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Abstract

We propose recurrent support vector machine
(RSVM) for slot tagging. This model is a combi-
nation of the recurrent neural network (RNN) and
the structured support vector machine. RNN extracts
features from the input sequence. The structured
support vector machine uses a sequence-level dis-
criminative objective function. The proposed model
therefore combines the sequence representation ca-
pability of an RNN with the sequence-level discrim-
inative objective. We have observed new state-of-
the-art results on two benchmark datasets and one
private dataset. RSVM obtained statistical significant
4% and 2% relative average F1 score improvement
on ATIS dataset and Chunking dataset, respectively.
Out of eight domains in Cortana live log dataset,
RSVM achieved F1 score improvement on seven do-
mains. Experiments also show that RSVM signif-
icantly speeds up the model training by skipping
the weight updating for non-support vector training
samples, compared against training using RNN with
CRF or minimum cross-entropy objectives.

1 Introduction
One of the key tasks in natural language understanding
(Hemphill et al., 1990a; He and Young, 2003; De Mori,
2007; Dinarelli et al., 2008; Wang et al., 2005) is slot tag-
ging that labels user queries with semantic tags. It is a
sequence labeling problem that transcribes a sequence of
observations X = [x(1),x(2), ...,x(M)] to a sequence of
discrete labels Y = [y(1),y(2), ...,y(M)]. For example, in
the query “show me flights from Seattle to Boston”, the
words “Seattle” and “Boston” should be labeled, respec-
tively, as the from-city-name slot and the to-city-name
slot.

Recently recurrent neural networks (RNNs) and their
variants achieved state-of-the-art performances on slot
tagging tasks (Yao et al., 2013; Yao et al., 2014b; Yao
et al., 2014a; Graves, 2012; Shi et al., 2015; Mesnil et al.,

2015; Peng and Yao, 2015). One direction to improve the
sequence labeling is to strengthen the model memoriza-
tion capability by designing dedicated special structures,
for example, using long-short-term-memory (LSTM) net-
works (Hochreiter and Schmidhuber, 1997; Graves et al.,
2013; Yao et al., 2014a), gated RNN and RNN with ex-
ternal memory (RNN-em) (Peng and Yao, 2015). The
other direction is to optimize the sequence-level discrim-
ination criterion. For example, recurrent conditional ran-
dom fields (RCRFs) (Yao et al., 2014b) is trained to opti-
mize the sequence conditional likelihood rather than min-
imizing frame level cross-entropy applied in conventional
RNN based sequence labeling (Prez-ortiz et al., 2001; Yao
et al., 2013; Mikolov et al., 2010; Shi et al., 2015; Mesnil
et al., 2015).

In this paper, we propose recurrent support vector ma-
chines (RSVMs) to improve the discrimination ability of
RNNs. Different from RCRFs and conventional RNNs
that in essence apply the multinomial logistic regression
on the output layer, RSVMs optimize the sequence-level
max-margin training criterion used by structured support
vector machines (Tsochantaridis et al., 2005) on the out-
put layer of RNNs. There are several advantages of using
sequence-level max-margin training over maximum like-
lihood or minimum cross-entropy. Firstly, the sequence-
level max-margin criterion is a global un-normalized cri-
terion in which there is no computation cost for normal-
ization. Secondly, using max-margin training, only train-
ing samples from support vectors generate non zero er-
rors. In other words, model training can be sped up
by skipping the weight updating for non-support vector
training samples. Finally, as proven in (Vapnik, 1995),
margin maximization is equivalent to minimization of an
upper bound on the generalization errors. Max-margin
training has no assumption about the model distribution.
To use maximum likelihood or minimum cross-entropy,
it assumes that the model distribution is peaked. How-
ever, especially in natural language processing where the
ambiguity is ubiquitous, this assumption does not hold.
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For example, “seven eleven” can be labeled as time tag
or place name (super market name) tag. The conditional
probability of tag given “seven eleven” should not be
sharp for time or place name.

