Language Re-
sources (VisLR) which debuted in 2014. Here we
provide an example from our ongoing work.

The area of interest is unsupervised word category
induction (see Christodoulopoulos et al. (2010) for a
recent review), which potentially offers solutions to
challenging problems in fully unsupervised morpho-
logical learning (e.g. is the induced morphological
paradigm walk-walks a verbal or nominal paradigm?
And how do we characterize its potential connection
with other induced paradigms such as jump-jumped-
jumps?).

Currently, we are exploring spectral approaches
to the problem of unsupervised word category in-
duction. A central component is to model syntactic
neighborhood among words in a given dataset. The
current model is implemented as a series of steps
for word similarity computation. First, a graph of
word similarity for all pairs of word types is com-
puted based on the number of shared word ngram
contexts. We compute the most significant eigenvec-
tors of the normalized Laplacian of the graph. Each
word is embedded in Rk based on the coordinates
derived from the k eigenvectors. A new graph of
word similarity is obtained based on the Euclidean
distance of the word coordinates. Words in this re-
sultant graph are connected to one another in such a
way that corresponds to syntactic neighborhood. For
instance, the word “the” likely has other articles or
determiners such as “a” and “an” as syntactic neigh-
bors that occur in syntactically similar positions. Us-
ing the Brown corpus (Kučera and Francis, 1967),
several syntactic neighbors for the word types “the”,
“would”, and “after” are in Table 1.

Word Syntactic neighbors
the a his their an its this my our that
would could must will can should may might
after before like during since without through

Table 1: Syntactic neighbors

Importantly, the syntactic neighbors of a given
word are themselves word types in the given dataset.
The interconnectedness of words in the syntactic
neighborhood results calls for network visualization.
This can be done in Linguistica 5 as one of the
key new features. Figure 1 shows a screenshot of
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Linguistica 5 displaying the syntactic word neigh-
borhood network for the most frequent 1,000 word
types in the Brown corpus, as rendered by the force-
directed graph layout in the JavaScript D3 library
(Bostock et al., 2011). Figure 2 zooms in for the
cluster of words that would be categorized as modal
verbs such as “could”, “would”, and “must”.

Figure 2: Zooming in Figure 1 for modal verbs

With induced knowledge analogous to word cat-
egories in natural language, results of unsupervised
morphological learning could be improved. For in-
stance, morphophonology could be learned. In-
duced morphological signatures (see section 5.1)
such as {Ø, ed} (walk-walked) and {Ø, d} (love-
loved) could be aligned for allomorphy across sig-
natures (words with ed and d belonging to the same
word category in this case). While this is work
in progress, we have shown that data visualiza-
tion tools in Linguistica 5 as exemplified by syntac-
tic neighborhood networks provide insights for new
pursuits in research.

5 Embedding Linguistica 5 in other
programs

Another new and powerful feature of Linguistica 5
is that it is a Python library by design and is there-
fore callable in other Python-based programs. This
is significant, because it is now possible to run the
Linguistica algorithms dynamically for any data of
interest from different sources (either from a local
file or from an in-memory Python object).

We illustrate how Linguistica 5 can be used as a
Python library in conjunction with other tools with
an example for computational modeling of human
language acquisition, a growing field bringing lin-

guistics, computer science, and cognitive science to-
gether (cf. Villavicencio et al. (2013)). We first pro-
vide the background on morphological signatures.

5.1 Morphological signatures

Unsupervised learning of morphology in Linguis-
tica revolves around objects known as morpholog-
ical signatures. A (morphological) signature, in the
sense of Goldsmith (2001), is a morphological pat-
tern associated with its stems as induced in some
given data. For example, {Ø, s} is a morphological
signature very likely to be induced in any sizable En-
glish datasets, with possible associated stems such
as walk-, jump- (which entails that the words walk,
walks, jump, jumps occur in the data).

Using the Brown corpus (about 50,000 word types
from one million word tokens) for written American
English, Linguistica 5 finds over 300 morphological
signatures. Those with the most associated stems
are shown in the screenshot in Figure 3; the signa-
ture {Ø, ed, ing, s} is highlighted, with its associ-
ated stems displayed on the right.

Figure 3: Signatures with the most stems in the Brown corpus

5.2 On human morphological acquisition

Given that Linguistica 5 is designed to model unsu-
pervised morphological learning as a major goal, we
ask how it can be used to model human morpholog-
ical learning using child-directed speech data. An
important criterion is that for the model to be cog-
nitively plausible, it has to simulate the incremental
nature of the input data. This means that the Linguis-
tica algorithm for morphological learning must be
called and applied flexibly over some growing data.
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Figure 1: Syntactic word neighborhood network in Linguistica 5

Concretely, we tested Linguistica 5 for its abil-
ity to model morphological acquisition using Eve’s
data in the Brown portion (Brown, 1973) of the
CHILDES database (MacWhinney, 2000), an idea
sketched in Lee (2015). The child-directed speech
(CDS) at different ages of the target child in the data
was extracted by the PyLangAcq library (Lee et al.,
2016) and fed into Linguistica 5. Table 2 shows the
results of morphological signature induction from
growing word types up to the ages of 18, 21, and
24 months, respectively.

Age # word Induced signatures
types

18 mths 610 {’s Ø}{Ø s}
21 mths 1,246 {’s Ø}{Ø s}{Ø ing}{ll s}
24 mths 1,601 {’s Ø}{Ø s}{Ø ing}{ll s}{’s Ø s}

Table 2: Morphological signatures from CDS to Eve

The classic study of first language acquisition
by Brown (1973) reports that the first three mor-
phological patterns acquired by English-speaking
children are the third-person singular inflection
{Ø, s}, the possessive {’s, Ø}, and the progressive
{Ø, ing}. Table 2 shows these are patterns that
Linguistica 5 successfully discovers in Eve’s child-
directed speech. Other induced signatures are {ll, s}

(as in she’ll-she’s) and {’s, Ø, s}, a more complex
pattern found when more data becomes available to
the learner. The results for modeling language ac-
quisition here contrast sharply with those from the
Brown corpus in section 5.1, for the much larger
amount of input data and results in the latter. But of
particular interest is the incremental nature of learn-
ing in the former case. The fact that Linguistica 5
is a Python library makes it possible to devise tools
embedding it for multiple learning iterations run au-
tomatically.

In this section, we have shown how Linguistica 5
can be used jointly with other programs for highly
dynamic computational research, which is com-
plementary to its GUI counterpart for exploratory
ground work.

6 Conclusions

Linguistica 5 opens new doors to reproducible, ac-
cessible, and extensible research in unsupervised
learning of linguistic structure. Building on the
strengths of its predecessors, Linguistica 5 incorpo-
rates novel elements of data visualization as well as
employs a flexible and modular architecture to allow
its integration into other projects and to maximize
continual research and development.
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2 rue Conté, 75003 PARIS
{clement.pillias,cubaud}@cnam.fr

Abstract

In this paper, we use multilingual Natural Lan-
guage Processing (NLP) tools to improve the
reading experience of parallel texts on mobile
devices. Such enterprise poses multiple chal-
lenging issues both from the NLP and from the
Human Computer Interaction (HCI) perspec-
tives. We discuss these problems, and report
on our own solutions, now implemented in a
full-fledged bilingual reading device.

1 Introduction

Owing to 15 years of advances in Statistical Ma-
chine Translation (SMT), automatically translated
texts are nowadays of sufficiently high quality to
serve the general public and the translation industry.
Contrary to (S)MT which primarily targets readers
without any assumed literacy in the source language,
the TRANSREAD project studies applications target-
ing partially bilingual users, such as language learn-
ers, migrants settling in a new country, inhabitants of
multilingual states, editors in the publishing industry
and professional translators. Its main goal is to help
such users to read texts in the original (source) lan-
guage, even though a translation might be available
in their mother tongue. Bitext processing techniques
(Wu, 2010; Tiedemann, 2011) such as cross-lingual
alignments at different levels or cross-lingual dictio-
nary access, can facilitate and enrich the reading ex-
perience of texts in their original language. Such
endeavour poses difficult challenges: it first requires
to push existing MT technologies to the limit and to
revisit assumptions that are rarely questioned, such
as the need to deliver fully aligned bitexts, including

many-to-many sentence links, and to output high-
precision word and phrase alignments, even for rare
words or gappy multi-word units.

A second challenge is visualisation and interac-
tion design. In fact, most existing interfaces for
bilingual reading/writing have targeted specialists
of the MT industry, serving purposes such as man-
ual alignment input and visualisation (Smith and
Jahry, 2000; Germann, 2008; Gilmanov et al., 2014;
Steele and Specia, 2015), MT tracing and debug-
ging (DeNeefe et al., 2005; Weese and Callison-
Burch, 2010), MT quality assessment (Federmann,
2012; Chatzitheodorou, 2013; Girardi et al., 2014)
or MT post-edition (Aziz et al., 2012). By con-
trast, our aim is not just to visualize the transla-
tion or bilingual correspondences, but rather to en-
able a smooth and seamless reading experience for
the general public. Ebook reading applications typ-
ically allow the reader to select a word and to ac-
cess the corresponding dictionary entry, but appli-
cations that exploit the full translation context are
much rarer. In DoppelText1, DuoLir2 and Parallel
Text Reader on iOS, the selection is performed at
the sentence level, using alignments. Whatever level
is used, this kind of switch-on-demand interaction
interrupts the flow of reading and can be a source
of frustration. Another approach uses synchronized
views, where the bitext is shown to the reader along
with alignment links. In ParallelBooks3, the bitext
is synchronized by scrolling and the translation (at
the paragraph level) only appears when the user taps

1http://www.doppeltext.com/
2http://www.duolir.com/
3http://www.parallelbooks.com/
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the screen. Synchronized views have the potential to
enable a seamless reading of the bitext (Pillias and
Cubaud, 2015), at the cost however of a larger screen
space. This paper discusses these various challenges
and reports on the state of development of our main
tool - the bilingual reader. Additional information,
including resources and demos, can be found on the
project website.4

2 Augmenting e-books with alignments

A major requirement of electronic reading devices is
their ability to seamlessly reformat and adapt their
typesetting, which does not only include the text it-
self but also other editorial (header, footer), typo-
graphic (bold, italic, font sizes and shapes) and dis-
positional information. An early design choice was
to include alignment information as auxiliary source
of information to the original electronic book(s).
Each side of the bitext is thus stored in the EPUB
format,5 a de facto standard for electronic books,
thereby enabling us to take advantage of its inher-
ent ability to encode arbitrary documents and media
files, as well as directives regarding their display.

Linguistic annotations are stored in an additional
file to the EPUB archive and use an XML-based rep-
resentation inspired by the XCES format,6 already
proposed in the early 2000s to represent alignment
information. References to actual textual units (in
the EPUB/html files) are maintained as the com-
plete path from the root of the document to the
node containing the unit. Our format for represent-
ing annotations is generic enough to represent align-
ment links at various levels of granularity, as well
as other arbitrary information. It relies on two types
of basic markups: <link> for binary relationships
(bilingual links or monolingual co-references), and
<mark> for unary information concerning one sin-
gle unit (be it a paragraph, a sentence, a fragment or
a word). In our sample file, these tags are used to en-
code part-of-speech as well as sense disambiguation
information. However, only the information related
to bilingual alignment links is currently displayed.

4http://transread.limsi.fr
5http://epubzone.org/epub-3-overview
6http://www.xces.org/

3 Challenges of bitext alignments

Our representation of alignment relationships ac-
commodates alignment links at various levels of
granularity. Our display currently exploits 5 such
levels, based on sentential, sub-sentential and word
alignments, which were computed for two short sto-
ries by S. Maugham.7

3.1 Sentence alignment

Sentence alignment in parallel texts (bitexts) is
a well established problem in multilingual NLP
(Brown et al., 1991; Gale and Church, 1991; Kay
and Röscheisen, 1993), for which a wide array of
methods exist (Tiedemann, 2011). The problem is
however far from being solved, especially for lit-
erary texts where parallelism is less strict than for
technical or legal documents (Yu et al., 2012). For
this demo, alignments have been produced semi-
automatically. The automatic part used techniques
presented by (Xu et al., 2015), which implement a
multi-pass, coarse-to-fine alignment strategy. The
first pass uses very reliable 1:1 alignment links com-
puted using the approach of (Moore, 2002), while
the next stages complete this initial partial alignment
by including additional correspondences, the prob-
abilities of which are evaluated using a large-scale
MaxEnt classifier embarking a very large number of
features. Automatic alignments were then manually
checked and fixed: for our simple bitexts they were
mostly correct, with a link level F-score ≈ 97%.

3.2 Word alignments

For this demo, gold word alignments were collected
as follows: automatic word alignments were first
computed by running the MGiza (Gao and Vogel,
2008) implementation of IBM Model 4 (Brown et
al., 1993) in both directions. Alignments in the in-
tersection were checked and corrected following the
recommandations of Och and Ney (2003). Even for
such simple texts, alignment errors were numerous,
with an AER close to 0.17 (‘The Promise’), and to
0.19 (‘The Verger’). This confirms the intuition that
computing high quality word alignments for liter-
ary texts might be significantly more difficult than
for other text genres. This also calls for improved

7‘The verger’ and ‘The promise’, totalling slightly more that
160 sentences each.
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techniques for computing confidence measures for
word alignments (Huang, 2009): depending on the
intended reading context, it might be better to avoid
displaying erroneous alignment links.

3.3 Subsentential alignments

The task of designing sound and tractable align-
ment models is notoriously much harder for groups
of words than for words (Marcu and Wong, 2002;
DeNero and Klein, 2008). Two main strategies have
been explored in the literature: the most common,
employed in most SMT systems (Koehn et al., 2007)
starts with alignments for isolated words, which
are incrementally grown subject to consistency con-
straints. The alternative way is to start with senten-
tial alignments and adopt a divisive strategy, which
yields progressive refinements of an initially holis-
tic pairing; this can be performed exactly under ITG
constraints (Wu, 1997); heuristic approaches, capa-
ble of handling alignments for arbitrarily long seg-
ments have also been proposed in (Lardilleux et al.,
2012): both techniques require to evaluate the par-
allelism of arbitrary chunks. We follow the latter
here, also using punctuation marks to select segmen-
tation points. The resulting alignments are deliber-
ately pretty coarse and primarily meant to be used in
a contrastive condition for the human tests.

4 A Bilingual Reader

4.1 Design

The current version of the TRANSREAD bilingual
reader displays paginated versions of the bitext in
parallel views. In Figure 1, the source text is dis-
played on the right side of the screen and its transla-
tion on the left. The user has selected a word in the
source version. Touching a word highlights its con-
text on both sides, exploiting the alignment structure
in a hierarchical way. Highlighting can be triggered
from both versions of the text. The different lev-
els are depicted using bounding boxes, which are
pre-computed using the alignment and the HTML
graphs. Bounding boxes are not always rectangular,
because of word hyphenation for text justification.
We have tried to minimize visual overload by simpli-
fying the resulting geometry of the boxes and using
a colour scale as background. We use the “natural”
theme from (Krause, 2010).

The display size for the bitext can be modified dy-
namically. When the application starts, the text ver-
sions are given an equal space, but the translation on
the left can be shrunk so that the reader can concen-
trate on the original text. Structural highlighting is
still functional in this mode, but when the translated
text is shrunk to its minimum size, it can only be
used as a visual hint.

Our reader is targeted for use on a tablet device.
Interactions with the tactile screen of the tablet cause
the well-known problem of fingers occluding the
touched item. To avoid this issue, a pointer is dis-
played 1.3cm above the touch position sensed by
the system, and its position determines what ele-
ments are selected. This picking is done by recur-
sively searching the textual elements whose precom-
puted bounding boxes contain the pointer’s position.
When this process selects two sibling elements (e.g.
two sentences in a paragraph), the system only keeps
the one for which the distance from the pointer to the
closest bounding box border is greatest. The pointer
shape is an upward triangle. When a word is se-
lected, we also display a downward triangle above it
attached to the line of text, but following the pointer
horizontally. These two triangles enclose the se-
lected word without occluding it.

4.2 Implementation
As readers, we benefit from centuries of high quality
printed typesetting. A poor digital typesetting would
therefore lower the user experience of our bilingual
reader, no matter how rich the interaction may be.
But automated typesetting is a complex task, of-
ten under-estimated. For instance, justification on
small columns, as those produced by bitext presen-
tation, can exhibit “rivers” of white space that are
difficult to handle automatically. Our first goal for
the implementation was then to select a program-
ming framework that would help for these questions.
The Knuth-Plass algorithm8 was used for justifica-
tion, along with LATEX rules9 for hyphenation. An-
other important issue was to build a fully reconfig-
urable software in order to investigate a large de-
sign space of interaction for tablets. We have se-
lected the Kivy framework for Python, which en-

8As described in http://defoe.sourceforge.
net/folio/knuth-plass.html

9Provided by http://tug.org/tex-hyphen/
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Figure 1: The TRANSREAD bilingual reader application running on tablet

ables cross-platform development for Android or
iOS, and GPU-based graphics with OpenGL ES.

5 Perspectives

As reflected in this paper, a top priority is to pur-
sue our efforts towards high-precision alignments,
an application where supervised learning techniques
could help (Moore, 2005). Additional functionali-
ties in reading are also envisioned, such as an en-
hanced and non-distracting access to dictionary in-
formation for difficult words. Currently, Web Read-
ers and mobile reading devices offer such function-
ality through a pop-up window presenting the com-
plete dictionary entry. No assistance is however of-
fered to access the right sense in context, which
would be especially helpful for polysemous words
or when language proficiency is low. In TRAN-
SREAD, we propose to perform this selection auto-
matically. Our word sense disambiguation (WSD)
method (Apidianaki and Gong, 2015) exploits word-
level alignments to annotate words on both sides
of the bitext with the correct senses extracted from
BabelNet (Navigli and Ponzetto, 2012). By in-
tegrating WSD information in the reader, we will
be able to propose definitions, usage examples and
Wikipedia entries, as well as synonymous words and
semantically correct translations. Our WSD system
embeds an alignment-based multi-word expression
(MWE) identification mechanism (Marie and Apid-
ianaki, 2015). Such information will serve as part

of a smart selection mechanism (Pantel et al., 2014),
enabling the system to select appropriate spans and
dictionary entries for MWEs found in texts.

An experimental evaluation of the interface gen-
eral design is currently being conducted. We study,
notably, the effect of the depth of the alignment
structure on human readers behavior. As short term
future work, we shall also investigate other inter-
action techniques for focus management, such as
distortion and 3D views for page turning (Cubaud,
2008). The graphic composition engine developed
for the current application already allows such ef-
fects. A research agenda should also include long
term experiments with real-life reading sessions for
a wide range of languages and text difficulties.

6 Conclusion

We have presented a first version of a bilingual
reader using NLP and HCI technologies to enhance
the reading experience. On our way, some tough
challenges had to be overcome, an unexpected issue
being the processing of typeset documents which is
hardly addressed in the NLP literature. This venture
has provided a context where such issues matter, il-
lustrating the benefits of cross-domain research.
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Abstract

New Dimensions in Testimony is a prototype
dialogue system that allows users to conduct
a conversation with a real person who is not
available for conversation in real time. Users
talk to a persistent representation of Holocaust
survivor Pinchas Gutter on a screen, while a
dialogue agent selects appropriate responses
to user utterances from a set of pre-recorded
video statements, simulating a live conversa-
tion. The technology is similar to existing
conversational agents, but to our knowledge
this is the first system to portray a real per-
son. The demonstration will show the system
on a range of screens (from mobile phones to
large TVs), and allow users to have individual
conversations with Mr. Gutter.

1 Introduction

This demonstration presents New Dimensions in
Testimony, the first dialogue system prototype to en-
able a conversation with a real person who is not
available for conversation in real time. Technology
such as the telegraph, telephone and videoconfer-
encing allowed people to communicate with each
other across long distances with increasing fidelity,
but required that the participants make themselves
available for conversation at the same time. Other
technologies such as writing, audio recording and
video recording allowed people to send messages
across time, but did not allow synchronous conver-
sation. In the past two decades, embodied conversa-
tional agents – that is, artificial characters controlled
by computer programs – have been able to converse

with users with increased complexity and natural-
ness. Our system demonstrates how conversational
agent technology can be used with recorded video
statements from a real person to create a conversa-
tion that is offset in time: the speaker recorded his
statements in the past as a message to the future, and
users now can interact with him and hold a conver-
sation as if the speaker were present.

The New Dimensions in Testimony prototype is
intended to emulate a conversation with Holocaust
survivor Pinchas Gutter. Holocaust education today
relies to a great extent on survivors talking to audi-
ences in museums and classrooms, relating their ex-
periences directly and creating an intimate connec-
tion with their audiences (Bar-On, 2003). However,
the youngest survivors are in their seventies today,
and in a few years there will be no more survivors
left to tell the story in person. The prototype will
afford future generations the opportunity to engage
in such conversation, talking to Pinchas Gutter and
asking him questions about his life before, during
and after the Holocaust. What makes our project
unique is the ability to connect on a personal level
with a survivor, and the history, even when that sur-
vivor is not present.

The technology can have a wide range of appli-
cations, such as preserving the memory of a per-
son for the future (historical figures as well as ordi-
nary people); enabling conversation with family and
friends who are temporarily unavailable (traveling,
deployed overseas, or incarcerated); allowing pop-
ular speakers (leaders, celebrities) to engage with
multiple people at the same time; and enabling ac-
cess to expert knowledge and customer service.
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2 Technical details

In the New Dimensions in Testimony prototype,
users talk to a persistent representation of a Holo-
caust survivor presented on a video screen, and
a computer algorithm selects and plays individual
video clips of the survivor in response to user utter-
ances. The result is much like an ordinary conversa-
tion between the user and the survivor. The system
has been described in detail in previous publications,
covering the proof of concept (Artstein et al., 2014),
the content elicitation process (Artstein et al., 2015),
the language processing (Traum et al., 2015a), the
full prototype (Traum et al., 2015b), and ethical con-
siderations (Artstein and Silver, 2016). Here we give
a brief description of the language processing tech-
nology and the system’s runtime components.

2.1 Language processing

At the heart of the runtime computer system is a re-
sponse classifier and dialogue management compo-
nent called NPCEditor (Leuski and Traum, 2011),
which selects a response to each user utterance.
NPCEditor combines the functions of Natural Lan-
guage Understanding (NLU) and Dialogue Manage-
ment – understanding the utterance text and select-
ing an appropriate response. The NLU functional-
ity is a classifier trained on linked question-response
pairs, which identifies the most appropriate response
to new (unseen) user input. The dialogue manage-
ment logic is designed to deal with instances where
the classifier cannot identify a good direct response.
During training, NPCEditor calculates a response
threshold based on the classifier’s confidence in the
appropriateness of selected responses; at runtime, if
the confidence for a selected response falls below the
predetermined threshold, that response is replaced
with an “off-topic” utterance that asks the user to re-
peat the question or takes initiative and changes the
topic (Leuski et al., 2006); such failure to return a
direct response, also called non-understanding (Bo-
hus and Rudnicky, 2005), is usually preferred over
returning an inappropriate one (misunderstanding).
The current system uses a five-stage off-topic se-
lection algorithm which is an extension of that pre-
sented in Artstein et al. (2009). Figure 1 shows
a sample dialogue illustrating the handling of non-
understanding.