Recently, SVM is also applied on top of a deep neu-
ral network for speech recognition (Zhang et al., 2015).
In their work, a cutting-plane algorithm (Joachims et
al., 2009) is used, which is computationally expensive
for speech recognition tasks. In this paper, we use
the stochastic gradient descent algorithm (SGD) (Pana-
giotakopoulos and Tsampouka, 2013) for model train-
ing. The loss function is critical to the sequence level
max-margin training criterion, which defines the mar-
gin. In this paper, we apply the sequence level hard loss
function rather than traditional Hamming loss function
(Nguyen and Guo, 2007). In sequence level hard loss
function, the wrong sequence is assigned loss one with-
out considering the number of wrong slot labels in the se-
quence. In the experiments on two bench mark datasets,
namely the ATIS (Airline Travel Information Systems)
dataset (Hemphill et al., 1990b; Yao et al., 2014b) and
the CoNLL 2000 Chunking dataset 1, and private Cortana
live log dataset, RSVMs outperformed previous results.

2 Recurrent Support Vector Machines

In this section, we propose RSVM that uses the struc-
tured SVM algorithm (Tsochantaridis et al., 2005) to es-
timate the weights for RNN and label transition probabil-
ities based on the entire training sequence. The training
objective in RSVM is the following constrained optimiza-
tion.

min
W,A

1
2
||W ||22 +

1
2
||A||22 +C

K

∑
k=1

ζk

s.t. f (Y (k)∗)+ζk ≥ f (Y (k))+L(Y (k)) ∀Y (k) (1)
L(Y (k))≥ 0 ∀Y (k) (2)
ζk ≥ 0 (3)

where

f (Y (k)) =
T

∑
t=1

ayk(t−1)yk(t) +W T
yk(t)H(t) (4)

where C is regularization weight for empirical loss. Y (k)

represents the slot label sequence y(k)(1 : T ) for train-
ing sample X (k). Y (k)∗ is the ground truth slot sequence
y(k)∗(1 : T ) for X (k). ay(k)(t−1)y(k)(t) is one element in ma-
trix A, representing the weight for the slot label transition
features from y(k)(t − 1) to y(k)(t). L(Y (k)) defines the
loss function of a possible slot label sequence for a train-
ing sample X (k) , which is actually used as a margin to

1See http://www.cnts.ua.ac.be/conll2000/chunking.

separate the score f (Y (k)∗) for ground truth slot label se-
quence with all other possible slot sequences in Eq. (1).
ζ (k) is the slack variable that penalize the slot label se-
quence that violates the margin constraint.

The constrained optimization problem can be trans-
formed to an unconstrained optimization problem as

min
W,A

F(W,A) =
1

2C
||W ||22 +

1
2C

||A||22

+
K

∑
k=1

[ max
Y (k) ̸=Y (k)∗

(
f (Y (k))+L(Y (k))

)− f (Y (k)∗)]+. (5)

where [x]+ is the Hinge function that maps x to zero when
x is smaller than zero, otherwise [x]+ = x.

The loss function L(Y (k)) is critical to the structured
SVM training. The following two types of loss functions
have been investigated:

L(Y (k)) =
T

∑
t=1

1
(
y(k)(t) ̸= y(k)∗(t)

)
(6)

L(Y (k)) = 1
(
y(k)(1 : T ) ̸= y(k)∗(1 : T )

)
(7)

Eq. (6) is Hamming loss that is applied by (Nguyen and
Guo, 2007) for structured SVM sequence labeling. Eq. (7)
is sequence level hard loss function that always give loss
one to wrong slot label sequences no matter how many
words are labeled with wrong slot labels. In our experi-
ment, we find that the margin defined by Eq. (7) gives the
best performance.

2.1 Training Procedure For Recurrent Support
Vector Machines

Fig. 1 depicts the architecture of RSVM that can be viewed
as the conventional RNN unrolled over the sequence x(1 :
T ). For each single training sample x(1 : T ), a forward in-
ference and a backward learning are carried out to sweep
over the network shown in Fig. 1.