User Hello Pinchas, how are you?
Las Vegas how are you

Pinchas Can you just repeat that?
User Hello Pinchas, can you hear me?

how thick is can you hear me
Pinchas I can hear you, yeah.
User Pinchas, can you tell me how old you are?

Vegas can you tell me how old you are
Pinchas I was born in nineteen thirty two and we are

now in two thousand and fourteen and you can
make your own reckoning.

User Can you tell me a little bit about your child-
hood?

Pinchas My life before the war, I was born in Lodz in
Poland, and I was eight years old when the war
started. So the first eight years I lived in a home,
a very religious one, a Hasidic home. I had a twin
sister, my. . .

User Have you ever met Hitler?
mermaid Hitler

Pinchas Please repeat that.
User Did you ever meet Hitler?
Pinchas Did I ever meet Hitler? Well, Hitler was a

Führer of Germany and I was born in Poland and
I was a little Jewish boy, so the chances of some-
body like me meeting Hitler was impossible, be-
cause Hitler was. . .

User What would you do if you met Hitler?
Pinchas Geyn drerd arein, that’s Yiddish and what it

means go and bury yourself.

Figure 1: Sample dialogue from system testing, illustrating cor-

rect responses to noisy speech input as well as the handling of

non-understanding using off-topic responses. Speech recogni-

tion output is shown in italics when it departs substantially from

the spoken text. The final utterance was originally recorded as

a response to the question “If you could ask one question or say

anything to Adolf Hitler, what would that be?”

The system has over 1700 recorded responses (a
total of almost 18 hours of video), allowing it to
give appropriate direct responses to about 64% of
the user questions, with 20% off-topic responses and
the remaining 16% being errors. This is sufficient
to enable a reasonable conversation flow (Traum et
al., 2015a). Between responses the system loops
through short videos of idle behavior by the survivor,
giving the feeling of live presence. When the user
starts speaking, this changes to concentrated listen-
ing behavior, adding to the feeling of engagement.
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Figure 2: System architecture: Black lines show the data flow

through the system, while gray arrows indicate the control mes-

sages from the Launcher interface. Solid arrows represent mes-

sages passed via ActiveMQ, and dotted lines represent data go-

ing over TCP/IP.

2.2 Software components

The system is built on top of the components from
the USC ICT Virtual Human Toolkit, which is pub-
licly available (Hartholt et al., 2013).1 Specifi-
cally, we use the AcquireSpeech tool for capturing
the user’s speech, CMU PocketSphinx2 and Google
Chrome ASR3 tools for speech recognition, NPCEd-
itor (Leuski and Traum, 2011) for classifying the ut-
terance text and selecting the appropriate response,
and a video player to deliver the selected video re-
sponse. The individual components run as sepa-
rate applications and are linked together by VHMsg4

messaging over ActiveMQ: each component con-
nects to the broker server and sends and receives
messages to other components via the broker. The
system setup also uses the JLogger tool for record-
ing the messages, and the Launcher tool that controls
starting and stopping of individual tools. Figure 2
shows the overall system architecture. A typical ses-
sion on a Mac is shown in Figure 3.

2.3 System hardware

A typical installation is run on a 15-inch MacBook
Pro with Retina display, connected via HDMI to an
external monitor or television. We have used dis-
plays ranging from a basic 22-inch desktop mon-

1http://vhtoolkit.ict.usc.edu
2http://cmusphinx.sourceforge.net
3https://www.google.com/intl/en/chrome/demos/speech.html
4https://sourceforge.net/projects/vhmsg/

Figure 3: A typical desktop runtime environment: Launcher

on the left, NPCEditor top right, Google Chrome ASR bottom

right. Video player is displayed (maximized) on an external

screen, and JLogger is minimized.

Figure 4: User talking to Mr. Gutter on a large TV.

itor for personal interaction to a large theatre pro-
jector screen, though our preferred display is an 80-
inch high definition television in vertical orientation
(Figure 4). This allows showing the speaker at ap-
proximately life size, making it appropriate for one-
on-one and small group interaction, as well as large
group interaction in a theatre setting.

For small, informal demonstrations in a quiet set-
ting, we have had good results using the MacBook
Pro’s built-in microphone for audio capture, and
the built-in trackpad as a push-to-talk button. In
more challenging environments we use a Sennheiser
HSP-4 headworn microphone, which works well
to isolate the user’s speech from the background
noise. The microphone is connected to a wireless
transmitter-receiver pair and sent to the computer
through a Focusrite Scarlett 2i2 USB recording au-
dio interface. Push-to-talk functionality is provided
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Figure 5: User talking to Mr. Gutter on a mobile phone.

by a wireless mouse, removing any physical con-
nection with the computer and allowing the user
full freedom of movement. The speaker’s audio is
normally transmitted over HDMI together with the
video, but can be routed through the Focusrite inter-
face to external speakers when needed.

2.4 Mobile version
The mobile version (Figure 5) is built using an
Android-based virtual human software platform
(Feng et al., 2015). This platform allows script-
based access to speech recognition, video playback,
and dialogue management services via Jerome, an
implementation of the NPCEditor algorithm.

In order to accommodate the smaller display and
mobile nature of a handheld device, the videos were
reduced from 1080×1920 to 270×480, effectively
reducing the size of the videos by a factor of 16.
This results in a change in video file size from ap-
proximately 1.7 gb per hour (28 mb per minute) of
content to 110 mb per hour (1.75 mb per minute) of
content. Frequently used videos, such as those for
listening and off-topic responses are stored locally
on the mobile device, while the rest are stored on a
video-streaming cloud service and are retrieved on
demand. Streaming videos of such size via wifi con-
nection yields similar response times to playing the
videos locally on the device, and greatly reduces the
size of the mobile app. An additional button on the
app allows the user to indicate explicitly that a given
response is inappropriate to the question asked; this
information is used for future classifier training.

The classification algorithm and data are pro-
cessed locally on the device. Speech recognition is

handled via the Android’s interface to Google ASR.
Thus, there are three network messages for each user
utterance: one to obtain the results of the ASR, an-
other to retrieve the desired video if found, and a
third to store the recognized question and response
in a cloud-based database, for later analysis. The
classifier data can be replaced through an update to
the mobile app, thus allowing for easy propagation
of improvements in the question/answer interaction
as larger amounts of data are captured and analyzed.

3 Demonstration outline

The demonstration will feature a live interaction be-
tween participants and Pinchas Gutter, on both desk-
top and mobile platforms. Depending on the par-
ticipant’s preference, interaction will be either mod-
erated (speech relayed by a demonstrator) or direct
(participant operating the push-to-talk and talking
into the microphone). The live conversations will
highlight Mr. Gutter’s understanding, his ability to
deal with non-understanding of user utterances, and
the overall coherence of the conversation. It will also
showcase many of Mr. Gutter’s moving personal sto-
ries, and illustrate the sense of closeness and bond-
ing that can form when talking to a person through a
system of time-offset interaction.
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Abstract

While intelligent writing assistants have be-
come more common, they typically have little
support for revision behavior. We present Ar-
gRewrite, a novel web-based revision assistant
that focus on rewriting analysis. The system
supports two major functionalities: 1) to assist
students as they revise, the system automati-
cally extracts and analyzes revisions; 2) to as-
sist teachers, the system provides an overview
of students’ revisions and allows teachers to
correct the automatically analyzed results, en-
suring that students get the correct feedback.

1 Introduction

Making revisions is central to improving a student’s
writings, especially when there is a helpful instruc-
tor to offer detailed feedback between drafts. How-
ever, it is not practical for instructors to provide
feedback on every change every time. While mul-
tiple intelligent writing assistants have been devel-
oped (Writelab, 2015; Draft, 2015; Turnitin, 2016),
they typically focus on the quality of the current es-
say instead of the revisions that have been made. For
example, Turnitin identifies weak points of the es-
say and gives suggestions on how to improve them;
it also assigns an overall score to the essay so stu-
dents can get a coarse-grained feedback on whether
they are making progress in their revisions. How-
ever, without explicit feedback on each change, stu-
dents may inefficiently search for a way to optimize
the automatic score rather than actively making the
existing revisions “better”. Moreover, because stu-
dents are the target users of these systems, instruc-
tors typically can neither correct the errors made by

the automatic analysis nor observe/assess the stu-
dents’ revision efforts.

We argue that an intelligent writing assistant
ought to be aware of the revision process; it should:
1) identify all significant changes made by a writer
between the essay drafts, 2) automatically determine
the purposes of these changes, 3) provide the writer
the means to compare between drafts in an easy to
understand visualization, and 4) support instructor
monitoring and corrections in the revision process
as well. In our previous work (Zhang and Litman,
2014; Zhang and Litman, 2015), we focused on
1) and 2), the automatic extraction and classifica-
tion of revisions for argumentative writings. In this
work, we extend our framework to integrate the au-
tomatic analyzer with a web-based interface to sup-
port student argumentative writings. The purpose
of each change between revisions is demonstrated to
the writer as a kind of feedback. If the author’s revi-
sion purpose is not correctly recognized, it indicates
that the effect of the writer’s change might have not
met the writer’s expectation, which suggests that the
writer should revise their revisions. The framework
also connects the automatic analyzer with an inter-
face for the instructor to manually correct the analy-
sis results. As a side benefit, it also sets up an anno-
tation pipeline to collect further data to improve the
underlying automatic analyzer.

2 System Overview

The design of ArgRewrite aims to encourage stu-
dents to concentrate on revision improvement: to
iteratively refine the essay based on the feedback
of the automatic system or the writing instructor.
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Our framework consists of three components, ar-
ranged in a server client model. On the server side,
the automatic analysis component extracts revision
changes by aligning sentences across drafts and in-
fers the purposes of the extracted revisions; this may
reduce the writing instructor’s workload. On the
client side, a web-based rewriting assistant inter-
face1 allows the student to retrieve the feedback to
their revisions from the server, make changes to the
essay and submit the modified essay to the server
for another round of analysis. The interface is also
accessible to the writing instructor and allows the
instructor to have a quick overview of the students’
revision efforts. Another client side interface is a
Java-based revision correction component2, which
allows the writing instructors to override the results
of the automatic analysis and upload the corrected
feedback to the server.

As demonstrated in Figure 1, the complete pro-
cess of the student’s writing using our system starts
with the student’s rewriting and submission of the
essay. The student writes the first draft of the essay
before using our system and then modifies the orig-
inal draft in our rewriting assistant interface. The
submitted writings are automatically analyzed im-
mediately after the receipt of the student’s submis-
sion. Afterwards the instructor can manually cor-
rect the analysis results if necessary. The student
can choose to view the analysis results immediately
after the completion of automatic revision analysis
or wait until the analysis results were corrected by
the instructor. After receiving the analysis feedback,
the student can choose to continue with the cycle of
essay revising until the revisions are satisfactory.

3 Design of Components

3.1 Automatic analysis

Revision extraction. Following our prior work, we
extracted revisions at the level of sentences by align-
ing sentences across drafts. An added sentence or a
deleted sentence is treated as aligned to null. The

1rewriting assistant interface: www.cs.pitt.edu/

˜zhangfan/argrewrite now supported on chrome and
firefox browser only

2revision correction component: www.cs.pitt.edu/

˜zhangfan/revisionCorrection.jar. Tutorial
to the web and java interface: www.cs.pitt.edu/

˜zhangfan/argrewrite/tutorial.pdf

Figure 1: System structure of our rewriting assistance system.

aligned pairs where the sentences in the pair are
not identical are extracted as revisions. We first
use the Stanford Parser (Klein and Manning, 2003)
to break the original text into sentences and then
align the sentences using the algorithm in our prior
work (Zhang and Litman, 2014) which considers
both sentence similarity (calculated using TF*IDF
score) and the global context of sentences.

Revision classification. Following the argumen-
tative revision definition in our prior work (Zhang
and Litman, 2015), revisions are first categorized
to Content (Text-based) and Surface3 according to
whether the revision changed the meaning of the es-
say or not. The Text-based revisions include The-
sis/Ideas (Claim), Rebuttal, Reasoning (Warrant),
Evidence, and Other content changes (General Con-
tent). The Surface revisions include Fluency (Word-
usage/Clarity), Reordering (Organization) and Er-
rors (Conventions/Grammar/Spelling). On the basis
of later work, the system includes the two new cat-
egories Precision4 and Unknown5. Using the cor-
pora and features defined in our prior work, a multi-
class Random Forest classifier was trained to auto-
matically predict the revision purpose type for each
extracted revision.

3The two types are defined in (Faigley and Witte, 1981).
4Revisions that make the essay more precise/accurate, e.g.

“In the past” modified to “In the past 5 years”.
5For cases where the purpose of the revision is unrecogniz-

able to the instructor, used when the instructor disagrees with
the prediction of the automatic analysis component but cannot
categorize the purpose to existing categories.
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(a) revision overview interface (b) revision detail interface

Figure 2: Screenshot of the web interface, which includes (a) the revision overview interface with the revision statistics (the

numbers indicate the numbers of specified revision purposes) region, the revision map region and the revision distribution region,

(b) the revision detail interface with the revision text area region and the revision map region (from left to right).

3.2 Rewriting assistant interface

Our rewriting assistant interface is designed with
several principles in mind. 1) Because the revision
classification taxonomy goes beyond the binary tex-
tual versus surface distinction, we want to make sure
that users don’t get lost distinguishing different cate-
gories; 2) We want to encourage users to think about
their revisions holistically, not always just focusing
on low-level details; 3) We want to encourage users
to continuously re-evaluate whether they succeeded
in making changes between drafts (rather than fo-
cusing on generating new contents). Thus, we have
designed an interface that offers multiple views of
the revision changes. As demonstrated in Figure 2,
the interface includes a revision overview interface
for the overview of the authors’ revisions and a revi-
sion detail interface that allows the author to access
the details of their essays and revisions.

Inspired by works on learning analytics (Liu et
al., 2013; Verbert et al., 2013), we design the re-
vision overview interface which displays the statis-
tics of the revisions. Following design principle #1,
the revision purposes are color coded and each pur-
pose corresponds to a specific color. Our prior work
(Zhang and Litman, 2015) demonstrates that only
Text-based revisions are significantly correlated with
the writing improvement. To inspire the writers to
focus more on the important Text-based revisions,
cold colors are chosen for the Surface revisions and

warm colors are chosen for the Text-based revisions.
The statistics and the pie chart provide a quantitative
summary of the writer’s revision efforts. For exam-
ple, in Figure 2, the writer makes many changes on
the Fluency (15) of sentences but makes no change
on the Thesis/Ideas (0). To allow the users to con-
centrate on improving one revision type at a time,
the interface allows the user to click on a single re-
vision purpose type and view only the specified re-
visions.

Following our design principle #2, the revision
map in both interfaces presents an at-a-glance vi-
sual representation of the revision. This design is
inspired by (Southavilay et al., 2013). Each sen-
tence is represented as a square in the map. The left
column of the map represents the sentences in the
first draft and the right column represents the sen-
tences in the second draft. The paragraphs within
one draft are segmented by blanks in the map. The
aligned sentences appear in the same row. The
added/deleted sentences would be aligned to blank
in the map. The revision map allows a user (either
an instructor or a student) to view the structure of the
essay and identify the locations of all the changes at
once. For example, in Figure 2, the user can quickly
identify that the writer aims at improving the clar-
ity and soundness of the third paragraph by making
a Rebuttal modification on the second sentence and
Fluency modifications on all other sentences. The
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(a) sentence alignment correction (b) revision purpose correction

Figure 3: Screenshot of the correction interface, including the sentence alignment correction and revision purpose correction.

user can also click on the square to view the details
of the revision in the revision text area region of the
revision detail interface.

To encourage students to make revisions (design
principle #3), in the revision detail interface the revi-
sion text area region highlights the revisions (color-
coded by the revision categories) in the essay and
allows the writer to modify it directly. The writer
clicks on the text to read the revision and examine
whether the revision purpose is recognized by the
instructor/system. A character-level diff6 is done on
the aligned sentences to help the writer identify the
differences between two drafts. In the example the
writer can see that their “Evidence” change is recog-
nized, indicating that the revision effort is clear and
effective. If the writer finds out that their real revi-
sion purpose is not recognized, they can modify the
essay in the textbox directly and submit the essay to
the server when all the edits are done.

3.3 Revision correction

The revision correction tool is developed for instruc-
tors only. The instructor loads the revision annota-
tion files from the server, corrects the analysis re-
sults and uploads the corrections to the server. As
demonstrated in Figure 3, the tool includes a sen-
tence alignment correction interface and a revision
purpose correction interface. The instructor first
corrects the sentence alignment errors and then se-

6google diff match: https://code.google.com/
archive/p/google-diff-match-patch/

lects the revision purposes for the re-aligned or mis-
labeled sentence pairs. The correction actions of the
instructors will be recorded and used to improve the
analysis accuracy of the automatic analysis module.

4 Conclusion and Future Work

In this work we demonstrate a novel revision assis-
tant for argumentative writings. Comparing to other
assistants, the system focuses on inspiring writers
to improve existing revisions instead of making new
revisions. The system takes the writer’s drafts as
the input and presents the revision purposes (ana-
lyzed manually or automatically) as the feedback.
The writer revises iteratively until the purposes of
the revisions are clear enough to be recognized.

In the future we plan to develop and incorporate
the function of revision quality analysis, which not
only recognizes the revision purpose, but also evalu-
ates the quality of the revision (whether the revision
weakly/strongly improves the essay). We are also
about to begin a user study to evaluate the system.
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Abstract

Word clusters improve performance in many
NLP tasks including training neural network
language models, but current increases in
datasets are outpacing the ability of word
clusterers to handle them. In this paper we
present a novel bidirectional, interpolated, re-
fining, and alternating (BIRA) predictive ex-
change algorithm and introduce ClusterCat, a
clusterer based on this algorithm. We show
that ClusterCat is 3–85 times faster than four
other well-known clusterers, while also im-
proving upon the predictive exchange algo-
rithm’s perplexity by up to 18% . Notably,
ClusterCat clusters a 2.5 billion token English
News Crawl corpus in 3 hours. We also eval-
uate in a machine translation setting, resulting
in shorter training times achieving the same
translation quality measured in BLEU scores.
ClusterCat is portable and freely available.

1 Introduction

Words can be grouped into equivalence classes to
reduce data sparsity and generalize data. Word clus-
ters are useful in many NLP applications. Within
machine translation, word classes are used in word
alignment (Brown et al., 1993; Och and Ney, 2000),
translation models (Koehn and Hoang, 2007; Wue-
bker et al., 2013), reordering (Cherry, 2013), pre-
ordering (Stymne, 2012), SAMT (Zollmann and Vo-
gel, 2011), and OSM (Durrani et al., 2014).

Word clusterings have also found utility in pars-
ing (Koo et al., 2008; Candito and Seddah, 2010;
Kong et al., 2014), chunking (Turian et al., 2010),

and NER (Miller et al., 2004; Liang, 2005; Turian et
al., 2010; Ritter et al., 2011), among many others.

Word clusters also speed up normalization in
training neural network and MaxEnt language
models, via class-based decomposition (Goodman,
2001b). This reduces the normalization time from
O(|V |) (the vocabulary size) to ≈ O(

√|V |) .

2 Exchange-Based Clustering

The exchange algorithm (Kneser and Ney,
1993) uses an unlexicalized (two-sided) model:
P (wi|wi−1) = P (wi|ci)P (ci|ci−1) where the
class ci of the predicted word wi is condi-
tioned on the class ci−1 of the previous word
wi−1 . Goodman (2001a) altered this model
so that ci is conditioned directly upon wi−1 :
P (wi|wi−1) = P (wi|ci)P (ci|wi−1) . This frac-
tionates the history more, but it greatly speeds up
hypothesizing an exchange since the history doesn’t
change. The resulting partially lexicalized (one-
sided) model gives the accompanying predictive
exchange algorithm (Uszkoreit and Brants, 2008)
a time complexity of O((B + |V |) × |C| × I)
where B is the number of unique bigrams, |C| is the
number of classes, and I is the number of training
iterations, usually <20 .

3 ClusterCat

ClusterCat is word clustering software designed to
be fast and scalable, while also improving upon the
predictive exchange algorithm. We describe in this
section improvements in the model, the algorithm,
as well as in the implementation.
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3.1 Model and Algorithm

We developed a bidirectional, interpolated, refin-
ing, and alternating (BIRA) predictive exchange
algorithm. The goal of BIRA is to produce bet-
ter clusters by using multiple, changing models to
escape local optima. This uses both forward and
reversed bigram class models in order to improve
cluster quality by evaluating log-likelihood on two
different models. Unlike using trigrams, bidirec-
tional bigram models only linearly increase time and
memory requirements, and in fact some data struc-
tures can be shared. The two directions are interpo-
lated to allow softer integration of these two models:
P (wi|wi−1, wi+1) , P (wi|ci) · (λP (ci|wi−1) +
(1− λ)P (ci|wi+1)) . Furthermore, the interpolation
weight λ for the forward direction alternates to 1−λ
every a iterations i to help escape local optima. The
time complexity is O(2 × (B + |V |) × |C| × I) .
The original predictive exchange algorithm can be
obtained by setting λ = 1 and a = 0 .

Cluster refinement improves both cluster quality
and speed. The vocabulary is initially clustered into
|G| sets, where |G| � |C|, typically 2–10 . This
groups words into broad classes, like nouns, verbs,
etc. After a few iterations (i) of this, the full par-
titioning Cf is explored. Clustering G converges
very quickly, typically requiring no more than 3 it-
erations. In contrast to divisive hierarchical cluster-
ing and coarse-to-fine methods (Petrov, 2009), af-
ter the initial iterations, any word can still move to
any cluster—there is no hard constraint that the more
refined partitions be subsets of the initial coarser
partitions. This gives more flexibility in optimiz-
ing on log-likelihood, especially given the noise that
naturally arises from coarser clusterings. We ex-
plored cluster refinement over more stages than just
two, successively increasing the number of clusters.
We observed no improvement over the two-stage
method described above.

The contributions of each of these, relative to the
original predictive exchange algorithm, are shown
in Figure 1 . The data and configurations are dis-
cussed in more detail in Section 4. The greatest im-
provement is due to using lambda inversion (+Rev),
followed by cluster refinement (+Refine), then in-
terpolating the bidirectional models (+BiDi), with
robust improvements by using all three of these—an
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Figure 1: Dev set PP of combinations of improvements to the

predictive exchange algorithm (cf. §3.1), using 100M tokens of

the Russian News Crawl, with 800 word classes.

18% reduction in perplexity over the predictive ex-
change algorithm. We have found that both lambda
inversion and cluster refinement prevent early con-
vergence at local optima, while bidirectional models
give immediate and consistent training set PP im-
provements, but this is attenuated in a unidirectional
evaluation.

3.2 Implementation

We represent the set of bigrams B as an array of
records that track the number of predecessors, as
well as having a pointer to an array of the predeces-
sors’ IDs. This allows for easy prefetching to reduce
memory latency, while also keeping memory over-
head low. We dispense with the predictive exchange
RemoveWord procedure for tentative steps, since
this does not change the final clustering.

Most of the computation for the predictive ex-
change algorithm is spent on the logarithm func-
tion in δ ← δ − N(w, c) · logN(w, c) .1 Since the
codomain of N(w, c) is N0 , and due to the power
law distribution of the algorithm’s access to these
entropy terms, we precompute pN ·logNq up to, say
10e+7, with minimal memory requirements.2 This
results in a considerable speedup of around 40% .

4 Experiments

We evaluate ClusterCat on training time, two-
sided class-based language model (LM) perplexity

1δ is the change in log-likelihood, and N(w, c) is the count
of a given word followed by a given class.

2This was independently discovered in Botros et al. (2015).
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(cf. Brown et al., 1992; Uszkoreit and Brants, 2008),
and BLEU scores in phrase-based MT.

4.1 Intrinsic Evaluation
For the two-sided class-based LM task we used 800
and 1200 classes for English, and 800 classes for
Russian. The clusterers (cf. Sec. 2) are Brown-
cluster (Liang, 2005), ClusterCat (introduced in Sec-
tion 3), mkcls (Och, 1995), Phrasal’s clusterer
(Green et al., 2014), and word2vec’s clustering fea-
ture (Mikolov et al., 2013).

The data comes from the 2011–2013 News Crawl
monolingual data of the WMT task.3 For these ex-
periments the data was deduplicated, shuffled, tok-
enized, digit-conflated, and lowercased. In order to
have a large test set, one line per 100 of the resulting
corpus was separated into the test set.4 For English
this gave 1B training tokens, 2M training types, and
12M test tokens. For Russian, 550M training tokens,
2.7M training types, and 6M test tokens.

All clusterers had a minimum count threshold of
3 occurrences in the training set. All used 12 threads
and 15 iterations, except single-threaded mkcls
which used the default one iteration. Clusterings
were performed on a 2.4 GHz Opteron 8378 ma-
chine featuring 16 threads and 64 GB of RAM.

Table 1 presents wall clock times. The predictive
exchange-based clusterers (ClusterCat and Phrasal)
exhibit slow time growth as |C| increases, while
the other three (Brown, mkcls, and word2vec) are
much more sensitive to |C| . ClusterCat is three
times faster than Phrasal for all sets. For both En-
glish and Russian we observe prohibitive growth for
mkcls, with the full Russian training set taking
over 3 days, compared to 1.5 hours for ClusterCat.

Training Set Brown CC mkcls Phrasal w2v
EN, |C| = 800 12.5 1.4 48.8 5.1 20.6
EN, |C| = 1200 25.5 1.7 68.8 6.2 33.7
RU, |C| = 800 14.6 1.5 75.0 5.5 12.0

Table 1: Clustering times (hours) of full training sets. For En-

glish, T = 109; for Russian, T = 108.74.

We performed an additional experiment on Clus-
terCat, adding more training data.5 ClusterCat took

3http://bit.ly/1SAjeIx
4We provide a script to replicate the data setup at http:

//www.dfki.de/˜jode03/naacl2016.sh .
5Adding years 2008–2010 and 2014 to the existing English

Training Set Brown CC mkcls Phrasal w2v
EN, |C| = 800 160.2 158.1 155.0 178.3 383.4
EN, |C| = 1200 141.5 140.4 138.4 157.6 330.7
RU, |C| = 800 350.4 340.7 322.4 389.3 560.9

Table 2: 5-gram two-sided class-based LM PP using 109 En-

glish training tokens or 108.74 Russian training tokens.

3.0 hours to cluster 2.5 billion training tokens, using
40 GB of memory for |C| = 800. When the number
of clusters was tripled to |C| = 2400 , the same 2.5B
corpus was clustered in under 8 hours.

The clusterings are also evaluated on the perplex-
ity (PP) of an external 5-gram two-sided class-based
LM. Botros et al. (2015) found that the two-sided
model (which mkcls uses) tends to give better PP in
two-sided class-based LM experiments, but the one-
sided model of the predictive exchange that we em-
ployed produces better PP for training LSTM LMs.

Table 2 shows perplexity results using a varying
number of classes. As word2vec is the only clus-
terer not optimized on log-likelihood, its perplexity
is quite high, and remains high as more training data
is added.6 On the other hand, mkcls gives the low-
est perplexity, although this is an artefact of the two-
sided evaluation. ClusterCat gives lower perplex-
ity than the original predictive exchange algorithm
(in Phrasal) and Brown clustering. The Russian
experiments yielded higher PP for all clusterings,
but otherwise the same comparative results. The
metaheuristic techniques used in mkcls can be ap-
plied to other exchange-based clusterers—including
ours—for further improvements.

It is also interesting to look at time-sensitive clus-
tering. Figure 2 shows what perplexity can be ob-
tained within a given training time frame. For each
clusterer, each successive rightward point in the fig-
ure represents an order of magnitude more training
data, from 106 to 109 tokens. ClusterCat can train
on 10 times more data than either mkcls or Brown-
cluster and produces better perplexity than either,
within a given amount of time.

News Crawl training data. This training set was too large for
the external class-based LM to fit into memory, so no perplexity
evaluation of this clustering was possible.

6The skip-gram model within word2vec resulted in even
higher PP at almost three times the clustering time, relative to
the CBOW model that we used. Using hierarchical softmax
with a window of one word on either side gave no appreciable
difference in perplexity, while also increasing training time.
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|C|=50 100 200 500 1000
EN-RU +0.2∗ +0.7 −0.2 0 +0.2
RU-EN −0.2 −0.1 +0.1 +0.1∗ +0.1∗∗

Table 3: BLEU score changes and significance across

varying cluster sizes. Positive values indicate ClusterCat

BLEU > mkcls BLEU.

4.2 Extrinsic Evaluation
We also evaluated mkcls and ClusterCat extrinsi-
cally in machine translation, for word alignment. As
training sets get larger every year, mkcls strug-
gles to keep pace, and is a substantial time bot-
tleneck in MT pipelines. We compare time and
BLEU scores of using either mkcls or ClusterCat
for Russian↔English translation.

The parallel data comes from the WMT-2015
Common Crawl Corpus, News Commentary, Yan-
dex 1M Corpus, and the Wiki Headlines Cor-
pus.7 The monolingual data consists of 2007–
2014 News Commentary and News Crawl arti-
cles. The dev and test sets contain 3000 sen-
tences from EN→RU manually translated news ar-
ticles. We used standard configurations, like true-
casing, MGIZA alignment, GDFA phrase extrac-
tion, phrase-based Moses, quantized KenLM 5-gram
MKN LMs, and MERT tuning.

Table 3 presents the BLEU score changes across
varying cluster sizes.8 The BLEU score differences
between using mkcls and ClusterCat are minimal
but there are a few statistically significant changes,
using bootstrap resampling (Koehn, 2004).

7http://bit.ly/1SAjeIx
8*: p-value < 0.05, **: p-value < 0.01 . More results are

presented in Dehdari et al. (2016) .

Figure 3: End-to-end translation model training times for

English-Russian and Russian-English for various cluster sizes

using mkcls and ClusterCat.

Figure 3 shows translation model training times,
before MERT. Using ClusterCat reduces the transla-
tion model training time with 500 clusters from 20
hours using mkcls (of which 60% of the time is
spent on clustering) to just 8 hours (of which 5% is
spent on clustering).

5 Conclusion

In this article we have presented improvements to
the predictive exchange algorithm that address long-
standing drawbacks of the original algorithm com-
pared to other clustering algorithms. Bidirectional
models, lambda inversion, and cluster refinement
produce better word clusters, as we showed in sev-
eral two-sided class-based LM experiments. On
these large datasets the quality of the resulting clus-
ters is better than predictive exchange clusters and
Brown clusters, and approaches the stochastic ex-
change clusters produced by mkcls, which takes
35–85 times longer.

We also improved upon the speed of the algorithm
by cluster refinement and entropy term precalcula-
tion. MT experiments showed that word alignment
models using ClusterCat fully match those using
mkcls in BLEU scores, with time savings found by
using ClusterCat. The software, as well as additional
compatibility and visualization scripts, are available
under a Free license at https://github.com/
jonsafari/clustercat .
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Abstract
We demonstrate the Task Completion Plat-
form (TCP); a multi-domain dialogue plat-
form that can host and execute large num-
bers of goal-orientated dialogue tasks. The
platform features a task configuration lan-
guage, TaskForm, that allows the definition
of each individual task to be decoupled from
the overarching dialogue policy used by the
platform to complete those tasks. This sep-
aration allows for simple and rapid author-
ing of new tasks, while dialogue policy and
platform functionality evolve independent of
the tasks. The current platform includes ma-
chine learnt models that provide contextual
slot carry-over, flexible item selection, and
task selection/switching. Any new task im-
mediately gains the benefit of these pieces of
built-in platform functionality. The platform
is used to power many of the multi-turn dia-
logues supported by the Cortana personal as-
sistant.

1 Introduction
The aim of the Task Completion Platform (TCP) is
to support the rapid development of large numbers
of goal-orientated, multi-turn dialogues by simplify-
ing the process of specifying a new task. To achieve
this, the definition of individual tasks is separated
from the mechanics and policy required to conduct
a natural language, goal-orientated dialogue. TCP
provides the functionality required to manage dia-
logues with users, leaving a task author to specify
only the information to collect from the user and the
interfaces to resources such as data hosted in exter-
nal services and applications that will execute ac-
tions on behalf of the user. The platform is used to

power many multi-turn dialogue interactions as part
of the Cortana personal assistant.

2 Background
VoiceXML (VoiceXML, 2000) is a industry stan-
dard tool used to build dialogue systems. It is
typically used to design system-directed dialogues,
where the understanding of user input is constrained
at each turn, and there is no opportunity for user ini-
tiative. Such dialogues are common in call centre
interactive voice response systems, but are of lim-
ited utility when more natural interactions are de-
sired, such as personal assistant dialogues supported
by TCP.

A more flexible dialogue management platform is
RavenClaw (Bohus and Rudnicky, 2009). Raven-
Claw systems are composed of a tree structure of
agents, with the system at each turn deciding on
an execution plan that allows a maximum number
of agents to finish their processing. However, most
systems built using RavenClaw require custom-built
agents; it is difficult to integrate additional tasks into
an existing system without having to rebuild the en-
tire tree of agents. In contrast, TCP allows the ad-
dition of new experiences with only a configuration
file change (as discussed in section 4).

Most similar is ClippyScript (Seide and
McDirmid, 2012) which like TCP uses a hier-
archical data flow to drive processing (akin to
a functional language) as opposed to directed
dialogue flow. A key difference is that, in defining
tasks in ClippyScript, a dialog act is explicitly tied
to a task condition by a rule. Thus, ClippyScript
developers directly specify a rule based dialogue
policy on a per task basis. In a TaskForm (TCP task
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definition) dialog acts are declared in association
with parameters but when to execute them is not
explicitly encoded. This allows for separation of
tasks and dialogue policies in TCP.

Work also exists on dialogue policy transfer (e.g.
Wang et al. (2015)) but such work has typically not
focused on easy and rapid definition of a diverse set
of tasks, as we did in developing TCP.

The main contributions of our work on TCP in-
clude: strong separation between task definition and
the shared dialogue policy; rapid new task author-
ing, with the platform providing key machine learn-
ing (ML) driven dialogue capabilities such as state
tracking, dialogue policy learning, flexible selection,
and LU model reuse, which significantly reduces the
burden on individual task developers; and benefits to
users by offering many multi-turn, mix-initiative di-
alogue tasks simultaneously.

3 Architectural Overview
The TCP platform supports execution of a variable
number of goal-orientated tasks, which can be mod-
ified and improved without changing the core plat-
form. The platform has a modular architecture, with
the dialogue management process separated into dis-
crete units which can also be independently updated
and improved. Figure 1 presents the core plat-
form modules, loosely grouped as: initial process-
ing of input, dialogue state updates, and policy exe-
cution. Alternative interpretations of input and dia-
logue state are preserved in parallel for each step of
the pipeline, with a final ranking step to select the
optimal hypothesis and associated dialogue act.

The input to the system is either typed text or
transcripts from an Automatic Speech Recognition
(ASR) system, in the form of N -best hypotheses
or confusion networks. The input is processed by
a Natural Language Understanding (NLU) module.
Several alternate NLU modules can be used in the
platform, e.g. Deoras and Sarikaya (2013). A typical
arrangement is described in Robichaud et al. (2014).
To support multiple tasks across multiple domains,
a collection of NLU models are executed in parallel,
each determining the most likely intent and set of
slots within their domain. An NLU slot is defined
as a container that can hold a sequence of words
from the user input, with the label indicating the role
played by that text in a task or set of tasks. Together,

the detected intent and slots form the semantic frame
for that domain. NLU models are contextual (Bhar-
gava et al., 2013; Liu et al., 2015), taking into ac-
count the state of any task currently in progress.

On each turn, the dialogue state is updated tak-
ing into consideration the multiple NLU results. Slot
Carry Over (SCO) (Boies et al., 2016) does contex-
tual carry-over of slots from previous turns, using
a combination of rules and ML models with lexical
and structural features from the current and previous
turn utterances. Flexible Item Selection uses task-
independent ML models (Celikyilmaz et al., 2014;
Celikyilmaz et al., 2015) to handle disambiguation
turns where the user is asked to select between a
number of possible items. The Task Updates module
is responsible for applying both task-independent
and task-specific dialogue state updates. The task-
specific processing is driven by a set of configu-
ration files in a new configuration language, Task-
Form, with each form encapsulating the definition of
one task. Using the TaskForm files, this module ini-
tiates new tasks, retrieves information from knowl-
edge sources and applies data transformations (e.g.
canonicalization). Data transformations and knowl-
edge source look ups are performed using Resolvers,
as discussed in section 4.

Dialogue policy execution is split into task-
depenent and global policy. The Per Task Policy
consists of analysing the state of each task currently
in progress, and suggesting a dialog act to execute.
The output of the module is a set of dialogue hy-
potheses representing alternative states or dialog ac-
tions for each task in progress. The number of hy-
potheses does not grow uncontrollably; depending
on the state of the dialogue during the previous turn
and the current input, only a small proportion of all
the defined tasks will be active in any one turn.

The output dialog hypotheses are ranked using
Hypothesis Ranking (HR) (Robichaud et al., 2014;
Khan et al., 2015; Crook et al., 2015), which gen-
erates a ranked order and score for each hypothe-
sis. This acts as a pseudo-belief distribution over the
possible dialogue/task states. Hypothesis Selection
(HS) policy selects a hypothesis based on contex-
tual signals, such as the previous turn task, as well
as the rank order and scores. The HS policy may se-
lect a meta-task dialog act, such as asking the user to
specifically select a task when two or more tasks are
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Figure 1: Functional modules of the TCP architecture

Figure 2: An example definition of a task trigger.

highly ranked, or adding an implicit confirmation
when the top hypothesis has low confidence. The
selected dialog act is rendered to the user and the
associated dialog hypothesis informs the next turn.

4 TaskForm Language Definition
The TaskForm language allows for defining tasks in-
dependently of the dialogue policy executed by the
platform. Each task is represented as a set of inde-
pendent triggers defining under what conditions task
execution should begin, a set of parameters defining
what information should be collected during the di-
alogue, and a set of dialog acts defining what is pre-
sented to the user. Additional structural information
about a task can be captured through the use of vali-
dation conditions (not shown here).

A task trigger defines under what conditions a
task may begin executing. These conditions are rep-
resented in terms of NLU results: combinations of
domains, intents, and slots (presence or absence).
Each trigger may also specify a list of must-trigger
utterances, as shown in figure 2. At least one trigger
must be satisfied for the task to begin execution.

We define a task parameter as a container that
holds knowledge items required to complete a task.
Each parameter definition specifies how the knowl-

edge items (i.e. its value) should be produced and
what dialog acts are used to solicit relevant informa-
tion. An example of a task parameter is shown in
figure 3.

The knowledge items that are stored in a parame-
ter can be: concrete entities e.g. a particular restau-
rant in a city; canonicalized attributes of an item,
e.g. ‘small’, ‘middle’ or ‘large’; concepts, ‘delivery’
or ‘take-out’; or labels that index another knowl-
edge source. Knowledge items can be retrieved from
some knowledge source, e.g. a database or knowl-
edge graph, or captured directly in code.

The value of a parameter is provided by an associ-
ated piece of code, a resolver implemented outside
the TaskForm. In the TaskForm, a resolver defini-
tion (optional for platform-provided resolvers) con-
tains only a reference to the code assembly, class
name, and a list of NLU slot tags and input param-
eters which it can process. The parameter defini-
tion contains a resolver invocation block which lists
a subset of slot tags and input parameters that should
actually be used as input to the resolver during the
task execution; this allows resolvers to be generic
and reusable across multiple parameters and tasks.
A platform-provided HTTP resolver allows for easy
integration with third party APIs; each HTTP re-
solver definition need specify only a mapping be-
tween task parameters and API parameters, and a
JPATH expression for interpreting the results.

There is a many-to-many relationship between
NLU slots and the knowledge items (values) that fill
a parameter. Dependent on the run-time results of
resolution, additional dialog acts may be required
to obtain further user input and refine the resolu-
tion. E.g. if the NLU slots [place name:Marriott]
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Figure 3: An example definition of a parameter.

and [absolute location:Bellevue] are used to index
a knowledge source and extract values to fill the task
parameter DeliveryAddress, the result may be a list
of Marriott hotel locations in Bellevue. If the param-
eter specifies that it must hold a single value, further
dialog acts will be used to narrow the results. These
dialogue policy decisions could not be made by ex-
amining the slots in isolation of the resolved values.

As part of the execution of a task, the system may
take one or more dialog acts before the value of a pa-
rameter is considered “filled”. Allowed acts include:

• MissingValue - ask the user for input required to pop-
ulate the parameter (plus a variation that presents sug-
gested values to the user);

• NoResultsFollowup - prompt to change information
as no results were found (plus a variation that presents
suggestions);

• Disambiguation - ask the user to select the parameter
value from a list;

• ImplicitConfirmation - implicitly confirm the newly
filled parameter as part of the next turn;

• Confirmation - ask the user to confirm the parameter
value the system computed;

• ConfirmationFailure - ask the user to provide new in-
put if they rejected a confirmation act.

A dialog act definition captures the information
that should be presented to the user when that di-
alog act is taken by the system. This information
includes: a prompt to be read out, a list of strings to
be shown on the screen, as well as hints to prime the
NLU during the next turn of the conversation. De-
fault definitions are used for any missing sections in
each dialog act definition. Figure 4 shows an exam-
ple of a dialog act definition, encoding how the user
should be prompted to provide the missing value of
the DeliveryAddress parameter.

5 Demo Outline
We plan to showcase the capabilities of TCP, high-
lighting in particular the breadth of the platform and

Figure 4: An example definition of a dialog act.

the agility of task development.
The platform is capable of executing multiple

tasks using the same underlying policy modules,
thus allowing for tasks to be developed separately
from the policy definition. To this end we will show
the platform supporting a conversational agent capa-
ble of setting reminders, ordering pizzas, and reserv-
ing movie tickets, restaurant tables and taxis (where
these scenarios are hooked up to real third party ser-
vices like Domino’s, OpenTable, Uber, etc.). Each
task is defined by a TaskForm. Users can interact
with the system through natural conversation and
take initiative at any point, e.g. to cancel a task in
progress, provide information out of turn, or change
previously-provided information.

Many changes to a task can be done simply by
manipulating its TaskForm definition. To illustrate
this, we will demonstrate some simple modifica-
tions to an existing task, such as changing the task
triggers, adding a new parameter, modifying some
of the conditions set on parameters, and redefining
some of the dialog acts used during task execution.

6 Conclusion

We demonstrated the Task Completion Platform, an
extensible, mixed-initiative dialogue management
platform targeting goal-directed conversations. The
platform supports executing multiple tasks. Each
task is defined primarily in terms of extensible NLU
models and a single configuration file, thus separat-
ing task definition from the system-wide dialogue
policy. Tasks can be added or modified without re-
quiring a system rebuild. Future work includes ex-
tending the platform by allowing multiple tasks to
be concurrently in progress, either through nesting
or interleaving of tasks, and evaluation of task suc-
cess and related metrics.
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Abstract

There has been a recent interest in understand-
ing text to perform mathematical reasoning.
In particular, most of these efforts have fo-
cussed on automatically solving school level
math word problems. In order to make ad-
vancements in this area accessible to people,
as well as to facilitate this line of research,
we release the ILLINOIS MATH SOLVER, a
web based tool that supports performing math-
ematical reasoning. ILLINOIS MATH SOLVER
can answer a wide range of mathematics ques-
tions, ranging from compositional operation
questions like “What is the result when 6 is
divided by the sum of 7 and 5 ?” to el-
ementary school level math word problems,
like “I bought 6 apples. I ate 3 of them.
How many do I have left ?”. The web based
demo can be used as a tutoring tool for el-
ementary school students, since it not only
outputs the final result, but also the mathe-
matical expression to compute it. The tool
will allow researchers to understand the ca-
pabilities and limitations of a state of the art
arithmetic problem solver, and also enable
crowd based data acquisition for mathemati-
cal reasoning. The system is currently online
at https://cogcomp.cs.illinois.
edu/page/demo_view/Math.

1 Motivation

There has been a lot of interest in understanding text
for the purpose of quantitative reasoning. In particu-
lar, there has been multiple recent efforts to automat-
ically solve math word problems (Kushman et al.,
2014; Hosseini et al., 2014; Roy et al., 2015; Roy

and Roth, 2015; Shi et al., 2015; Koncel-Kedziorski
et al., 2016). Advancement in this area has great
potential to be used as automatic tutoring service
for school students. However till date, all the ad-
vances in this area are not easily accessible to the
general population. ILLINOIS MATH SOLVER ad-
dresses this issue by providing a web based plat-
form, where users can type in their math word prob-
lem and get the answer. It also outputs the mathe-
matical expression generating the answer, allowing
students to understand how to solve the problem.
Fig 1 shows a screenshot of the web interface of the
ILLINOIS MATH SOLVER.