In the forward inference, an unnormalized slot score
vector y(t) is computed based on each word input x(t) and
its corresponding auxiliary feature Cx(t). The word input
and auxiliary feature are encoded in one-hot representa-
tion. As shown in Fig. 1, a slot label lattice is generated
for the training sample x(1 : T ). Using Viterbi algorithm,
two best slot label sequences Y (k)top

and Y (k)second
are de-

rived from the lattice. In the decoding phase, only the
best slot label sequence is computed.

In backward learning, the sub-gradient (Ratliff et al.,
2007) are calculated to update the weights for RSVMs.
When Y (k)top ̸= Y (k)∗ the sub-gradient is

∂ζk

∂θ
=

∂ f (Y (k)top
)

∂θ
− ∂ f (Y (k)∗)

∂θ
. (8)

When Y (k)top
= y(k)∗ and y(k)∗−Y (k)second

< L(Y (k)), the
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sub-gradient is

∂ζk

∂θ
=

∂ f (Y (k)second
)

∂θ
− ∂ f (Y (k)∗)

∂θ
. (9)

When Y (k)top
= Y (k)∗ and y(k)∗−Y (k)second ≥ L(Y (k)), the

subgradient is zero. Our experiment show that the RSVM
training can be substantially sped up by skipping the
backward weight updating for non-support vector train-
ing samples that obtain zero subgradient.

In Eq. (8) and (9), θ represents the weights in RSVMs.
Specifically, the weights W , A, U and V are updated using
sequence level mini-batch method. The weights O con-
necting hidden layers are updated using Backpropagation
Through Time (BPTT) (Werbos, 1990).
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Figure 1: Recurrent support vector machines for slot tagging. U is the
weight matrix connecting the word input to the hidden layer, V is the
weight matrix connecting auxiliary feature input to the hidden layer,
O is the weight matrix connecting previous hidden state to the current
hidden state and W is the weight matrix connecting the hidden layer
to the output layer. A represents the weight for slot label transition
features.

3 Experiments
3.1 Data
To evaluate performances of the proposed model, three
sets of experiments were conducted. The first set of ex-
periments are based on ATIS dataset (Hemphill et al.,
1990b; Yao et al., 2014b). There are 893 queries from
ATIS-III, Nov93 and Dec94 for testing, and 4978 utter-
ances from the rest of ATIS-III and ATIS-II used for train-
ing. The training data contains 127 unique slot tags.

The second dataset used in the experiment is CoNLL
2000 Chunking dataset. Chunking is also called shallow
parsing that assigns syntactic labels to segments of a se-
quence of words. Chunking and slot tagging are typi-
cal sequence labeling problems. In this paper, we use
the chunking task to further verify the performance of
the proposed RSVM model. In the CoNLL 2000 Chunk-
ing task, the training data are from sections 15-18 of
WSJ data and the test data are from section 20. In
the training data, there are 220663 tokens with 19123
unique words and additional 45 different types of Part-
Of-Speech (POS).

The last dataset is Cortana live log dataset which
is constituted by 8 domains, namely alarm, calender,
communication, note, ondevice, places, reminder and
weather. In total, there are 71 slots. There are 42506
queries used for training and 5290 queries for testing.
The data distribution is described in Table. 1. The last
column of Table. 1 shows the average query length (the
number of words in one query) on different domains.

domain train test length
alarm 3816 452 4.3
calendar 4138 475 4.5
communication 9551 1262 3.8
note 829 139 4.6
ondevice 4384 572 2.4
places 6167 753 4.7
reminder 5359 720 4.1
weather 8270 917 3.4

Table 1: Cortana live log data distribution.

3.2 Settings

In this paper, we use a predefined maximum iteration
number to terminate the training. The learning rate is dy-
namically adjusted using AdaGrad (Duchi et al., 2011).

In all the experiments, we set the hidden layer size to
300 and initial learning rate to 0.1. In RSVMs, the sur-
rounding two words of the current word are used as auxil-
iary feature which is represented as bag of words. We set
the maximum iteration to 20 for ATIS and 30 for Chunk-
ing and Cortana live log. For each dataset, we trained
10 models with the same parameter settings except using
different random initialization.