All systems for math word problem solving are
trained and evaluated on datasets created from tu-
toring websites and textbooks. However the prob-
lems from the aforementioned sources tend to have
limited variety in problem types and vocabulary. Of-
ten these systems are brittle, and make mistakes with
slight variation of text. As a result, there is a need
for an easy way to analyze the robustness of these
systems, as well as extract a wider variety of math
word problems not available from textbooks and tu-
toring websites. ILLINOIS MATH SOLVER solves
both these purposes, providing users an easy way
to test the robustness of the system, and a tool for
crowd based data acquisition. We expect people to
query with small edits to math word problem text,
to make our system get the wrong answer. This al-
lows for adverserial data acquisition, which can help
identify intricacies of mathematical reasoning.
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Figure 1: Screen Shot of ILLINOIS MATH SOLVER

2 System Description

The ILLINOIS MATH SOLVER consists of two main
modules - a context-free grammar (CFG) based se-
mantic parser, and an arithmetic problem solver. We
describe each component below.

2.1 CFG Parser
We use a CFG based semantic parser to handle
queries asking for operations between numbers. Ex-
amples of such queries include “What is the differ-
ence of 22 and 5 ?” and “What is the result when 6
is divided by the sum of 7 and 5 ?”. We refer to such
queries as “number queries”.

Our parser recognizes the mathematical terms in
a number query like “added”, “difference”, “frac-
tion”, etc. It then creates a list of the numbers and
math terms mentioned in the query, maintaining the
order in which they appear in the query. For the
example “What is the result when 6 is divided by
the sum of 7 and 5 ?”, the parser creates the list
{6, divided, sum, 7, 5}.

Next, it tries to parse the list of numbers and the
math terms into a mathematical expression, using a
list of derivation rules. An example of a derivation
rule is as follows:

E → E1 divided E2

val(E)→ val(E1)/val(E2)

where E, E1 and E2 are non-terminals of our CFG
representing mathematical expressions. For each
such non-terminal, we have an associated function

val(·), which computes the numeric value of the
mathematical expression represented by that non-
terminal. The above rule states that whenever we see
the word “divided” between two expressions, we can
parse them into a new expression. The value of the
new expression will be obtained by dividing the first
expression value with the second one. Overall, we
have 26 such derivation rules, and we will be aug-
menting it as we come across more varied number
queries. We use CKY algorithm for parsing. The
derivation rules naturally capture composition. In
the above example, it will first parse {“sum, 7, 5”}
into an expression E, and next parse {6, divided,
E}.

2.2 General Arithmetic Problem Solver

The second component of our system is the arith-
metic word problem solver developed in our previ-
ous work (Roy and Roth, 2015). The solver tackles
a general class of arithemetic word problems, and
achieves state of the art results on several benchmark
datasets of arithmetic word problems.

2.2.1 Technical Details
The solver decomposes an input arithmetic prob-

lem into several decision problems, and learns pre-
dictors for these decision problems. Finally the pre-
dictions for the decomposed problems are combined
to generate a binary expression tree for the solution
mathematical expression. Fig 2 gives an example of
an arithmetic word problem coupled with the binary
expression tree of the solution.
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Problem
Gwen was organizing her book case making sure each
of the shelves had exactly 9 books on it. She has 2 types
of books - mystery books and picture books. If she had 3
shelves of mystery books and 5 shelves of picture books,
how many books did she have total?
Solution Expression Tree of Solution

(3 + 5)× 9 = 72

3

+

5

×

9

Figure 2: An arithmetic word problem, solution expression and

the corresponding expression tree

The arithmetic solver learns classifiers for the fol-
lowing two prediction problems:

1. For every pair of quantities qi, qj in a problem
P , a classifier is learnt to predict a math oper-
ation (one of addition, subtraction, multiplica-
tion, division) along with the order of operation
(applicable for subtraction and division). This
operation is expected to denote the operation at
the lowest common ancestor (LCA) node of qi

and qj in the solution tree. For example, in fig
2, the operation between 3 and 5 is addition,
and that between 5 and 9 is multiplication. A
multi-class classifier is trained for this predic-
tion task.

Finally, we define PAIR(qi, qj , op) to denote the
likelihood score of op to be the operation at the
LCA node of qi and qj in the solution expres-
sion tree of P . The aforementioned classifier is
used to obtain these scores.

2. We also train a classifier to predict whether a
quantity q mentioned in a problem P is irrel-
evant for the solution. For example, in fig 2,
the number “2” is irrelevant, whereas all other
numbers are relevant. A binary classifier is
trained to predict this.

We define IRR(q) to denote the likelihood score
of quantity q being an irrelevant quantity in P ,
that is, q is not used in creating the solution.
The aforementioned binary classifier is used to
obtain these scores.

For an expression E, let I(E) be the set of all
quantities in P which are not used in expression
E. Let T be an expression tree for E. We define
Score(E) of an expression E in terms of the above
scoring functions and a scaling parameter wIRR as
follows:

Score(E) =wIRR

∑
q∈I(E)

IRR(q)+

∑
qi,qj /∈I(E)

PAIR(qi, qj ,�LCA(qi, qj , T ))

where �LCA(qi, qj , T ) is the operation at the LCA
node of qi and qj in the expression tree T .

Our search for solution expression tree is also
constrained by legitimacy and background knowl-
edge constraints, detailed below.

1. Positive Answer: Most arithmetic problems
asking for amounts or number of objects usu-
ally have a positive number as an answer.
Therefore, while searching for the best scor-
ing expression, we reject expressions generat-
ing negative answer.

2. Integral Answer: Problems with questions
such as ‘how many” usually expect integral so-
lutions. We only consider integral solutions as
legitimate outputs for such problems.

Let C be the set of valid expressions that can be
formed using the quantities in a problem P , and
which satisfy the above constraints. The inference
algorithm now becomes the following:

arg max
E∈C

Score(E)

2.2.2 Evaluation
We evaluated our arithmetic word problem solver

on three publicly available datasets – addition sub-
traction problems from AI2 dataset (AI2) (Hosseini
et al., 2014), single operation problems from Illi-
nois dataset (IL)(Roy et al., 2015), and multi-step
problems from commoncore dataset (CC)(Roy and
Roth, 2015). We compare against systems which
had achieved previously known best scores on these
datasets, and show that our system achieves state of
the art performance on all the above datasets. Table
1 shows the comparison. Finally, the models of the
ILLINOIS MATH SOLVER are trained on the union
of the aforementioned datasets.
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Figure 3: Pipeline of ILLINOIS MATH SOLVER

AI2 IL CC
Our system 78.0 73.9 45.2
(Hosseini et al., 2014) 77.7 - -
(Roy et al., 2015) - 52.7 -
(Kushman et al., 2014) 64.0 73.7 2.3

Table 1: Accuracy in correctly solving arithmetic problems.

We achieve state of the art results in all three datasets.

2.3 Illinois Math Solver pipeline

The pipeline of the ILLINOIS MATH SOLVER is
shown in Fig 3. Given input text, we first run the
CFG parser, to check whether it is a number query.
If our CFG parser can make sense of the query and
can generate a mathematical expression from the
query, we immediately output it as the answer. Oth-
erwise, the query is fed to the arithmetic problem
solver. The output of the solver is then displayed as
the result.

3 Related Work

The interface of Wolfram Alpha is probably the clos-
est to ours. However their system is limited to han-
dling mostly number queries, and very simple arith-
metic problems. In contrast, our system can solve
complicated arithmetic problems described by mul-
tiple sentences and requiring multiple operations.
There has also been a lot of work in quantitative rea-
soning. Roy et al. (2015) looks at understanding en-
tailment relations among expressions of quantities
in text. There has also been efforts to automatically
solve school level math word problems. Hosseini et
al. (2014) looks at solving elementary addition sub-
traction problems, Roy et al. (2015) aims to solve
single operation problems and Koncel-Kedziorski et
al. (2016) solves single equation problems. The
system of Shi et al. (2015) tackles number word

problems by semi-automatically generated parsing
rules, and is similar to our CFG parsing approach
for tackling number queries. Kushman et al. (2014)
proposes a template based approach for solving al-
gebra word problems and finally, our system pro-
posed in Roy and Roth (2015) solves a general class
of arithmetic word problems, and achieves state of
the art results on multiple arithmetic word problem
datasets. This is the solver we use for handling arith-
metic problems in ILLINOIS MATH SOLVER.

4 Conclusion and Future Directions

We release ILLINOIS MATH SOLVER, an online
tool to automatically solve number queries and
arithemtic word problems. It will help elementary
school students to self-tutor. In addition, it will be
a source of highly varied math queries, which might
reveal difficulties of mathematical reasoning, and as-
sist future advancement in the area.

There are various fronts on which we will be
improving the system in future. Currently, the
arithemetic solver assumes the final solution can be
generated by combining the numbers mentioned in
the text, and hence, cannot introduce new numbers
for the solution. . For example, “I eat 1 apple each
day. How many apples will I eat in 1 week ?” is
currently not handled since it requires knowing that
1 week has 7 days. This will require leveraging a
knowledge base to bring in the additional informa-
tion. We will also try to handle algebra word prob-
lems, which involve generating multiple equations
with one or more variables, and then solving these
equations to generate the answer.
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Abstract

LingoTurk is an open-source, freely available
crowdsourcing client/server system aimed pri-
marily at psycholinguistic experimentation
where custom and specialized user interfaces
are required but not supported by popular
crowdsourcing task management platforms.
LingoTurk enables user-friendly local hosting
of experiments as well as condition manage-
ment and participant exclusion. It is compat-
ible with Amazon Mechanical Turk and Pro-
lific Academic. New experiments can easily
be set up via the Play Framework and the Lin-
goTurk API, while multiple experiments can
be managed from a single system.

1 Introduction

LingoTurk is a crowdsourced experiment manage-
ment system aimed at the use case where the ex-
periment user interface must be highly customized.
Common web browsers now permit the design of
experimental user interfaces with highly sophisti-
cated presentations, allowing crowdsourcing envi-
ronments to be used as laboratories for psycholin-
guistic experimentation with paradigms that in the
recent past could only be run “in-lab”.

Crowdsourcing in language science was origi-
nally popularized among researchers for the collec-
tion of labelled training data. It has recently gained
popularity as a platform for collecting experimen-
tal data for cognitive modeling (e.g., Gibson et al.,
2013; Kush et al., 2015). Experimenters trade di-
rect control over subject demographics and envi-
ronment for faster, cheaper experiment completion

with many more subjects. Crowdsourcing can pro-
vide experimenters with a way to access populations
which are not locally available (e.g., native speak-
ers of a non-local language). Commercial platforms
provide micropayment architectures to provide re-
wards to users. They also manage abuse, track user
reliability, track (usually-pseudonymized) identities,
and recruit participants.

We designed LingoTurk to handle the condition
where the actual experiment must be hosted outside
of the “default” systems provided by crowdsourc-
ing platforms. This is motivated by cases in which
there is functionality not directly supported by the
crowdsourcing platform but can be managed exter-
nally, such as the separation of experimental condi-
tions or the storage of specialized data types. Inso-
far as common crowdsourcing platforms support ex-
ternal interfaces, LingoTurk provides an easily de-
ployed server-side solution to external experiment
management. As its administration functions are
also web-based, LingoTurk allows for the steering
and management of crowdsourcing experiments to
be performed without strong technical skills, such
as student assistants in non-technical majors.

The source code is made available at
https://github.com/FlorianPusse/
Lingoturk.

1.1 Crowdsourcing and language science

Crowdsourcing has been a trend in language re-
search for the better part of a decade and has prin-
cipally been focused on the collection of annotated
training data for supervised machine learning in
fields like machine translation (Zaidan and Callison-
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Figure 1: Publishing an experiment to MTurk.

Burch, 2011) and opinion mining (Sayeed et al.,
2012). In these areas, the psyche of the annotators is
not the principal object of interest.

This has consequences of the relationship of the
“requester”—Amazon’s term for the task designer—
to the crowdsourcing worker. When psycholinguis-
tic experiments are crowdsourced, the objects of in-
terest are no longer directly the “annotations” them-
selves, but rather what they reveal about the humans
who made them. This means that the relationship of
the requester to the workers is quite different from
what it is in annotation efforts: qualification for the
task is replaced by qualification for the study, and
annotator reliability is augmented by the need for
experimental control.

Psycholinguistic experiments attempt to confirm
a hypothesis about the way in which linguistic stim-
uli are evaluated by the human mind. Experimen-
tal items are therefore often separated by condition
Normally each subject should only see one item in
each condition.

Furthermore, “learning effects” are often a risk in
psycholinguistic experiments. Subjects can get used
to the experimental paradigm, and as time goes on,
their responses can be said to become less and less
the spontaneous reaction of linguistic cognition.

Consequently, fine-grained control over condition
presentation and worker exclusion are desiderata of
a crowdsourcing platform for psycholinguistic ex-
perimentation. LingoTurk is designed to address this
need via the self-hosting of experiments while of-

fering integration with existing crowdsourcing plat-
forms.

1.2 Crowdsourcing platforms
Amazon Mechanical Turk (MTurk) is the earliest,
most widely-used crowdsourcing platform. MTurk
provides a set of standard task designs for crowd-
sourcing as well as the option to create a custom
task. Custom tasks can be hosted on an external
server, if they are served to Amazon via the MTurk
API.

However, MTurk lacks the architecture for exper-
imental exclusion of workers (subjects) by condi-
tion. Nevertheless, its API provides the information
to construct one server-side, if experimenters host
the task on their own server. The MTurk API also
permits the experiment interface to appear as a pane
inside the MTurk interface, allowing subjects to ex-
perience the task seamlessly.

Prolific Academic (PA) is an alternative platform,
useful for needs currently unmet by Amazon, partic-
ularly a non-US-centric clientele. PA does not pro-
vide an API that allows for full external-question in-
tegration, but it allows for worker redirection that
permits similar server-side participant tracking.

1.3 Comparison to alternative systems
There are other server-side experiment publishing
platforms aimed at psychological and psycholin-
guistic research: for example, Ibex (Drummond,
2013) and PsiTurk (McDonnell et al., 2012). These
platforms have functions that overlap with Lingo-
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Figure 2: Workflow of crowdsourcing task using LingoTurk.

Turk, but do not cover LingoTurk’s full design
goals. LingoTurk provides an administration GUI
front end for experimenters (figure 1), so that the
day-to-day management does not have to be per-
formed via the command line by technically-skilled
researchers. LingoTurk is also integrated with the
Play Framework, which is intended to accelerate
the development of complex, highly scalable web
applications using a well-engineered Model-View-
Controller (MVC) paradigm in Java and Scala. The
MVC paradigm facilitates the development not only
of the subject-facing experiment UI, but also user-
friendly experiment item entry and testing views for
stimulus preparers.

2 Design and workflow

The MVC paradigm combined with database in-
tegration makes LingoTurk a platform for reliably
engineered experimental interfaces that can han-
dle complex data structures as well as easy object-
oriented extensibility. LingoTurk is intended for a
self-hosting use case; once a web server has been
set up, the Play Framework enables LingoTurk to be
a turn-key solution for experiment administration.

Figure 2 shows the design of LingoTurk in terms
of its overall workflow. LingoTurk manages com-
munication with the crowdsourcing platform as well
as governs interactions with a participant database
which keeps track of experimental conditions and
exclusions and an item database that keeps track of
stimuli and responses. LingoTurk selects the pages
to be served to the crowdsourcing platform based on

information provided by the platform. On MTurk,
that means that a worker who is ineligible to see an
experimental condition will be presented with a page
that informs of them of this and asks them to return
the task.

Creating a LingoTurk experiment based on an ex-
isting interface type (section 3) is done from the
graphical administrative console, which is itself a
web site. The experimenter instantiates an exper-
iment type and fills the stimuli into web forms that
are designed to handle experimental conditions. The
experimenter also uses the administrative interface
to provide credentials for the crowdsourcing plat-
form as well as to preview and publish the experi-
ment and retrieve the results. Excluded worker IDs
(such as those who participated in previous runs
of the experiment) can also be uploaded to Lin-
goTurk this way. New experiment designs can be
developed and added to the interface using Play
Framework-based HTML and Scala templates; com-
mon Javascript libraries are provided by default, and
an API is provided for server communication.

LingoTurk also allows for the creation of quality
control questions that can be used to exclude poorly-
performing workers after a threshold of wrong an-
swers is reached. To use this feature, the experi-
menter must include stimuli with correct or expected
responses.

3 Experiment interfaces

LingoTurk has been used for experiments performed
by researchers at Saarland University. Here, we
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Figure 3: The discourse connective drag-and-drop task.

discuss a couple of examples of interfaces that
are included with LingoTurk. We provide other
paradigms in the package.

Drag-and-drop discourse connectives Demberg
et al. (2015) present the problem of discourse rela-
tion prediction: specifically, how do speakers inter-
pret an implicit gap between propositions? They in-
vestigated this question through an experiment that
allowed subjects to fill in the gap between two sen-
tences, implicitly connected in the Penn Discourse
Treebank, with an explicit discourse connective. For
this purpose, they used a drag-and-drop paradigm,
wherein subjects selected connectives from a set of
labelled tiles and dragged them into a target zone
(figure 3). They divided this task into phases in or-
der to narrow down the discourse type, with Lingo-
Turk presenting a subsidiary tableau of connective
phrases depending on the result of the first tableau.
The selection of connective tableaux is controlled
via the item entry interface on the administrative
side of LingoTurk. Data analysis for this task is still
on-going.

The advantage of a drag-and-drop paradigm is
that it requires the subject to make an explicit choice
but also to use a little bit of effort in doing so. This
reduces the bias that might be introduced by the
least-effort of choosing the first or the last item (Say-
eed et al., 2011).

Script alignment by connector drawing Wan-
zare et al. (2016) use the LingoTurk system to
present a task involving the alignment of collected
narratives to prepared scripts (e.g., for baking a
cake) for an on-going project that is investigating
the psycholinguistic aspects of script knowledge as

well as developing script corpora. In this paradigm,
steps of the narrative (an account of an action col-
lected from subjects during previous research) are
presented as tiles in a column on the left side of the
window, while steps of the standardized script are
presented on the right side. Subjects draw connec-
tions between narrative steps and standardized script
steps.

4 Demonstration

For our demonstration at the conference, we will
bring a computer and present a running instance of
the LingoTurk system. We will proceed through
the construction of example experiments which will
be pushed through to the MTurk Sandbox (MTurk’s
testing server). We will make use of our built-in ex-
perimental paradigms to demonstrate the versatility
and convenience of LingoTurk. We will also demon-
strate the underlying practical details of developing
new experimental paradigms and integrating them
into LingoTurk.

5 Future work

There are considerable opportunities to expand the
system. One possible direction is integration with
other platforms that have been gradually emerging,
such as ClickWorker. We are exploring the possibil-
ity of integration with the CrowdFlower platform;
an important challenge in this case is the integration
with CrowdFlower’s built-in quality control system.
Another direction is increasing the customisability
of experiment designs by including a graphical web
design tool, reducing the need to interact directly
with the Play Framework when developing new ex-
perimental paradigms.
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Abstract

We present a simple, prepackaged solution to
generating paraphrases of English sentences.
We use the Paraphrase Database (PPDB) for
monolingual sentence rewriting and provide
machine translation language packs: prepack-
aged, tuned models that can be downloaded
and used to generate paraphrases on a standard
Unix environment. The language packs can be
treated as a black box or customized to spe-
cific tasks. In this demonstration, we will ex-
plain how to use the included interactive web-
based tool to generate sentential paraphrases.

1 Introduction

Monolingual sentence rewriting encompasses a va-
riety of tasks for which the goal is to generate an
output sentence with similar meaning to an input
sentence, in the same language. The generated sen-
tences can be called sentential paraphrases. Some
tasks that generate sentential paraphrases include
sentence simplification, compression, grammatical
error correction, or expanding multiple reference
sets for machine translation. For researchers not fo-
cused on these tasks, it can be difficult to develop a
one-off system due to resource requirements.

To address this need, we are releasing a black
box for generating sentential paraphrases: machine
translation language packs. The language packs
consist of prepackaged models for the Joshua 6
decoder (Post et al., 2015) and a monolingual
“translation” grammar derived from the Paraphrase
Database (PPDB) 2.0 (Pavlick et al., 2015). The
PPDB provides tremendous coverage over English

text, containing more than 200 million paraphrases
extracted from 100 million sentences (Ganitkevitch
et al., 2013). For the first time, any researcher with
Java 7 and Unix (there are no other dependencies)
can generate sentential paraphrases without devel-
oping their own system. Additionally, the language
packs include a web tool for interactively paraphras-
ing sentences and adjusting the parameters.

The language packs contain everything needed to
generate sentential paraphrases in English:
• a monolingual synchronous grammar,
• a language model,
• a ready-to-use configuration file,
• the Joshua 6 runtime, so that no compilation is

necessary,
• a shell script to invoke the Joshua decoder, and
• a web tool for interactive decoding and param-

eter configuration.

The system is invoked by a single command, either
on a batch of sentences or as an interactive server.

Users can choose which size grammar to include
in the language pack, corresponding to the PPDB
pack sizes (S through XXXL).

In the rest of the paper, we will describe the trans-
lation model and grammar, provide examples of out-
put, and explain how the configuration can be ad-
justed for specific needs.

2 Language pack description

Several different size language packs are available
for download.1 The components of the language
packs are described below.

1http://joshua-decoder.com/
language-packs/paraphrase/
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Grammar Our approach to sentential paraphras-
ing is analogous to machine translation. As a trans-
lation grammar, we use PPDB 2.0, which contains
170-million lexical, phrasal, and syntactic para-
phrases (Pavlick et al., 2015). Each language pack
contains a PPDB grammar that has been packed into
a binary form for faster computation (Ganitkevitch
et al., 2012), and users can select which size gram-
mar to use. The rules present in each grammar are
determined by the PPDB 2.0 score, which indicates
the paraphrase quality (as given by a supervised re-
gression model) and correlates strongly with human
judgments of paraphrase appropriateness (Pavlick et
al., 2015). Grammars of different sizes are cre-
ated by changing the paraphrase score thresholds;
larger grammars therefore contain a wider diversity
of paraphrases, but with lower confidences.

Features Each paraphrase in PPDB 2.0 contains
44 features, described in Ganitkevitch and Callison-
Burch (2014) and Pavlick et al. (2015). For each
paraphrase pair, we call the input the original and
the new phrase the candidate. Features can reflect
just the candidate phrase or a relationship between
the original and candidate phrases. Each of these
features is assigned a weight, which guides the de-
coder’s choice of paraphrases to apply to generate
the final candidate sentence. All feature values are
pre-calculated in PPDB 2.0.

Decoding The language packs include a compiled
Joshua runtime for decoding, a script to invoke
it, and configuration files for different tuned mod-
els. There is also a web-based tool for interactively
querying a server version of the decoder for para-
phrases. We include a 5-gram Gigaword v.5 lan-
guage model for decoding. One or more language-
model scores are used to rank translation candidates
during decoding. The decoder outputs the n-best
candidate paraphrases, ranked by model score.

3 Models

Each language pack has three pre-configured mod-
els to use either out of the box or as a starting point
for further customization. There are tuned mod-
els for (1) sentence compression, (2) text simplifi-
cation, and (3) a general-purpose model with hand-
tuned weights. These models are distinguished only

by the different weight vectors, and are selected by
point the Joshua invocation script to the correspond-
ing configuration file.

3.1 Tuned models
We include two models that were tuned for (1) sen-
tence compression and (2) simplification. The com-
pression model is based on the work of Ganitkevitch
et al. (2011), and uses the same features, tuning data,
and objective function, PRÉCIS. The simplification
model is described in Xu et al. (2016), and is opti-
mized to the SARI metric. The system was tuned
using the parallel data described therein as well as
the Newsela corpus (Xu et al., 2015). There is no
specialized grammar for these models; instead, the
parameters were tuned to choose appropriate para-
phrases from the PPDB.

Sample output generated with these models is
shown in Table 1.

3.2 Hand-derived weights
To configure the general-purpose model, which gen-
erates paraphrases for no specific task, we examined
the output of 100 sentences randomly selected from
each of three different domains: newswire (WSJ 0–
1 (Marcus et al., 1993)), “simple” English (the Bri-
tannica Elementary corpus (Barzilay and Elhadad,
2003)), and general text (the WaCky corpus (Baroni
et al., 2009)). We systematically varied the weights
of the Gigaword LM and the PPDB 2.0 score fea-
tures and selected values that yielded the best output
as judged by the authors. The parameters selected
for the generic language packs are weightlm = 10
and weightppdb2 = 15, with all other weights are
set to zero. Example output is shown in Table 1.

4 User customization

The language packs include configuration files with
pre-determined weights that can be used on their
own or as a jumping-off point for custom configura-
tions. There are weights for each of the 44 PPDB 2.0
features as well as for the language model(s) used
by the decoder. We encourage researchers to ex-
plore modifications to the model to suit their specific
tasks, and we have clearly identified five aspects of
the language packs that can be modified:

1. Alternate language models. The decoder can
accept multiple LMs, and the packs include LMs es-
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Compression
Orig: rice admits mistakes have been made by american administration in rebuilding iraq

Gen: rice admits mistakes were made by american administration in rebuilding iraq

Orig: partisanship is regarded as a crime , and pluralism is rejected , and no one in the shura council
would seek to compete with the ruler or distort his image .

Gen: partisanship is regarded as a crime
e

and pluralism is rejected
e

and none in the shura council
would seek to compete with the ruler or distort his image .

Simplification
Orig: fives is a british sport believed to derive from the same origins as many racquet sports .

Gen: fives is a british sport thought to come from the same source as many racquet sports .

Orig: in the soviet years , the bolsheviks demolished two of rostov ’s principal landmarks — st alexander
nevsky cathedral ( 1908 ) and st george cathedral in nakhichevan ( 1783-1807 ) .

Gen: in the soviet years , the bolsheviks destroyed two of rostov ’s key landmarks — st alexander nevsky
church ( 1908 ) and st george church in naxçivan ( 1783-1807 ) .

Generic
Orig: because the spaniards had better weapons , cortes and his army took over tenochtitlan by 1521 .

Gen: as the spaniards had better weapons , cortes and his men took over tenochtitlan by 1521 .

Orig: it was eventually abandoned due to resistance from the population .

Gen: it was later abandoned due to opposition from the population .

Table 1: Sample output from the three models. Underlines designate changed spans, and
e

indicates deletions.

timated over newswire text and “simple” English.
Other user-provided LMs can be used for tasks tar-
geting different domains of text.

2. Rank output with a custom metric. The n-
best candidate sentences are chosen by their score
according to a given metric (LM score for the
generic model, and PRÉCIS and SARI for the tuned
models), however other metrics can be used instead.

3. Manually adjust parameters. The weights of
the features discussed in Section 3 can be adjusted,
as well as other PPDB feature weights. The web
tool (Figure 1) allows users to select the weights
for all of the features and see the top-5 candidates
generated with those weights. Some of the more in-
terpretable features to target include the length dif-
ference and entailment relations between the phrase
original and candidate, as well as formality and com-
plexity scores of the candidate paraphrase.

4. Optimize parameters with parallel data. For
tailoring machine translation to a specific task, the
weights given to each feature can be optimized to

a given metric over a tuning set of parallel data.
This metric is commonly BLEU in machine trans-
lation, but it can be a custom metric for a specific
task, such as PRÉCIS for compression (Ganitkevitch
et al., 2011) or SARI for simplification (Xu et al.,
2016). The user needs to provide a parallel dataset
for tuning, ideally with about 2,000 thousand sen-
tences. The pipeline scripts in the Joshua decoder
have options for optimization, with the user specify-
ing the language pack grammar and parallel tuning
data. The configuration file included in the language
pack can be used as a template for tuning.

5 Interactive tool

Finally, we include a web tool that lets users interact
with the decoder and choose custom weights (Fig-
ure 1). Once users have downloaded the tool kit, an
included script lets them run the decoder as a server,
and through the web interface they can type indi-
vidual sentences and adjust model parameters. The
interface includes an input text box (one sentence
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Figure 1: A screen shot of the web tool. The number to the right of each output sentence is the TER.

at a time), and slider bars to change the weights of
any of the features used for decoding. Since this
model has not been manually evaluated, we favor
precision over recall and maintain a relatively con-
servative level of paraphrasing. The user is shown
the top 10 outputs, as ranked by the sentence score.
For each output sentence, we report the Translation
Edit Rate (TER), which is the number of changes
needed to transform the output sentence into the in-
put (Snover et al., 2006).

This tool can be used to demonstrate and test a
model or to hand-tune the model in order to de-
termine the parameters for a configuration file to
paraphrase a large batch of sentences. Detailed
instructions for using the tool and shell scripts,
as well as a detailed description of the config-
uration file, are available at the language pack
home page: http://joshua-decoder.com/
language-packs/paraphrase/

6 Related work

Previous work has applied machine translation tech-
niques to monolingual sentence rewriting tasks. The
most closely related works used a monolingual para-

phrase grammar for sentence compression (Gan-
itkevitch et al., 2011) and sentence simplification
(Xu et al., 2016), both of which developed custom
metrics and task-specific features. Various other
MT approaches have been used for generating sen-
tence simplifications, however none of these used a
general-purpose paraphrase grammar (Narayan and
Gardent, 2014; Wubben et al., 2012, among others).
Another application of sentential paraphrases is to
expand multiple reference sets for machine transla-
tion (Madnani and Dorr, 2010).

PPDB has been used for many tasks, including
recognizing textual entailment, question generation,
and measuring semantic similarity.

These language packs were inspired by the for-
eign language packs released with Joshua 6 (Post et
al., 2015).

7 Conclusion

We have presented a black box for generating sen-
tential paraphrases: PPDB language packs. The lan-
guage packs include everything necessary for gener-
ation, so that they can be downloaded and invoked
with a single command. This toolkit can be used for
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a variety of tasks: as a helpful tool for writing (what
is another way to express a sentence?); generating
additional training or tuning data, such as multiple-
references for machine translation or other text-to-
text rewriting tasks; or for changing the style or tone
of a text. We hope their ease-of-use will facilitate
future work on text-to-text rewriting tasks.
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Abstract 

This paper presents a tag-based statistical 
math word problem solver with understand-
ing, reasoning, and explanation. It analyzes 
the text and transforms both body and ques-
tion parts into their tag-based logic forms, and 
then performs inference on them. The pro-
posed tag-based approach provides the flexi-
bility for annotating an extracted math quanti-
ty with its associated syntactic and semantic 
information, which can be used to identify the 
desired operand and filter out irrelevant quan-
tities. The proposed approach is thus less sen-
sitive to the irrelevant information and could 
provide the answer more precisely. Also, it 
can handle much more problem types other 
than addition and subtraction. 

1 Introduction 

The math word problem (MWP) (Mukherjee and 
Garain, 2008) is frequently chosen to study natural 
language understanding due to the following rea-
sons: (1) Since the answer for the MWP cannot be 
extracted by simply performing keyword/pattern 
matching, MWP can clearly show the merits of 
understanding and inference. (2) As MWP usually 
possesses less complicated syntax and requires less 
amount of domain knowledge, it can let the re-
searcher focus on the task of understanding and 
reasoning. (3) The body part of MWP (which men-
tions the given information for solving the problem) 
consists of only a few sentences. The understand-

ing and reasoning procedure could be checked 
more efficiently. (4) The MWP solver has its own 
standalone applications such as Computer Math 
Tutor and Helper for Math in Daily Life. 

Previous English MWP solvers can be classified 
into three categories: (1) Rule-based approaches 
with logic inference (Bobrow, 1964; Slagle, 1965), 
which apply rules to get the answer (via identifying 
entities, quantities, operations, etc.) with a logic in-
ference engine. (2) Rule-based approaches without 
logic inference (Charniak, 1968 and 1969; Gelb, 
1971; Ballard, 1979; Biermann and Ballard, 1980; 
Biermann et al., 1982;  Fletcher, 1985; Dellarosa, 
1986; Bakman, 2007; Liguda and Pfeiffer, 2012; 
Hosseini et al., 2014), which apply rules (usually 
defined as schemata) to get the answer without a 
logic inference engine. (3) Purely statistic-based 
approaches (Kushman et al., 2014; Roy et al., 
2015), which use statistical models to identify enti-
ties, quantities, operations, and get the answer 
without conducting language analysis or inference.  

The main problem of the rule-based approaches 
mentioned above is that the coverage rate problem 
is serious, as rules with wide coverage are difficult 
and expensive to construct. Also, it is awkward in 
resolving ambiguity problems. Besides, most of 
them only handle addition and subtraction these 
two math operations. On the other hand, the main 
problem of those approaches without adopting log-
ic inference is that they cannot share the common 
reasoning part among various problem types. In 
contrast, the main problems of those purely statis-
tical approaches are that they are sensitive to irrel-
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evant information and that the performance deteri-
orates significantly when they encounter compli-
cated problems (Hosseini et al., 2014), because the 
problem is solved without first understanding the 
text. Besides, they only handle algebra problems. 

A tag-based statistical English MWP solver is 
thus proposed to perform understanding and rea-
soning, and avoid the problems mentioned above. 
The text of the MWP is first analyzed into its cor-
responding syntactic tree and then annotated with 
resolved co-reference chains. Afterwards, it is 
converted into the logic form via a few mapping 
rules.  The obtained logic form is further mapped 
into the corresponding domain dependent generic 
concepts (also expressed in logic form). Finally, 
the logic inference is performed on those logic 
statements to get the answer. Various statistical 
classifiers are applied when there are choices. 

Since different questions could be asked for the 
same given body text, we keep all syntactic rela-
tions in the logic form, which are regarded as vari-
ous tags for selecting the appropriate operands re-
lated to the specified question. For example, “Fred 
picked 36 limes” will be converted into “quan(q1, 
#, lime)&verb(q1, pick)&nsubj(q1, Fred) = 36” 
(where tags are connected with logic “&”), in 
which the quantity “36” is identified with a label 
“q1” and attached with its associated tags. The 
proposed tag provides the flexibility for annotating 
a given math quantity with associated syntactic and 
semantic information, which can be used to identi-
fy the desired operand and filter out irrelevant 
quantities. It thus makes our MWP solver less sen-
sitive to the irrelevant information and could pro-
vide the answer more precisely.   

2 System Framework  

The block diagram of proposed math word prob-
lem solver is shown in Figure 1. First, each sen-
tence in an MWP is analyzed by the Language An-
alyzer (LA) module. The associated linguistic in-
formation is then sent to the Solution Type Classi-
fier (STC) to find out the corresponding math op-
eration. Afterwards, they are converted into the 
logic form by the Logic Form Converter (LFC). 
The Inference Engine (IE) then obtains the answer 
from those obtained logic expressions. Finally, the 
Explanation Generator (EG) module will explain 
how the answer is obtained according to the given  

reasoning chain (Russel and Norvig, 2009).  
 Among those modules, the STC is responsible 

for suggesting a way (i.e., a solution type such as 
addition, subtraction, multiplication, division, etc.) 
to solve the problem for each question of the MWP. 
The LFC extracts the related facts from the given 
linguistic information and then represents those 
facts as the first-order logic (FOL) predi-
cates/functions (Russel and Norvig, 2009). It also 
transforms each question into a FOL-like utility 
function according to the suggested solution type. 
The IE then derives new facts according to infer-
ence rules and old facts provided by the LFC. It is 
also responsible for providing utilities to perform 
math operations on related facts to get the answer. 
Detailed description of each module is given below. 

2.1 Language Analysis 

The Stanford CoreNLP suite (Manning et al., 2014) 
is adopted as our LA, which enables a list of anno-
tators to generate the necessary linguistic infor-
mation. The list includes: tokenization, sentence 
splitting, POS tagging, lemmatization, named enti-
ty recognition, parsing and co-reference resolution. 
The generated linguistic representation mainly de-
picts the syntactic relations between its words. To 
solve MWPs, it is crucial to know the relations be-
tween various entities. Dependency relation and 
co-reference resolution will provide such infor-
mation.  

2.2 Solution Type Identification 

The STC will select a math operation (that LFC 
should adopt to solve the problem) based on the 
global information across various input sentences. 
Table 1 shows 12 different solution types currently 
provided. A SVM classifier with linear kernel 
functions (Chang and Lin, 2011) is used, and it 

 
Figure 1: The block diagram of the proposed MWP solver  
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adopted various feature-sets: (1) verb category re-
lated features, (2) various keyword indicators, and 
(3) different pattern-matching indicators for vari-
ous specified aggregative patterns. 

2.3 Logic Form Transformation 

A two-stage approach is adopted to transform the 
linguistic representation of a sentence into its cor-
responding logic forms. In the first stage, the FOL 
predicates are generated (via a few deterministic 
mapping rules) by traversing the input linguistic 
representation. For example, the sentence “Fred 
picks 36 limes” will be transformed into the fol-
lowing FOL predicates separated by the logic 
AND operator “&”: 

verb(v1,pick)&nsubj(v1, Fred)&  
dobj(v1,n1)&head(n1, lime)&nummod(n1, 36) 

All the first arguments of the above FOL predi-
cates (i.e., v1 and n1) are identifies, and the predi-
cate-names are the domain-independent syntactic 
dependency relation of the constituents in the de-
pendency structure. 

The domain-dependent logic forms are non-
deterministically generated in the second stage, 
which are derived from crucial math facts associ-
ated with quantities and relations between quanti-
ties. The following FOL function is used to de-
scribe the facts about quantities:  
 𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞(𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑖𝑖𝑖𝑖 ,𝑞𝑞𝑞𝑞𝑢𝑢𝑡𝑡𝑖𝑖𝑖𝑖, 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑡𝑡𝑖𝑖𝑖𝑖) = 𝑞𝑞𝑞𝑞𝑛𝑛𝑜𝑜𝑜𝑜𝑛𝑛  (1) 

For example, “quan(q1, #, lime)=36” means “36 
limes” (the second argument is the unit adopted, 
and ignored here). Besides domain-dependent facts, 
some auxiliary domain-independent facts associat-
ed with the math fact are also created in this stage 
to help the IE to find the solutions. For example, 
“verb(q1, pick)&nsubj(q1, Fred)” is the associated 
auxiliary facts of “quan(q1, #, lime)=36”. Those 
auxiliary facts are our proposed tags to make the 
system less sensitive to the irrelevant information. 
They also provide the flexibility of handling vari-
ous kinds of possible questions.   

The questions in the MWP will be transformed 
into FOL-like utility functions provided by the IE 
according to the suggested solution type. Take the 
question “How many limes were picked in total?” 
as an example. The STC will assign the “Sum” op-
eration type to it. Based on that, the LFC will gen-
erate the FOL function “Sum(quan(?q, #, limes), 
verb(?q, pick)” to search all quantities that are as-
sociated with object “lime” and also attached with 
the verb tag “pick”. 

2.4 Logic Inference 

The IE is used to find the solution of an MWP. It is 
responsible for providing utilities to select desired 
facts and then obtain the answer by taking math 
operations on those selected facts. In addition, it is 
also responsible for using inference rules to derive 
new facts from those facts which are directly de-
rived from the description of the MWP. Consider 
the example shown in Figure 2, the IE will first se-
lect all qualified quantities which match “quan(?q, 
#, lime)” and with a “pick” verb tag, and then per-
form a “Sum” operation on them. The irrelevant 
quantity “quan(q4, #, pear)” in that example is 
thus pruned out as its verb tag is “drop”, not “pick”. 
The answer is then obtained by summing those 
quantities q1, q2 and q3. 

2.5 Explanation Generation 

Based on the reasoning chain generated from the 
IE (an example is shown in Figure 3), a math oper-
ation oriented approach is adopted to explain how 
the answer is obtained (Huang et al., 2015). A spe-
cific template is used to generate the explanation 
text for each kind of operation. Consider the ex-

Addition Multiplication Surplus 

Subtraction Common-
Division Comparison 

 Sum Floor-Division Algebra 
Difference  Ceil-Division Time Variant 

 

Table 1:  Various solution types for solving the MWP  

 
Figure 2: Logic form and logic inference of a Sum operation  
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ample given in Figure 2, the template for “Sum” 
operation would be “Totally verb Child_1 + 
Child_2 + Child_3 + ...+ Child_n = Parent.”. Ac-
cording to that template and the reasoning chain 
shown in Figure 3, The EG will generate the ex-
planation text “Totally pick 36 limes + 32 limes + 
35 limes = 103 limes”, which explains that the ob-
tained answer is a summation of “36 limes”, “32  
limes” and “35 limes”. 

3 Demonstration Outline 

The MWP solver comprises a web user interface 
and a processing server. The web interface is used 
to input the problem and display the processing 
outputs (from each module) of the submitted MWP. 
The server is responsible to process the submitted 
problem to get the answer. 

The user can use the web interface (Figure 4) to 
submit various MWPs. After an MWP is submitted, 
various processing modules will be invoked in a 
pipelined manner (shown in Figure 1) to solve the 
given problem. Once the process is finished, the 
user can browse the outputs generated from each 
module: (1) Parse Trees, Dependency and Co-
Reference chains, which are from the language an-
alyzer. (2) Corresponding linguistic representations, 
which are converted from the above language 
analysis result. (3) Suggested solution type, which 
identifies the desired math operation that the LFC 
should adopt. (4) Obtained logical forms, which 

are transformed from the linguistic representation. 
(5) Generated reasoning chains and explanation 
text, which explains how the problem is solved.  

An online demo can be found at:   
http://nlul.iis.sinica.edu.tw/Engl
ishMathSolver/mathDemo.py.  

4 Experiments 

The experiments are performed on the datasets 
MA1, MA2 and IXL provided by Hosseini et al. 
(2014), which are the first publically available da-
tasets that can be used to compare various systems. 
The datasets include 395 problems and 1,483 sen-
tences in total. MA1 covers simple MWPs on ad-
dition and subtraction for third, fourth, and fifth 
graders. Problems in MA2 includes more irrele-
vant information compared to the other two da-
tasets, and IXL includes more information gaps 
(Hosseini et al., 2014). The performance of our 
system is compared with ARIS (Hosseini et al., 
2014) which is a rule-based system that changes 
the entity attribute according to the schema. The 
result is also compared with KAZB (Kushman et 
al., 2014), which is a purely statistical approach 
that aligns the text with various pre-extracted 
equation templates. We follow the same evaluation 
setting. Table 2 shows that our system significant-
ly outperforms them in overall performance. 

5 Conclusion 

A tag-based statistical framework is proposed to 
perform understanding and reasoning for solving 
MWPs. The adopted tag can help identify desired 
operands and filter out irrelevant quantities. Many 
rule-based approaches only handle addition and 
subtraction math operations, but we can solve 
much more problems types, such as Multiplication, 
Division, Comparison, Algebra, etc. 

 
Figure 3: The reasoning Chain from the Inference Engine  

 
Figure 4: A web interface of the  MWP solver  

 MA1 IXL MA2 Total 
3-fold Cross validation 

Our System 94.8 71.9 88.4 84.8 
ARIS 83.6 75.0 74.4 77.7 
KAZB 89.6 51.1 51.2 64.0 

Gold Solution Type 
Our System 99.3 97.8 95.0 97.5 

 

Table 2:  Performance Comparison  
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Abstract

The sheer volume of unstructured multimedia
data (e.g., texts, images, videos) posted on the
Web during events of general interest is over-
whelming and difficult to distill if seeking in-
formation relevant to a particular concern. We
have developed a comprehensive system that
searches, identifies, organizes and summarizes
complex events from multiple data modalities.
It also recommends events related to the user’s
ongoing search based on previously selected
attribute values and dimensions of events be-
ing viewed. In this paper we briefly present
the algorithms of each component and demon-
strate the system’s capabilities 1.

1 Introduction

Every day, a vast amount of unstructured data in dif-
ferent modalities (e.g., texts, images and videos) is
posted online for ready viewing. Complex event ex-
traction and recommendation is critical for many in-
formation distillation tasks, including tracking cur-
rent events, providing alerts, and predicting possi-
ble changes, as related to topics of ongoing con-
cern. State-of-the-art Information Extraction (IE)
technologies focus on extracting events from a sin-
gle data modality and ignore cross-media fusion.
More importantly, users are presented with extracted
events in a passive way (e.g., in a temporally ordered
event chronicle (Ge et al., 2015)). Such technologies
do not leverage user behavior to identify the event

1The system demo is available at: http://nlp.cs.
rpi.edu/multimedia/event/navigation_dark.
html

properties of interest to them in selecting new sce-
narios for presentation.

In this paper we present a novel event extraction
and recommendation system that incorporates ad-
vances in extracting events across multiple sources
with data in diverse modalities and so yields a more
comprehensive understanding of collective events,
their importance, and their inter-connections. The
novel capabilities of our system include:
• Event Extraction, Summarization and Search:

extract concepts, events and their arguments (par-
ticipants) and implicit attributes, and semanti-
cally meaningful visual patterns from multiple
data modalities, and organize them into Event
Cubes (Tao et al., 2013) based on Online Analyt-
ical Processing (OLAP). We developed a search
interface to these cubes with a novel back-end
event summarization component, for users to
specify multiple dimensions in a query and re-
ceive single-sentence summary responses.
• Event Recommendation: recommend related

events based on meta-paths derived from event
arguments, and automatically adjust the ranking
function by updating the weights of dimensions
based on user browsing feedback.

2 Overview

2.1 System Architecture

The overall architecture of our system is illustrated
in Figure 1. We first extract textual event informa-
tion, as well as visual concepts, events and patterns
from the raw multimedia documents to construct
event cubes. Based on the event cubes, the search
interface (Figure 2) returns the document that best
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Figure 1: System Workflow.

matches the user’s query as the first primary event
for display. A query may consist of multiple dimen-
sions. The recommendation interface displays mul-
tiple dimensions and rich annotations of the primary
event, and recommends similar and dissimilar events
to the user.

2.2 Data Sets
To demonstrate the capabilities of our system, we
use two event types, Protest and Attack, as our case
studies. We collected the following data sets:
• Protest: 59 protest incidents that occurred be-

tween January 2009 and December 2010, from
458 text documents, 28 images and 31 videos.
• Attack: 52 attack incidents that occurred between

January 2014 and December 2015, from 812 text

documents, 46 images and 6 videos.

3 Event Cube Construction and Search

(a) Protest Event (b) Attack Event

Figure 2: Search Interface.
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3.1 Event Extraction

We apply a state-of-the-art English IE system (Li
et al., 2014) to jointly extract entities, relations and
events from text documents. This system is based
on structured perceptron incorporating multiple lev-
els of linguistic features. However, some impor-
tant event attributes are not expressed by explicit
textual clues. To enrich the profile of each protest
event, the system identifies two additional implicit
attributes that derive from social movement theo-
ries (Della Porta and Diani, 2009; Furusawa, 2006;
Dalton, 2013):
• Types of Protest, including demonstration, riot,

strike, boycott, picket and individual protest.
• Demands of Protest, indicating the hidden be-

havioral intent of protesters, about what they de-
sire to change or preserve, including pacifist, po-
litical, economic, retraction, financial, religious,
human rights, race, justice, environmental, sports
rivalry and social.

We annotated 92 news documents, 59 of which con-
tained protests, to learn a set of heuristic rules for au-
tomatically extracting these implicit attributes from
the IE outputs of these documents.

3.2 Event Cube Construction and Search

Event extraction helps in converting unstructured
texts into structured arguments and attributes (di-
mensions). However, a user may still need to “drill
down,” searching back through many documents and
changing query selections before finding an item of
interest. We use EventCube (Tao et al., 2013) to
effectively organize and efficiently search relevant
events, and measure event similarity based on multi-
ple dimensions. EventCube is a general online ana-
lytical processing (OLAP) framework for importing
any collection of multi-dimensional text documents
and constructing text-rich data cube. EventCube dif-
fers from traditional search engines in that it returns
Top-Cells, where relevant documents are aggregated
by dimension combinations.

We regard each event as a data point associated
with multiple dimension values. After a user in-
puts a multi-dimensional query in the search inter-
face (Figure 2), we build inverted index upon the
dimensions in Event Cube to return related events,
which provides much more flexible matching com-

pared to keyword search.

4 Multi-media Event Illustration and
Summarization

After the search interface retrieves the most rele-
vant event (’primary event’), the user will be di-
rected to the recommendation interface (Figure 3)
and can start exploring various events. The user’s
initial query is displayed at the top (gray bar) and is
updated to capture new user selections. The number
of events that match the user’s initial query and the
number of documents associated with the primary
event are displayed in the gray bar, at the far right
side. In addition to text IE results, we apply the fol-
lowing multi-media extraction and summarization
techniques to illustrate and enrich event profiles.

4.1 Summarization

From each set of relevant documents, we apply a
state-of-the-art phrase mining method (Liu et al.,
2016) to mine top-k representative phrases. Then
we construct an affinity matrix of sentences and ap-
ply spectral clustering to find several clustering cen-
ters (i.e., representative sentences including the most
important phrases) as the summary. The user is
also provided two options to show the original doc-
uments and the document containing the summary.

4.2 Visual Information Extraction

For each event, we retrieve the most representa-
tive video/image online using the key-phrases such
as date and entities as queries. Videos and im-
ages are often more impressive and efficient at
conveying information. We first apply a pre-
trained convolutional neural network (CNN) archi-
tecture (Kuznetsova et al., 2012) to extract visual
concepts from each video key frame based on the
EventNet concept library (Ye et al., 2015). For
example, the extracted visual concepts “crowd on
street, riot, demonstration or protest, people march-
ing” appear when the user’s mouse is over the video
of the primary event (Figure 3). Then we adopt the
approach described in (Li et al., 2015) which applies
CNN and association rule mining technique to gen-
erate visual patterns and extract semantically mean-
ingful relations between visual and textual informa-
tion to name the patterns.
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Figure 3: Recommendation Interface.

5 Event Recommendation

We rank and recommend events based on meta
paths (Sun et al., 2011), by representing the
whole data set as a heterogeneous network, that
is composed of multi-typed and interconnected ob-
jects (e.g., events, location, protesters, target of
protesters). A meta path is a sequence of rela-
tions defined between different object types. For
protest events, we define six meta paths: “event-
date-event”, “event-location-event”, “event-target
of protest-event”, “event-protesters-event”, “event-
type of protest-event” and “event-demand of protest-
event”; and four meta paths for attack events:
“event-date-event”, “event-location-event”, “event-
attackers-event” and “event-type of attack-event”.

The similarity between two events is the weighted
sum of the six meta path similarities. The weights
are assigned dynamically by the user’s activity:

• When the user clicks on a certain image/video: as-
sign 1.0 to all meta-path similarities.
• When the user clicks on a certain dimension X:

1.0 for the similarity based on Event-X-Event,
and 0.2 to other meta-paths.

To illustrate the meta paths, the dimension names
of recommended events are highlighted if they share
the same dimensions with the primary event. More-
over, the system is switchable between recommend-
ing the most similar and most dissimilar events with
a toggle button that the user can click.

6 Conclusions and Future Work

In this paper we present a cross-media event ex-
traction and recommendation system which effec-
tively aggregates and summarizes related complex
events, and makes recommendations based on user
interests. The current system interface incorporates
a medium-level human agency (the capacity of an
entity to act) by allowing a human user to provide
relevance feedback while driving the browsing in-
terests by multi-dimensional recommendations. We
plan to follow the cognitive fit theory (Vessey, 1991)
and conduct a series of human utility evaluations to
formally quantify the impact of each new compo-
nent and each data modality on enhancing the speed
and quality of aggregating and summarizing event-
related knowledge, detecting conflicts and errors,
and generating alerts.
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Abstract

We demonstrate SODA (Service Oriented Do-
main Adaptation) for efficient and scalable
cross-domain microblog categorization which
works on the principle of transfer learning.
It is developed on a novel similarity-based
iterative domain adaptation algorithm while
extended with features such as active learn-
ing and interactive GUI to be used by busi-
ness professionals. SODA demonstrates ef-
ficient classification accuracy on new collec-
tions while minimizing and sometimes elimi-
nating the need for expensive data labeling ef-
forts. SODA also implements an active learn-
ing (AL) technique to select informative in-
stances from the new collection to seek anno-
tations, if a small amount of labeled data is
required by the adaptation algorithm.

1 Introduction

Online social media, such as Twitter.com, have be-
come the de facto standard for sharing information,
thoughts, ideas, personal feelings, daily happenings
etc. which essentially led research and development
in the field of social media analytics to flourish. So-
cial media analytics provide actionable insights to
business by analyzing huge amount of user gener-
ated content (UGC) (Sriram et al., 2010; Jo and Oh,
2011; He et al., 2012; Si et al., 2013; Nakov et al.,
2013). Sentiment categorization, one of the common
social media analytics task, segregates a collection
of UGC into different buckets with positive, neg-
ative or neutral orientation (Liu and Zhang, 2012;

∗Work done at Xerox Research Centre India

Thelwall et al., 2011; Bollen et al., 2009). This in-
formation is used to aggregate statistics and identify
trends which are helpful for many applications viz.
Customer Care, Product Marketing, User Studies.

Supervised machine learning (ML) techniques
such as text categorization have played a key en-
abler role to classify microblogs into sentiment cat-
egories (Pang and Lee, 2008; Tan et al., 2009; Go et
al., 2009; Fernández et al., 2014). These are trained
on a fraction of annotated data as per client pro-
vided label set e.g. {positive, negative, and neu-
tral} for a product/service/domain 1. One of the
obstacles towards rapid adoption of such systems is
requirement of labeled tweets for developing ML-
based models as it requires extensive human labeling
efforts. Additionally, need of manual labeling slows
down the process of categorization on high velocity
social media which requires fast analytic insights.
From our conversations with business professionals,
we derived the need of a practical solution which
would help them scale up across hundreds of col-
lections and domains without the overhead of anno-
tating data and building models from scratch every
time for a new collection.

In this paper, we demonstrate Service Oriented
Domain Adaptation (SODA) which offers social
media analytics as-a-service to the users. Specif-
ically, it provides sentiment categorization as-a-
service that allows users to efficiently analyze com-
ments from any new collection without the over-

1We use the word collection to describe tweets pertaining
to a product/service/domain. For example tweets pertaining to
Apple iPhone Maps and Samsung S3 Battery are two different
collections. Tweets and comments are used interchangeably.
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Figure 1: Overall architecture of SODA.

head of manual annotations or re-training models.
It thus enables faster wide-scale analysis within and
across different domains/industries such as telecom,
healthcare, finance etc. SODA is based on an iter-
ative ensemble based adaptation technique (Bhatt et
al., 2015) which gradually transfers knowledge from
the source to the new target collection while being
cognizant of similarity between the two collections.
It has been extensively evaluated by business profes-
sionals in a user-trial and on a benchmark dataset.

2 SODA Features
Figure 1 illustrates the architecture of SODA com-
prising three primary modules, 1) similarity, 2) do-
main adaptation, and 3) active learning. The first
two modules use unlabeled data from the new col-
lection while the optional third module helps in cre-
ating labeled data for enhanced classification perfor-
mance. These modules are explained below.

2.1 Similarity

In social media analytics, especially for senti-
ment categorization, there exist numerous collec-
tions about different products or services where la-
beled data is available and thus can be used to adapt
to a new unlabeled collection. Given a target col-
lection, the key question is to identify the best pos-
sible source collection to adapt from. The similar-
ity module in SODA identifies the best adaptable
source collection based on the similarity between
the source and target collections. This is based on
the observations from existing literature (Bhatt et al.,
2015; Blitzer et al., 2007) which suggest that if the
source and target collections are similar, the adapta-
tion performance tends to be better than if the two
collections are dissimilar. The similarity module in
SODA is capable of computing different kinds of

lexical, syntactic, and semantic similarities between
unlabeled target and labeled source collections. For
this demonstration on sentiment categorization from
social media data, it measures cosine similarity be-
tween the comments in each collection and com-
putes sim as the similarity score.

2.2 Domain Adaptation

The heart of SODA is the adaptation module that
works on two principles, generalization and adapta-
tion. During generalization, it learns shared com-
mon representation (Blitzer et al., 2007; Ji et al.,
2011; Pan et al., 2010) which minimizes the diver-
gence between two collections. We leverage one
of the widely used structural correspondence learn-
ing (SCL) approach (Blitzer et al., 2007) to com-
pute shared representations. The idea adhered here
is that a model learned on the shared feature rep-
resentation using labeled data from the source col-
lection will also generalize well on the target col-
lection. Towards this, we learn a model (CS) on the
shared feature representation from the source collec-
tion, referred to as “source classifier”. CS is then
used to predict labels for the pool of unlabeled in-
stances from the target collection, referred to as Pu,
using the shared representations. All instances in Pu
which are predicted with a confidence (α1) higher
than a predefined threshold (θ1) are moved to the
pool of pseudo-labeled target instances, referred to
as Ps. We now learn a target domain model CT on
Ps using the target specific representation, referred
to as “target classifier”.
CT captures a separate view of the target in-

stances than the shared representation and hence
brings in discriminating target specific information
which is useful for categorization in target collec-
tion. For further adaptation, the source (CS) and
target (CT ) classifiers are combined in a weighted
ensemble (E) with ws and wt as the corresponding
weights and iterate over the remaining unlabeled in-
stances in Pu. In each iteration, the ensemble pro-
cesses the remaining instances and iteratively adds
confidently predicted instances to Ps which are used
to re-train/update CT . This iterative process contin-
ues till all instances in Pu are confidently labeled or
a maximum number of iterations is reached. Trans-
fer occurs within the ensemble where the source
classifier progressively facilitates the learning of tar-
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Algorithm 1 Adaptation Algorithm
Input: Cs, Q, Ct, Ps, & Pu.
Iterate: l = 0 : till Pu = {φ}
Process: Construct ensemble E → ws

lCs + wt
lCt. Initialize ws

l &
wt

l tos 0.5.
for i = 1 to n (size of Pu) do

Predict labels: E(Qxi, xi)→ ŷi; confidence of prediction: αi.
if αi > θ2 then

Move ith instance from Pu to Ps with pseudo label ŷi.
end if.

end for.
Re-train Ct & update ws

l and wt
l as:

ws
(l+1)

=
(sim∗ws

l
∗I(Cs))

(sim∗ws
l
∗I(Cs)+(1−sim)∗wt

l
∗I(Ct))

wt
(l+1)

=
((1−sim)∗wt

l
∗I(Ct))

(sim∗ws
l
∗I(Cs)+(1−sim)∗wt

l
∗I(Ct))

end iterate.
Output: Final Ct and updated weights ws and wt

get classifier by providing pseudo labeled instances.
The weights of the individual classifiers are updated,
as a function of error (I(·)) and the similarity (sim)
between the collections, which gradually shift the
emphasis from source to the target classifier. Finally,
the ensemble is used to predict labels for future un-
seen instances in the target collection. Algorithm 1
summarizes our approach (refer (Bhatt et al., 2015)
for more details).

2.3 Active Learning
SODA also implements an active learning module
to allow users to annotate a few selected informative
comments from the target collection. These com-
ments are selected using cross entropy difference
(CED) (Axelrod et al., 2011) such that the difference
with source collection and the similarity with target
collection is maximized. It selects comment(s) from
target collection that have low CED score i.e. com-
ments that have high entropy with respect to source
HS(·) and low entropy with respect to target collec-
tion HT (·) as in Equation (1).

CED(s) = HT (s)−HS(s) (1)

Note, this active learning module is optional and
should be used when the adaptation performance
with unlabeled instances is not satisfactory. More
and more instances can be annotated in multiple
rounds till a satisfactory performance is achieved.
These annotated instances are used to build a
stronger target classifier for the ensemble based
adaptation algorithm.

Figure 2: Interactive GUI of service oriented domain
adaptation (SODA) (best viewed in color).

3 Design and Internals

Figure 2(a) illustrates the interactive user interface
(UI) of SODA where one can select a new target
collection for the analysis task (i.e. sentiment cat-
egorization). For a new target collection, it identi-
fies relevant adaptable source collections based on
their similarity. One can select any of the candidate
source collections (selected collection highlighted
in Figure 2(a)) and adapt. Figure 2(b) shows the
performance report along with the predicted com-
ments from the target collection. User evaluates the
adaptation performance in unlabeled target collec-
tion by analyzing the predicted comments and de-
cides whether to annotate additional comments in
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Figure 3: The effect of labeled comments on the per-
formance while adapting from Coll-1→ Coll-6.

target collection? If yes, Figure 2(c) lists a few in-
formative comments selected using the active learn-
ing module to seek annotations. One can mark these
comments as positive, negative or neutral and subse-
quently adapt using these labeled instances from the
target collection. Figure 2(b) also shows the adap-
tation performance with a few labeled instances in
the target collection. One can continue annotating
more instances in the target collection until satis-
factory performance is achieved. For more detailed
demonstration, please refer to the video.2

The interactive UI of SODA is developed using
Ruby on Rails framework. All collections are man-
aged in MySQL server. All three modules in SODA
fetch data from the server and write the output back
to the server. All modules work in real time enabling
the system to be highly responsive to the user. The
application is hosted on Amazon AWS as RESTful
web services using Java Jersey (Tomcat server) that
act as a bridge between the UI and back end.

4 User Trial & Experimental Results

To evaluate the overall experience, a user trial was
conducted where several business professionals pro-
vided feedback on SODA. The objective was to eval-
uate the overall usability, reduction in required ef-
forts, and the performance on the new target collec-
tions. The overall evaluation rated SODA 5 on us-
ability and 4 for reduction in efforts (1 being worst
& 5 being the best). Table 1 reports the classifica-
tion accuracy of SODA with few labeled comments
from the target collection (ranging from 0 to 100). It
also reports the performance of the in-domain clas-
sifier which is trained and tested on data from the
same collection. Coll-1 to Coll-8 refer to collections
pertaining to marketing & sales, comcast support,

2https://www.youtube.com/watch?v=
zKnP5QEHVAE

Table 1: User-trial results on social media data.

Source Target Accuracy with annotations In-domain0 25 50 75 100
Coll-1 Coll-6 70 74 77 79 80 71.7
Col-2 Coll-8 73 45 71 73 79 74.5
Coll-3 Coll-5 87 94 94 93 95 92.0
Coll-4 Coll-7 83 84 94 96 96 85.7
Table 2: Results on the Amazon review dataset.

Target Source BL SCL SODA In-domain

B
E 61.5 76.1 78.9

80.4K 68.4 66.2 74.8
D 60.1 77.6 80.0

E
B 68.2 77.8 80.3

84.4D 61.5 74.1 76.4
K 76.2 83.1 85.2

K
B 71.7 78.8 80.1

87.7D 60.3 79.4 82.0
E 73.2 83.8 87.9

D
B 63.5 74.2 81.9

82.4E 62.3 74.8 80.1
K 67.4 76.5 78.8

DirectTV support, ASUS, Johnson & Johnson CSAT,
Apple iPhone6, and HUWAEI respectively. Figure
3 compares the effect of adding labeled comments
in batches of 25 comments at-a-time. When there
is no labeled data in the target collection, in-domain
classifier can not be applied while SODA still yields
good classification accuracy. Moreover, SODA con-
sistently performs better than the in-domain classi-
fier with same amount of labeled data.

We also evaluated the performance of domain
adaptation (DA) module of SODA on the Ama-
zon review dataset (Blitzer et al., 2007) which is a
benchmark dataset for sentiment categorization. It
has 4 domains, namely, books(B), dvds(D), elec-
tronics(E), and kitchen(K) each with 2000 reviews
divided equally into positive and negative reviews.
Table 2 shows that DA module of SODA outper-
forms 1) a widely used domain adaptation technique
, namely, structural correspondence learning (SCL)
(Blitzer et al., 2007; Blitzer et al., 2006), 2) the base-
line (BL) where a classifier trained on one domain
is applied on another domain, and 3) the in-domain
classifier. Note that in Table 2, the performance of
DA module of SODA is reported when it does not
use any labeled instances from the target domain.

5 Conclusion
We demonstrated SODA for efficient microblog cat-
egorization on new social media collections with
minimum (or sometimes no) need of manual anno-
tations; thus, enabling faster and efficient analytics.
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Sebastian Stüker, Alex Waibel
Institute for Anthropomatics and Robotics

Karlsruhe Institute of Technology
Adenauerring 2, 76131 Karlsruhe, Germany

m.mueller@kit.edu

Abstract

Foreign students at German universities of-
ten have difficulties following lectures as they
are often held in German. Since human in-
terpreters are too expensive for universities
we are addressing this problem via speech
translation technology deployed in KIT’s lec-
ture halls. Our simultaneous lecture transla-
tion system automatically translates lectures
from German to English in real-time. Other
supported language directions are English to
Spanish, English to French, English to Ger-
man and German to French. Automatic si-
multaneous translation is more than just the
concatenation of automatic speech recogni-
tion and machine translation technology, as
the input is an unsegmented, practically infi-
nite stream of spontaneous speech. The lack
of segmentation and the spontaneous nature of
the speech makes it especially difficult to rec-
ognize and translate it with sufficient quality.
In addition to quality, speed and latency are of
the utmost importance in order for the system
to enable students to follow lectures. In this
paper we present our system that performs the
task of simultaneous speech translation of uni-
versity lectures by performing speech trans-
lation on a stream of audio in real-time and
with low latency. The system features several
techniques beyond the basic speech translation
task, that make it fit for real-world use. Exam-
ples of these features are a continuous stream
speech recognition without any prior segmen-
tation of the input audio, punctuation predic-
tion, run-on decoding and run-on translation
with continuously updating displays in order
to keep the latency as low as possible.

1 Introduction

The rapid development of communication technol-
ogy nowadays makes it easier than ever before to
communicate with other people independent of dis-
tance. With distances becoming irrelevant, one of
the last barriers that hinders communications are dif-
ferent languages. Although English has become a
lingua franca in large parts of the world, in many sit-
uations and for many people it is not an option. The
different languages in the world also carry cultural
heritage that needs to be protected. Forcing people
to speak the same language will lead to a sever loss
of cultural diversity.

There exist multiple possibilities to overcome this
language divide. One possibility is to use inter-
preters for simultaneous interpretation. But since
this is a very costly method, it is only possible in
certain areas. One example is the European Parlia-
ment, where the demand for translation services is
met by human interpreters.

Another area that can benefit from translation ser-
vices are universities in non English speaking coun-
tries. Looking at the statistics, universities in En-
glish speaking countries have on average a higher
percentage of students from abroad. One reason for
this difference is the language barrier. While offer-
ing lectures in English might increase a university’s
attractiveness towards foreign students it is not desir-
able due to the loss in cultural identity and intellec-
tual diversity that occurs when universities around
the world stop teaching in their native language. Un-
like the European Parliament, universities do not
have the funds to employ sufficient amounts of hu-
man interpreters to simultaneously translate their
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lectures. Therefore, we developed a fully automatic
translation solution that fits a university’s budget and
deployed it within the Karlsruhe Institute of Tech-
nology (KIT). By combining state-of-the-art auto-
matic speech recognition (ASR) and machine trans-
lation (MT) with auxiliary technologies, such as re-
segmentation, punctuation prediction, and unsuper-
vised speaker and domain adaptation we created a
system that performs this task.

Developing systems for simultaneous translation
poses several challenges. While the output should
be of reasonable quality in order to being useful, the
system is required to produce it in a timely fashion.
Interactive scenarios like university lectures demand
low latency. The delay of the output should be as low
as possible in order to match the slides and the lec-
turers gestures. Due to reasons, such as multimodal
channels for the consumer and the lack of a need of
additional technology in the lecture hall, we display
the translation result as captions in a web browser
that students can view on their own devices, such as
laptops, tablets and smart phones. Preliminary stud-
ies have shown that textual output is easier to digest
than synthesized speech, especially if it does contain
errors. Lately, we introduced various improvements
in our setup to decrease the latency, e.g., by out-
putting preliminary captions fast and, if necessary,
updating parts as both the transcription and transla-
tion hypotheses stabilize over time as more context
is becoming available.

2 Related Work

The development of systems for speech translation
started in the 90s. First systems were able to trans-
late very domain specific and formalized dialogues.
Later, systems supported greater variety in language,
but were still built for specific domains (Stüker et al.,
2007).

Despite a difference in the overall quality of the
translations, MT systems suffer from not being able
to anticipate context like human interpreters. MT
systems are unable to do so because of the lack of
background and context knowledge. This results in
a higher delay of the translation. But there has been
some research towards the reduction of the latency
and the translation of incomplete utterances (Fügen
and Kolss, 2007), (Sridhar et al., 2013), (Oda et al.,

2015). The goal is to find the optimal threshold be-
tween quality and latency (Shavarani et al., 2015),
(Yarmohammadi et al., 2013), (Oda et al., 2014).

With ongoing research and development, the sys-
tems have matured over the years. In order to as-
sess whether our system helps students to better un-
derstand lectures, we have conducted a user study
(Müller et al., 2016) (to appear). The outcome was
that students actually benefit from our system.

3 Speech Translation Framework

The Speech Translation Framework used for the lec-
ture translation system is a component based archi-
tecture. It is designed to be flexible and distributed.
There are 3 types of components: A central server,
called the “mediator”, “workers” for performing dif-
ferent tasks and clients that request certain services.
Our setup has 3 different kinds of workers: ASR sys-
tems, punctuation predictors and MT systems. But
the communication protocol itself does not distin-
guish between these different types and does not
limit the types of work be to performed.

Each worker registers on the central mediator,
providing a “fingerprint” and a name the mediator.
The fingerprint tells the mediator which type of ser-
vice the worker provides. Based on these finger-
prints, the mediator selects the appropriate chain of
workers to perform the requested task. E.g., if a
client asks for a Spanish transcription of English au-
dio, the mediator would first select an English ASR
worker and would then route the output through a
segmenter for English Text and finally run the out-
put through the MT to translate the English text into
Spanish.

4 Lecture Translator

4.1 System Description

The Lecture Translator (LT) at KIT was imple-
mented based on the speech translation framework
described above (Cho et al., 2013). We devel-
oped all workers in-house. The audio is being tran-
scribed using the Janus Recognition Toolkit (JRTk)
(Woszczyna et al., 1994), which features the IBIS
single-pass decoder (Soltau et al., 2001). The acous-
tic model was trained using several hundred hours of
recordings from lectures and talks.

83



Figure 1: User interface of the Lecture Translator showing an ongoing session

For translation, we used a phrase-based decoder
(Vogel, 2003). It uses advanced models for domain
adaptation, bilingual and cluster language models in
addition to Discriminative Word Lexica for produc-
ing the translation. We use POS-based word reorder-
ing (Rottmann and Vogel, 2007; Niehues and Kolss,
2009). The translation model was trained on 1.8 mil-
lion sentences of parallel data. It includes data from
various sources and in-domain data.

4.2 System Operation

The LT is in regular use for multiple years now and
currently translates approx. 10 different lectures per
term. We have installed this system in multiple lec-
ture halls, among them KIT’s largest hall, called
“Audimax”.

In each hall, the system is tightly integrated in the
PA to ensure smooth operation. The audio is cap-
tured via the PA from the microphone that the lec-
turer uses to address the audience. The operation of
the system itself is time controlled: It starts at the
time when the lecture begins and runs until the lec-

ture is finished. The workers of the system run dis-
tributed over multiple servers. This ensures overall
system stability as it allows for fail-overs in case of
server failure. There are multiple instances of each
worker running in order to translate multiple lectures
in parallel.

During the every day operation the LT does not re-
quire any special preparations from the lecturer prior
to each lecture because of the integration into the PA
and the time controlled operation. But the quality of
the output can be improved if slides or lecture notes
are being made available beforehand. This way, the
system is able to adapt to the specific domain of a
lecture by covering any terms or named entities spe-
cial to this lecture. The second advantage that we
use is that the same lectures are usually given re-
peatedly in different terms. This way, we can use
several iterations of the same lecture to improve the
performance. Using the collected data, we adapt the
ASR to certain speakers and ASR and MT to certain
topics.

As the goal is to provide the service as cost effi-
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cient as possible, we decided to use the devices that
the students already own to display the output. The
Lecture Translator is therefore a web based service.
Listeners wanting to see the transcription can go to
the website of the service1 to see a list of currently
running sessions. Depending on the permissions
from the lecturer, the output can be displayed either
only to people who know the password or viewers
from within KIT or globally. A screen-shot from the
user interface running an active session is shown in
Figure 1. The transcription is displayed on the left
part of the window while the translation is shown on
the right. The user has the choice of various target
languages, depending on the source language.

Our system currently supports the translation
from German audio into English and French text.
Using English as input language, the system is able
to produce French, German and Spanish output.

5 Intermediate Output

One of the main problems of earlier versions of our
speech translation framework was the latency of the
system. Since machine translation systems are usu-
ally trained on sentence level, the translation can
only be displayed if the whole sentence is recog-
nized. In order to overcome this drawback, we ex-
tended our framework to handle intermediate out-
puts. This allows us to display a translation of a
partly recognized sentence and later update it with
the translation of the whole sentence. The same
technique is also be applied to the to display inter-
mediate hypotheses from the speech recognition that
are later updated.

In the framework, each message has properties
defining the time span to which its content relates.
For example, if the MT component generates a new
translation, it will generate a message with the start
and end time of the translation and the translation
itself. In the baseline system, the start time has to
be equal or greater than the end time of all previous
messages.

In order to limit the complexity, we only allow to
update the most recent messages. Every time a mes-
sage with a new starting time is received, this im-
plicitly will mark all messages prior to this starting
time as final and no updates to the content of these

1http://lecture-translator.kit.edu

messages is allowed. Allowing updates for every
message would be too complex, as we also allow to
change the time span of the updated messages. This
would lead to difficulties for all messages except the
most recent one. Furthermore, in this case the dif-
ferent components would need to store information
about the whole session instead of only information
about the non-final sections.

In order to facilitate the new possibilities of the
framework, each component was extended in order
to handle intermediate output and input. On the in-
put side, the content of the new message can no
longer be simply attached to the previous output,
but it might also overwrite part of the stored content.
Therefore, additional bookkeeping is necessary. On
the output side, we can now already output prelim-
inary results and later update them with better hy-
potheses.

When generating new messages we have to make
sure that we do not mark content as final by using
a new start time for the next message although the
input for this text has not been marked final by the
previous component.

6 Conclusion

In this paper we presented our automatic simultane-
ous translation system for university lectures. The
lecture translator is installed in four lecture halls at
KIT and has been running for several years now. The
system features several techniques that are specif-
ically tailored at the needs of a simultaneous sys-
tem processing an unsegmented stream of continu-
ous speech. Feedback from the students and a sys-
tematic user study have shown that the system helps
students to better follow the lectures if they are not
(yet) completely fluent in German. Currently we are
increasing the number of lecture halls at KIT that
the system is installed in and are working with other
universities that are also interested in deploying the
system.
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Abstract

Zara the Supergirl is an interactive system
that, while having a conversation with a user,
uses its built in sentiment analysis, emo-
tion recognition, facial and speech recogni-
tion modules, to exhibit the human-like re-
sponse of sharing emotions. In addition, at
the end of a 5-10 minute conversation with the
user, it can give a comprehensive personality
analysis based on the user’s interaction with
Zara. This is a first prototype that has incorpo-
rated a full empathy module, the recognition
and response of human emotions, into a spo-
ken language interactive system that enhances
human-robot understanding. Zara was shown
at the World Economic Forum in Dalian in
September 2015.

1 Introduction

“Sorry I didn’t hear you” maybe the first empathetic
utterance by a commercial machine. Since the late
1990s when the Boston company SpeechWorks In-
ternational began providing their customer-service
software to other numerous companies, which was
programmed to use different phrases, people have
gotten used to speaking to machines. As people in-
teract more often by voice and gesture, they expect
the machines to have more emotional intelligence,
and understand other high level communication fea-
tures such as humor, sarcasm and intention. In or-
der to make such communication possible, the ma-
chines need an empathy module in them, which is a
software system that can extract emotions from hu-
man speech and facial expressions, and can accord-
ingly decide the correct response of the robot. Al-

Figure 1: Screenshot of Zara

though research on empathetic robots is still in the
primary stage, current methods involve using signal
processing techniques, sentiment analysis and ma-
chine learning algorithms to make robots that can
‘understand’ human emotion (Fung, 2015).

We propose Zara the Supergirl as a prototype sys-
tem. It is a web program running on a server in
the cloud. It is basically a virtual robot, with an
animated cartoon character to present itself on the
screen. Along the way it will get ‘smarter’ and more
empathetic, by having machine learning algorithms,
and gathering more data and learning from it. Later
stage would involve installing the program into a
humanoid robot, and therefore give Zara a physical
body.

2 System Description

2.1 Design and Training

Zara’s current task is a conversational MBTI per-
sonality assessor and we designed 6 categories of
personality-assessing questions, each named as a
‘state’, in attempts to assess the user’s personal-
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Figure 2: System state diagram

ity (Polzehl et al., 2010). These 6 states inquire
about the user’s earliest childhood memory, his or
her last vacation, challenges at work, creative story-
telling, friendship, and affinity toward human-robot
conversations. Each state comprises of a series of
questions, beginning with one opening inquiry with
follow-up questions depending on the length of the
user’s preceding response. Each user is allocated 5-6
minutes to complete the personality assessment (ap-
prox. 1-2 minutes per question). The tests are con-
ducted independently using url link rendered on a
browser using built-in microphone and camera on
Macs and PCs.

A dialog management system with different states
is designed to control the flow of the conversation,
which consists of one part machine-initiative ques-
tions from Zara and answers from human users, and
another part user-initiative questions and challenges
to Zara.

2.2 Facial and Speech Recognition

At the beginning of the conversation with the user,
the program waits until a face is detected. The face
recognition algorithm analyses the image captured
by the computer’s webcam to guess a possible gen-
der and ethnicity.

For our speech recognition module, we use En-
glish audio data with 1385hrs from LDC corpora
and public domain corpora for acoustic model train-
ing. We train our acoustic models by Kaldi speech
recognition toolkit (Povey et al., 2011). We train
deep neural network (DNN) HMMs with 6 hid-
den layers. The DNN is initialized with stacked
restricted Boltzmann machines (RBMs) which are
pre-trained in a greedy layerwise fashion. Cross-

entropy (CE) criterion DNN training is first applied
on the state alignments produced by discriminative
trained GMM-HMMs. State alignment is then re-
produced with DNN-HMMs, and DNN training with
CE criterion is done again. Finally, sequence dis-
criminative training on DNN-HMMs with state level
minimum Bayes risk (sMBR) criterion is applied.

Our text data contains 88.6M sentences. It com-
prises acoustic training transcriptions, web crawled
news and book data, Cantab filtering sentences on
Google 1 billion word LM benchmark, weather
domain queries, music domain queries and com-
mon chat queries. We train witten-bell smooth-
ing interpolated trigram language model (LM) and
CE based recurrent neural network (RNN) LM us-
ing the SRI-LM toolkit (Stolcke and others, 2002)
and CUED-RNNLM toolkit (Chen et al., 2016) re-
spectively. The ASR decoder performs search on
weighted finite state transducer (WFST) graph for
trigram LM and generates lattice, and then performs
lattice rescoring with RNN LM. The decoder is de-
signed for input audio data that is streamed from
TCP/IP or HTTP protocol, and performs decoding
in real time. The decoder supports simultaneous
users by multiple threads and user queue. The ASR
system achieves 7.6% word error rate on our clean
speech test data.

2.3 Audio features for emotion recognition

The dataset we used for training speech emotion
recognition is from the Emotional Prosody Speech
and Transcripts, Linguistic Data Consortium (LDC)
catalog number LDC2002S281 and ISBN 1-58563-
237-6 (Liberman et al., 2002). The recordings con-
tain audio and transcripts, which consist of profes-
sional actors reading a series of semantically neutral
utterances (dates and numbers). There are 15 senti-
ments, 7 subjects and a total number of 2445 utter-
ances. Each subject reads around 3,000 seconds.

We use openSMILE (Eyben et al., 2010) to ex-
tract features from LDC dataset. The features are
calculated based on the INTERSPEECH 2009 Emo-
tion Challenge feature set for emotion recognition.
The final features are computed from a series of in-
put frames and output a single static summary vec-
tor, e.g, the smooth methods, maximum and min-

1https://catalog.ldc.upenn.edu/LDC2002S28
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Figure 3: Binary classification accuracy in percentage for each

sentiment

imum value, mean value of the features from the
frames (Liscombe et al., 2003).

For each sentiment, there are around 170 utter-
ances. We implement an SVM learning method on
the binary classification. We first construct a bal-
anced dataset for each sentiment by choosing the
same number of utterances per sentiment. Then we
split the data into three categories, i.e. training, de-
veloping and testing parts in the ratio 6:2:2. We train
the SVM with linear kernel and the maximum iter-
ation time is 5,000. The development set is used to
tune the number of iteration times. The model is
chosen from the highest accuracy results from the
development set (results given in figure 3).

2.4 Language understanding for sentiment
analysis

In the first version of Zara, sentiment analysis is
based on natural language understanding of lexi-
cal features. We look for keyword matches from a
pool of positive and negative emotion lexicons from
LIWC2 dictionary. The positive lexicons have posi-
tive scores, and the negative lexicons have negative
scores (Pennebaker et al., 2015). Moreover, when a
negate word (‘do not’, ‘cannot’, etc) is present along
with the emotion words, then the score is adjusted
accordingly (for example, “I am not at all happy”
would have a negative score, even though ‘happy’ is
a positive emotion lexicon).

If there are more than five words in a sentence,
then a n-gram model is used containing a number
of 5 grams, which is then further analysed to give
a total sentiment score across all the 5-grams. This
tends to perform better than non n-gram methods in
the case for long sentences.

2.5 Personality Analysis

We designed a set of personal questions in six dif-
ferent domains in order to classify user personal-

2http://liwc.wpengine.com/

Figure 4: Summary of identified language cues for extraversion

and various production levels (Mairesse et al., 2007)

ity from among sixteen different MBTI personality
types3. The original MBTI test questionnaire con-
tains about 70 questions. We asked a group of train-
ing users to answer this questionnaire but also an-
swer questions from Zara. The personality type gen-
erated by the MBTI questionnaire is used as the gold
standard label for training the Zara system. Based on
user answers to Zara’s questions, scores are calcu-
lated in four dimensions (namely Introversion - Ex-
troversion, Intuitive - Sensing, Thinking - Feeling,
Judging - Perceiving).

We use the output of the sentiment analysis from
language and emotion recognition from speech as
linguistic and speech cues to calculate the score for
each personality dimension based on previous re-
search (Mairesse et al., 2007). For each response,
the individual score for each of the four dimensions
is calculated and updated, and the final score in each
dimension is the group average of all the responses.

3 Handling user challenges

The personality test consists mostly of machine-
initiative questions from Zara and human answers.
However, as described in the user analysis section
below, there are scenarios where the user does not
respond to questions from Zara directly. 24.62%
of the users who tried Zara exhibited some form of
verbal challenge in their responses during the dia-
logue conversation, of which 37.5% of users evade
the questions with an irrelevant answer. 12.5% of

3https://www.personalitypage.com/html/
high-level.html
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users challenged Zara’s ability more directly with
questions unrelated to the personality test.

Challenge here refers to user responses that were
difficult to handle and impeded the flow of conversa-
tion with Zara. They include the following 6 types:
1. Seeking disclosure reciprocity; 2. Asking for
clarification; 3. Avoidance of topic; 4. Deliberate
challenge of Zara’s ability; 5. Abusive language; 6.
Garbage.

Several of the above categories can be observed
in human-human interactions. For instance, seek-
ing disclosure reciprocity is not uncommon in hu-
man conversations (Wheeless and Grotz, 1977).

Responses that revealed some form of avoidance
of topic was the largest response group. Avoidance
in psychology is viewed as a coping mechanism in
response to stress, fear, discomfort, or anxiety (Roth
and Cohen, 1986). In the dataset collected, two
types of avoidance were observed. Users who ac-
tively avoid the topic specifically reveal their unwill-
ingness to continue the conversation (“I dont want to
talk about it”, “I am in no mood to tell you a story
Zara”) while users who adopts a more passive strat-
egy had the intent to discontinue the conversation
implied (“Let’s continue.”, “Make it a quick one”,
“You know...”).

Abusive language includes foul, obscene, cultur-
ally and socially inappropriate remarks and the like.
Currently collected data revealed surprisingly few
inappropriate comments such as “get lost now” and
“None of your business”. These challenges are com-
paratively mild. Owing to the context of Zara’s role
as a personality assessor, the reasons here for abuse
could be the need to trust the robotic assessor and
feeling of discomfort instead of the common en-
joyment or group thinking reasons (Nomura et al.,
2015).

Asking for clarification examples included “Can
you repeat?” and “Can you say it again?”. Clarifica-
tion questions observed in this dataset are primarily
non- reprise questions as a request to repeat a previ-
ous utterance (Purver, 2004).

Deliberate challenge of a robot’s ability was also
observed. This took the form of direct requests
(“Can I change a topic?”, “Why can’t you speak
English?” in the Chinese mode), or statements un-
related to the questions asked (“Which one is 72.1
percent?”).

Zara is programmed with a gentle but witty per-
sonality to handle different user challenges. For ex-
ample, when abusive language is repeatedly used
against her, she would ask for an apology after ex-
pressing concern for the user’s level of stress. If
the user asks a general domain question unrelated to
the personality test (e.g. “What is the population of
Hong Kong”), Zara will try to entertain the question
with an answer from a general knowledge database
using a search engine API4, much like Siri or Cor-
tana. However, unlike these other systems, Zara will
not chat indefinitely with the user but will remind
the user of their task at hand, namely the personality
test.

4 Future Work

We are also working on a second approach for the
audio emotion recognition. This uses a deep neural
network framework, with raw audio data from TED5

audio database as training data. A total of around
200 hours of TED audio data was used, and was la-
belled in 13-second frames. This labelled data was
used to train a binary classifier of 11 different mood
categories.

An FFmpeg command-line software is used to ex-
tract the envelop of the raw audio input. Each value
is a 16-bit integer. Since the sample rate is 8 kHz and
each training sample is around 10 seconds in length,
the input dimension should be 80,000. We set 5 ms
(40 integers) as the window size and 3.25 ms (26 in-
tegers) as the moving step for the first convolutional
layer. The regional max-pooling layer takes 40 vec-
tors each time. The window size of the second con-
volutional layer is 26 which is slightly smaller than
the first one. The moving step is 1. We execute the
maximum function over all the vectors of the outputs
of the second pooling layer.

There are two convolutional, two max-pooling
and one embedding layers in the CNN model. The
first convolutional layer accepts a short period of au-
dio as input. Then the model moves to convolute
the adjacent period of audio with fixed overlap of
last period, and the vector input is converted into
a matrix. The next layer, max-pooling layer, is a
form of non-linear down-sampling. It partitions the

4https://www.houndify.com//
5https://www.ted.com/talks
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input matrix into a set of non-overlapping smaller
matrices. For each sub-region, it outputs the entry-
wise maximum value in one dimension. The second
max-pooling layer is to output the entry-wise max-
imum on the entire matrix instead of sub-regions,
which outputs a vector. The embedding layer per-
forms similar function as that of a multi layer per-
ceptron, which maps the vector into a probabilistic
distribution over all categories (Palaz and Collobert,
2015) (Golik et al., 2015).

5 Conclusion

We have demonstrated a prototype system of an em-
pathetic virtual robot that can recognize user per-
sonalities from speech, language and facial cues. It
is too early to say that the time of empathetic and
friendly robots has arrived. We have so far devel-
oped only the most primary tools that future emo-
tionally intelligent robots would need. The empa-
thetic robots including Zara that are there currently,
and the ones that will be there in the near future,
might not be completely perfect. However, the most
significant step is to make robots to be more human
like in their interactions. This means it will have
flaws, just like humans do. If this is done right, then
future machines and robots will be empathetic and
less likely to commit harm in their interactions with
humans. They will be able to get us, understand our
emotions, and more than anything, they will be our
teachers, our caregivers, and our friends.
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Abstract

In this paper, we present Kathaa1, an
open source web based Visual Programming
Framework for NLP applications. It supports
design, execution and analysis of complex
NLP systems by choosing and visually con-
necting NLP modules from an already avail-
able and easily extensible Module library. It
models NLP systems as a Directed Acyclic
Graph of optionally parallalized information
flow, and lets the user choose and use avail-
able modules in their NLP applications irre-
spective of their technical proficiency. Kathaa
exposes a precise Module definition API to al-
low easy integration of external NLP compo-
nents (along with their associated services as
docker containers), it allows everyone to pub-
lish their services in a standardized format for
everyone else to use it out of the box.

1 Introduction

Natural Language Processing systems are inherently
very complex, and their design is heavily tied up
with their implementation. There is a huge diversity
in the way the individual components of the com-
plex system consume, process and spit out infor-
mation. Apart from that, many of the components
also have associated services which in many cases
are really hard to replicate and/or setup. Hence,
most researchers end up writing their own in-house
methods for gluing the components together, and
in some cases, own in-house re-implementations
of the individual components, often inefficient re-
implementations. And on top of that, most of the

1https://github.com/kathaa/kathaa

popular NLP components make many assumptions
about the technical proficiency of the user who will
be using those components. All of these factors
clubbed together shut many potential users out of
the whole ecosystem of NLP systems, and hence
many potentially creative applications of these com-
ponents. With Kathaa, we aim to separate the design
and implementation layers of Natural Language Pro-
cessing systems, and efficiently pack every compo-
nent into consistent and reusable black-boxes which
can be made to interface with each other through an
intuitive visual interface, irrespective of the software
environment in which the components reside, and
irrespective of the technical proficiency of the user
using the system. Kathaa builds on top of numerous
ideas explored in the academia around Visual Pro-
gramming Languages in general(Green and Petre,
1996) (Shu, 1988) (Myers, 1990), and also on Vi-
sual Programming Languages in the context of NLP
(Cunningham et al., 1997).

2 Kathaa Modules

Kathaa Modules are the basic units of computa-
tion in the proposed Visual Programming Frame-
work. They consume the input(s) across multiple
input channels, process them, and finally pass on
their output(s) across the many output channels they
might have. The user has access to a whole array of
such modules with different utilities via the Kathaa
Module Library. The user can connect together these
modules in any combination as he pleases, as long
as the modules are compatible with each other. The
user also has the ability to tinker with the function-
ality of a particular module in real time by using an
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Figure 1: Example of a Hindi-Panjabi Machine Translation System, visually implemented using Kathaa.

embedded code editor in the Kathaa Web Interface
during or before the execution of the Kathaa Graph.

2.1 Kathaa Data Blobs
Every module receives inputs across multiple chan-
nels, or ports. Every input channel receives the data
in the form of a series of kathaa-data-blobs, and all
the input channels have the exact same number of
kathaa-data-blobs. Data blobs are processed in par-
allel by different instances of the same module dur-
ing execution, and most modules generate the same
number of data blobs across all their output chan-
nels. The concept of numerous data blobs spread
across multiple input channels enables us to effi-
ciently empower module writers to leverage from
the inherent parallelizability in tasks performed by
numerous NLP components. For example, some
modules might work at the level of sentences, so if
we have multiple sentences as inputs to this module,
all of them are passed as different kathaa-data-blobs
so that the framework can efficiently parallelize their
processing depending, of course, on the availability
of resources. Similarly, other modules could expect
parallelizability at the level of words, or phrases or
even a whole discourse. The kathaa-data-blobs were
very much inspired by the data-blobs used in Caffe.
(Jia et al., 2014)

2.2 Types of Kathaa Modules

2.2.1 Kathaa General Modules
As mentioned previously, most modules produce

the exact same number of kathaa-data-blobs as they
receive across their input channels. This can be
guaranteed because during execution, all the paral-
lel instances of the module are provided only a sin-
gle kathaa-data-blob in each of their input channels,
and when they are done processing, they write a sin-
gle kathaa-data-blob across their output channels.
The kathaa-orchestrator deals with the separation
of the blobs before passing the inputs to the mod-
ule instance, and the aggregation of the blobs after
each instance of the module has finished processing
their corresponding kathaa-data-blobs. These type
of modules can be basically called as the Kathaa
General Modules. To illustrate the above described
concepts we implement a very simple Echo mod-
ule2, which simply takes in a few data blobs across
a single channel, and spits out the same into a single
output channel. We also have a very flexible imple-
mentation of a Custom Module3 which can act as a
quick starting point when defining Kathaa General
Modules.

2https://git.io/vV4RA
3https://git.io/vV4Rp
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2.2.2 Kathaa Blob Adapters
Kathaa Blob Adapters, on the other hand are a

class of Kathaa Modules, which are provided with
all the blobs across all their input channels at the
same time, and they have the ability to modify the
number of blobs and pass it over to their output
channels. They can be used in giving the user a more
fine grained control over the parallalizability of dif-
ferent parts of their Kathaa graphs by using kathaa-
data-blobs. For example, a graph which receives a
whole discourse as a single blob, might want to pro-
cess the sentences parallely, and they could use a
line-splitter4 to split the whole discourse represented
as a single kathaa-data-blob into multiple kathaa-
data-blobs each representing a single sentence, and
when finally the user desired processing of the in-
dividual sentences are complete, a line-aggregator5

could be used to aggregate the processed sentences
again into a single kathaa-data-blob. Similar kathaa-
blob-adapters could be implemented to deal with
splitting and aggregation of kathaa-data-blobs at the
level of words, phrases, or even some custom logic.
Kathaa Blob Adapters will be crucial in exercising
the control over the inherent parallalisation support
in Kathaa Orchestrator. For example, in contrast
to the example cited above, if we are dealing cer-
tain language processing tasks which are inherently
not parallalizable after a certain level of granular-
ity, like say Anaphora Resolution, Multi Document
Summarisation, etc, the user will have to use an ap-
propriate Kathaa Blob Adapter, to make sure that
all the information that is required for the partic-
ular language processing task is available as a sin-
gle blob to be passed onto the module. In the case
of Anaphora Resolution, a single Kathaa Blob will
contain a string of N sentences, and in the case of
Multi Document Summarisation, a single Kathaa
Blob will contain a string of M Documents. In both
the previous cases, the module can receive multi-
ple such Kathaa Blobs, which can then be processed
parallely based on the availability of resources.

2.2.3 Kathaa User Intervention Module
In some NLP systems, the overall execution of the

system might have to halt for some kind of user feed-
back. Like in the case of resource creation, where

4https://git.io/vV4Rj
5https://git.io/vV40v

for example, you start with a bunch of sentences,
parse them using an available parser module, and
then you would want to add Anaphora annotations
by a human annotator (Sangal and Sharma, 2001).
In that case, a Kathaa User Intervention Module
could be used, where the overall execution at the par-
ticular node in the graph halts till the user modifies
the kathaa-data-blobs as he pleases and resumes the
execution at the said node. Kathaa core implements
a Kathaa User Intervention6 module for reference.

2.2.4 Kathaa Resource Module
Kathaa Resource Modules are the class of

Kathaa Modules which do not do any processing of
the data, but instead they store and provide a corpus
of text which can be used by any of the modules in
the whole graph during execution.

2.2.5 Kathaa Evaluation Module
The aim of Kathaa is to provide an intuitive en-

vironment for not only prototyping and deployment
but also debugging and analysis of NLP system.
Hence, we include a class of modules called as
Kathaa Evaluation Modules which very much like
Kathaa Blob Adapters receive all the blobs across all
the input channels, and do some analysis and spit out
the results into the output channels. While in prin-
ciple this a subset of Kathaa Blob Adapters, these
modules enjoy a separate category among Kathaa
Modules because of their utility in designing com-
plex NLP systems. We implement a sample classi-
fication evaluator7 to help researchers quickly come
up with easy to visualize confusion matrices to aid
them in evaluating the performance of any of their
subsystems. This could act as a starting point for
easily implementing any other Evaluation modules.

2.3 Kathaa Module Services

Most popular NLP Components work in completely
different software environments, and hence stan-
dardizing the interaction between all of them is a
highly challenging task. Kathaa allows every mod-
ule to define an optional service by referencing a
publicly available docker container in the module
definition. Kathaa deals with the life-cycle man-
agement of the referenced containers on a config-

6https://git.io/vV40U
7https://git.io/vV40f
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urable set of Host Machines. The corresponding
kathaa-modules function definition then acts as a
light weight wrapper around this service. This fi-
nally enables different research groups to publish
their service in a consistent and reusable way, such
that it fits nicely in the Kathaa Module ecosystem.

2.4 Kathaa Module Packaging and
Distribution

Kathaa Modules reside as a collection of Kathaa
Module Groups in a publicly accessible git Repos-
itory. Each of these modules have a specification
definition file called as package.json, where the
author of the module has to specify the basic meta-
data about the module like the name, version, input
channels, output channels, etc. The user has the op-
tion to reference the corresponding Kathaa-Service
by referencing the Docker container in this file. The
type of the input and output channels can also be
specified to mark compatibility of different modules
with each other. A sample example of a Kathaa
module template can be seen in the case of the cus-
tom module8. All the supported Module Groups for
a particular Kathaa Instance can be referenced di-
rectly by their publicly available links on the Kathaa
Server, and under the hood, Kathaa deals with the
dependency resolution of the modules, download-
ing of all the modules, instantiation of the associated
Docker Container if any, etc.

2.5 Kathaa Interface

Kathaa Interface lets the user design any complex
NLP system as a Directed Acyclic Graph with the
Kathaa Modules as nodes, and edges being the flow
of kathaa-data-blobs between them. Users have the
option to not only execute any such graph, but also
interact with it in real time by changing both the state
and functionality of any of the module right from
within the interface. It can be a really useful aid
in debugging complex systems, as it lets the User
easily visualize and modify the flow of kathaa-data-
blobs across the whole Kathaa Graph. Apart from
that, it also encourages code-reuse by lettings users
”Fork” a graph, or ”remix” the designs of NLP sys-
tems to come up with better and adapted versions of
the same systems.

8https://git.io/vV40J

2.6 Kathaa Orchestrator

Kathaa Orchestrator is at the core of the whole Vi-
sual Programming Framework. Kathaa Orchestrator
obtains the structure of the Kathaa Graph and the ini-
tial state of the execution initiator modules from the
Kathaa Interface, and then it goes on to efficiently
orchestrate the execution of the graph depending on
the nature and state of the modules, while dealing
with process parallelisms, module dependencies, etc
under the hood.

3 Use Cases

Kathaa, as a Visual Programming Framework was
developed with Sampark Machine Translation Sys-
tem as a use case. We ported all the modules
of the Hindi-Panjabi9 and Hindi-Urdu10 Translation
Pipelines of Sampark Machine Translation System
into Kathaa (SAM, 2016). We then demonstrated
the use of Kathaa in creation of NLP Resources by
the use of Kathaa User Intervention modules, and
also moved on to demonstrate visual analysis of dif-
ferent classification approaches by using the Kathaa-
Classification-Evaluation module. We are currently
also exploring the use of Kathaa in classrooms to
help students interact with and design complex NLP
systems with a much lower barrier to entry. All these
example Kathaa Graphs are the seed Graphs that are
included in the repository, and can be used out of the
box. It is important to note that these use cases that
we managed to explore are only the tip of the iceberg
when it comes to what is possible using a framework
like Kathaa. One of the key features in Kathaa which
enables for it to be used in a whole range of use cases
is the easy extensibility. The Kathaa Module Defini-
tion API, enables the user of the system to theoreti-
cally define any function as a Kathaa Module. Also,
Kathaa internally works using event triggers, hence
making it a practical possibility to define modules
which may run for days or weeks, quite helpful
when exploring Kathaa for use cases where the user
might want to define a Kathaa Module which trains
a model based on some pre-processed data. The
NPM(Tilkov and Vinoski, 2010) inspired packag-

9https://github.com/kathaa/
hindi-panjabi-modules

10https://github.com/kathaa/
hindi-urdu-modules
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ing system, is again something which we believe
can help with large scale adoption of a system like
Kathaa. It paves the way for a public contributed
repository of NLP components, all of which can be
mashed together in any desired combination. The
ability to optionally package individual services us-
ing Docker Containers also helps make a strong case
when pitching for the possibility of a large public
contributed repository of NLP components. These
are a few things which set Kathaa apart from already
existing systems like LAPPS Grid(Ide et al., 2014),
ALVEO(Cassidy et al., 2014) where the easy exten-
sibility of the system is a major bottleneck in its
large scale adoption. The interoperability between
existing systems is also of key importance, and the
design of Kathaa accommodates for its easy adap-
tation to be used along with other similar system.
The assumption, of course, is that a wrapper Kathaa
Module has to be designed for each target system
using the Kathaa Module Definition API. The wrap-
per modules would be completely decoupled from
the Kathaa Core codebase, and hence can be de-
signed and implemented by anyone just like any
other Kathaa Module.

A demonstration video of many features and use
cases of Kathaa is also available to view at :

https://youtu.be/woK5x0NmrUA

4 Conclusion

We demonstrate an open source web based Visual
Programming Framework for NLP Systems, and
make it available for everyone to use under a MIT
License. We hope our efforts can in some way cat-
alyze more new and creative applications of NLP
components, and enables an increased number of re-
searchers to more comfortably tinker with and mod-
ify complex NLP Systems.
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Abstract

Despite widespread adoption in NLP, machine
learning models remain mostly black boxes.
Understanding the reasons behind predictions
is, however, quite important in assessing trust
in a model. Trust is fundamental if one plans
to take action based on a prediction, or when
choosing whether or not to deploy a new model.
In this work, we describe LIME, a novel expla-
nation technique that explains the predictions
of any classifier in an interpretable and faith-
ful manner. We further present a method to
explain models by presenting representative in-
dividual predictions and their explanations in a
non-redundant manner. We propose a demon-
stration of these ideas on different NLP tasks
such as document classification, politeness de-
tection, and sentiment analysis, with classifiers
like neural networks and SVMs. The user inter-
actions include explanations of free-form text,
challenging users to identify the better clas-
sifier from a pair, and perform basic feature
engineering to improve the classifiers.

1 Introduction

Machine learning is at the core of many recent ad-
vances in natural language processing. Unfortunately,
the important role of humans is an oft-overlooked as-
pect in the field. Whether humans are directly using
machine learning classifiers as tools, or are deploying
models into products that need to be shipped, a vital
concern remains: if the users do not trust a model or
a prediction, they will not use it. It is important to
differentiate between two different (but related) defi-
nitions of trust: (1) trusting a prediction, i.e. whether

a user trusts an individual prediction sufficiently to
take some action based on it, and (2) trusting a model,
i.e. whether the user trusts a model to behave in rea-
sonable ways if deployed “in the wild”. Both are
directly impacted by how much the human under-
stands a model’s behavior, as opposed to seeing it as
a black box. Recent resurgence of neural networks
has resulted in state-of-art models whose working is
quite opaque to the user, exacerbating this problem.

A common surrogate for ascertaining trust in a
model is to evaluate accuracy on held-out annotated
data. However, there are several ways this evaluation
can go wrong. Data leakage, for example, defined as
the unintentional leakage of signal into the training
(and validation) data that would not occur in the wild
(Kaufman et al., 2011), potentially increases accu-
racy. Practitioners are also known to overestimate the
accuracy of their models based on cross validation
(Patel et al., 2008), as real-world data is often signifi-
cantly different. Another particularly hard to detect
problem is dataset shift (Candela et al., 2009), where
training data is different than test data. Further, there
is frequently a mismatch between that metrics that
we can compute and optimize (e.g. accuracy) and the
actual metrics of interest such as user engagement
and retention. A practitioner may wish to choose a
less accurate model for content recommendation that
does not place high importance in features related
to “clickbait” articles (which may hurt user reten-
tion), even if exploiting such features increases the
accuracy of the model in cross validation.

In this paper, we describe a system that explains
why a classifier made a prediction by identifying
useful portions of the input. It has been observed
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that providing an explanation can increase the ac-
ceptance of computer-generated movie recommen-
dations (Herlocker et al., 2000) and other automated
systems (Dzindolet et al., 2003), and we explore their
utility for NLP. Specifically, we present:

• LIME, an algorithm that can explain the predic-
tions of any classifier, by approximating it locally
with an interpretable model.

• SP-LIME, a method that selects a set of representa-
tive explanations to address the “trusting the model”
problem, via submodular optimization.

• A demonstration designed to present the benefits
of these explanation methods, on multiple NLP
classification applications, classifier algorithms,
and trust-related tasks.

2 Explaining Predictions and Models

By “explaining a prediction”, we mean presenting vi-
sual artifacts that provide qualitative understanding of
the relationship between the instance’s components
(e.g. words in text) and the model’s prediction. Ex-
plaining predictions is an important aspect in getting
humans to trust and use machine learning effectively,
provided the explanations are faithful and intelligible.
We summarize the techniques here; further details
and experiments are available in Ribeiro et al. (2016).

Local Interpretable Model-Agnostic
Explanations

We present Local Interpretable Model-agnostic Ex-
planations (LIME). The overall goal of LIME is
to identify an interpretable model over the inter-
pretable representation that is locally faithful to pre-
dictions of any classifier. It is important to distin-
guish between features and interpretable data repre-
sentations, the latter is a representation that is under-
standable to humans, regardless of the actual features
used by the model. A possible interpretable represen-
tation for text is a binary vector indicating the pres-
ence or absence of a word, even though the classifier
may use more complex (and incomprehensible) fea-
tures such as word embeddings. We denote x ∈ Rd

as the original instance, and x′ ∈ {0, 1}d′
to denote

a binary vector for its interpretable representation.
Formally, we define an explanation as a model

g ∈ G, where G is the class of linear models,

such that g(z′) = wg · z′ Note that g acts over ab-
sence/presence of the interpretable components, i.e.
we can readily present it to the user with visual ar-
tifacts. We let Ω(g) be a measure of complexity (as
opposed to interpretability) of the explanation g ∈ G.
For text classification, we set a limitK on the number
of words included, i.e. Ω(g) =∞1[‖wg‖0 > K].

Let the model being explained be denoted f , i.e.
f(x) is the probability (or a binary indicator) that x
belongs to a certain class. We further use Πx(z) as a
proximity measure between an instance z to x, so as
to define locality around x. Finally, let L(f, g,Πx)
be a measure of how unfaithful g is in approximat-
ing f in the locality defined by Πx. We use the lo-
cally weighted square loss as L, as defined in Eq. (1),
where we let Πx(z) = exp(−D(x, z)2/σ2) be an
exponential kernel on cosine distance D.

L(f, g,Πx) =
∑

z,z′∈Z
Πx(z)

(
f(z)− g(z′)

)2 (1)

In order to ensure both interpretability and local
fidelity, we minimize L(f, g,Πx) while having Ω(g)
be low enough to be interpretable by humans.

ξ(x) = argming∈G L(f, g,Πx) + Ω(g) (2)

We approximate L(f, g,Πx) by drawing samples,
weighted by Πx. Given a sample z′ ∈ {0, 1}d′

(which contains a fraction of the nonzero elements
of x′), we recover the sample in the original repre-
sentation z ∈ Rd and obtain f(z), which is used as a
label for the explanation model. Given this dataset Z
of perturbed samples with the associated labels, we
optimize Eq. (2) to get an explanation ξ(x) by first
selecting K features with Lasso (Efron et al., 2004),
forward selection or some other method, and then
learning the weights via least squares.

Submodular Pick for Explaining Models
Although an explanation of a single prediction pro-
vides some understanding into the reliability of the
classifier to the user, it is not sufficient to evaluate
and assess trust in the model as a whole. We propose
to give a global understanding of the model by ex-
plaining a set of individual instances. Even though
explanations of multiple instances can be insightful,
these instances need to be selected judiciously, since
users may not have the time to examine a large num-
ber of explanations. We represent the number of
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explanations humans are willing to look at a bud-
get B, i.e. given a set of instances X , we select B
explanations for the user to inspect. We construct
an n× d′ explanation matrixW that represents the
local importance of the interpretable components for
each instance, i.e. for an instance xi and explana-
tion gi = ξ(xi), we set Wi = |wgi |. Further, for
each component j inW , we let Ij denote the global
importance, Ij =

√∑n
i=1Wij .

While we want to pick instances that cover the im-
portant components, the set of explanations must not
be redundant in the components they show the users,
i.e. avoid selecting instances with similar explana-
tions. We formalize this non-redundant coverage
intuition in Eq. (3), where coverage C, givenW and
I , computes the total importance of the features that
appear in at least one instance in a set V .

C(V,W, I) =
d′∑

j=1

1[∃i∈V :Wij>0]Ij (3)

The pick problem thus consists of finding the set
V, |V | ≤ B that achieves highest coverage.

Pick(W, I) = argmaxV,|V |≤B C(V,W, I) (4)

The problem in Eq. (4) is maximizing a weighted cov-
erage function, and is NP-hard (Feige, 1998). Due
to submodularity, a greedy algorithm that iteratively
adds the instance with the highest coverage gain of-
fers a constant-factor approximation guarantee of
1− 1/e to the optimum (Krause and Golovin, 2014).

3 Demo Outline

Using this explanation system that is capable of
providing visual explanations for predictions of
any classifier, we present an outline for a demon-
stration using different NLP tasks, models, and
user interactions. The complete source code
and documentation for installing and running the
demonstration is available at https://github.
com/uw-mode/naacl16-demo, which uses the
code for explaining classifiers available as an
open-source python implementation at https://
github.com/marcotcr/lime.

Applications
We explore three NLP classification tasks, which dif-
fer in the types of text they apply to and predicted cat-

egories: politeness detection for sentences (Danescu-
Niculescu-Mizil et al., 2013), multi-class content
classification for documents (20 newsgroups data),
and sentiment analysis of sentences from movie re-
views (Socher et al., 2013). We explore classifiers for
these tasks that vary considerably in their underlying
representation, such as LSTMs (Wieting et al., 2015),
SVMs, and random forests, trained on bag of words
or on word embeddings.

We will outline the specific user interactions using
a running example of the 20 newsgroups dataset, and
the interfaces for the other applications will look simi-
lar. In particular, we focus on differentiating between
“Christianity” from “Atheism”, and use an SVM with
an RBF kernel here. Although this classifier achieves
94% held-out accuracy, and one would be tempted to
trust it based on this, the explanation for an instance
shows that predictions are made for quite arbitrary
reasons (words “Posting”, “Host” and “Re” have no
connection to either Christianity or Atheism).

3.1 Explaining Individual Predictions

The first part of the demo focuses on explaining in-
dividual predictions. Given an instance that the user
either selects from the dataset or writes their own
piece of text, we provide the set of words that are im-
portant for the prediction according to the classifier
of their choosing. The interface for the user is shown
in Figure 1, which embedded in an iPython notebook.
For most datasets and classifiers, our current system
can produce an explanation in under three seconds,
and some simple further optimizations can be used
to produce near-instant explanations.

3.2 Explaining and Comparing Models

For the second part of the demonstration, we provide
explanations of different models in order to compare
them, based on explanations of a few selected in-
stances. The interface presents the explanations one
at a time, similar to that in Figure 1. By default the in-
stances are selected using our submodular approach
(SP-lime), however we also allow users to write their
own text as well, and produce explanations for the
classifiers for comparison.

3.3 Improving Classifiers

As the final demonstration, we consider a simple ver-
sion of feature engineering. Specifically, we initiate
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Figure 1: Example explanation for an instance of document classification. The bar chart represents the
importance given to the most relevant words by the classifier, also highlighted in the text. Color indicates
which class the word is important for (orange for “Christianity”, blue for “Atheism”).

Figure 2: Interface for feature cleaning, a simple version of feature engineering where users select words to
remove from the model by clicking on them (indicated by red, struck-out text). Here, green bars indicate
importance of the word for “Christianity”, and magenta “Atheism”.

each user with a classifier trained using all features,
including both noisy and correct ones. We then show
explanations of the classifier to the users, and ask
them to select which words to remove from the clas-
sifier (see Figure 2 for the interface). Given this
feedback, we retrain the classifier and provide the
users with a score of how well their classifier per-
formed on a hidden set, along with a leader board of
the accuracy of all the participants.

4 Conclusions

We argue that trust is crucial for effective human
interaction with machine learning based NLP sys-
tems, and that explaining individual predictions is
important in assessing trust. We present a demonstra-
tion for LIME, a modular and extensible approach
to faithfully explain the predictions of any model in

an interpretable manner, and SP-LIME, a method to
select representative and non-redundant explanations,
providing a global view of the model to users. The
user interactions on multiple applications and clas-
sifiers span a variety of trust-related tasks: getting
insights into predictions, deciding between models,
and improving untrustworthy models.
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