3.3 Results on ATIS

ATIS is a well studied benchmark dataset. Table. 2 gives
the slot tagging F1 scores achieved by different models
in the literature, using the same data settings. There are
three blocks in Table. 2. The top block gives the F1 score
obtained by CRF and simple RNN. The middle block gives
the results obtained by applying advanced RNN architec-
tures such as LSTM, Gated RNN and RNN with external
memories (RNN-em) (Peng and Yao, 2015). These ad-
vanced RNNs improves RNN by enhancing its memory
(sequence representation capability). The bottom block
gives results using the proposed RSVMs.

The bottom part gives F1 scores of the proposed RSVM
method. We show results generated by 10 models with
different random seeds. The average F1 score of RSVM
is similar to the best score of RNN-em. F1 score distri-
bution of 10 RSVM models gets significant improvement
over the average score of RNN-em (z-test p− value =
0.0002 << 0.05). Fundamentally, the proposed RSVM
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model F1(%)
CRF (Mesnil et al., 2015) 92.9
DBN (Deoras and Sarikaya, 2013) 93.2
RNN (Yao et al., 2013) 94.1
RNN-Jordan(Mesnil et al., 2015) 94.3
RNN-embed(Xu and Sarikaya, 2013) 94.4
RNN-joint (Shi et al., 2015) 94.6
RNN-hybrid(Mesnil et al., 2015) 95.1
deep-LSTM (Yao et al., 2014a) 95.0
GRNN-max(Peng and Yao, 2015) 94.7
RNN-em-min(Peng and Yao, 2015) 94.7
RNN-em-average(Peng and Yao, 2015) 95.0
RNN-em-max(Peng and Yao, 2015) 95.2
RSVM-min 94.9
RSVM-average 95.2
RSVM-max 95.5

Table 2: F1 score (in %) for slot tagging on ATIS achieved by different
models using only lexical feature. ”-min”, ”-max”, and ”-average” each
denotes mininum, maximum and average F1 scores for a corresponding
method.

is based on simple RNN. Comparing LSTM and RNN-
em, the proposed model has simpler topology. Note that
in (Yao et al., 2014a) and (Peng and Yao, 2015), their
advanced models are trained using local normalization
method without using sequence level optimization. So
the superiority of the proposed RSVM may come from
the sequence training and the powerful discriminant ca-
pability of SVM. Applying the proposed RSVM method
to LSTM or other advanced RNN can be a promising di-
rection for future work.

3.4 Results on CoNLL 2000 Chunking

Table. 3 gives the F1 scores of different models on
CoNLL 2000 chunking experiment. To our best knowl-
edge, the first neural network (NN) based chunking model
is proposed in (Collobert et al., 2011). Using four basic
natural language processing tasks, namely POS tagging,
chunking, name entity recognition and semantic role la-
beling, they demonstrate the ability of NN to discover hid-
den representations. In their work, only simple input fea-
ture is used. There is not any task-specific feature en-
gineering work in their proposed system. Their model
purely relies on the NN feature representation that are
learned from large amount of unlabeled data. As shown
in Table. 3, their system performs better than all the pre-
vious systems on CoNLL 2000 chunking dataset.

The performance of Bidirectional LSTM (BLSTM),
RCRF and the proposed RSVM on chunking task fur-
ther confirms the conclusion in (Collobert et al., 2011)
that NN is able to discover the internal representations
that are useful for different natural language processing
tasks. Additionally, the results of BLSTM, RCRF and

RSVM, indicate that RNNs have better capabilities to dis-
cover the sequence representation than NN. The average
F1 score of RCRF and RSVM are 94.9% and 95.0%, re-
spectively. Comparing the F1 score distribution, RSVM
achieves the significant improvement over RCRF (paired
t-test p− value = 0.012 < 0.05). As shown in Table. 3,
replacing the CRF objective function with structured SVM
max-margin criterion could generate further improve-
ment. The average performance of RSVM is better than
the best result of RCRF shown in the table.

model F1(%)
SVM (Kudo and Matsumoto, 2000) 93.5
gen-Winnow(Zhang et al., 2001) 93.9
SVM (Kudo and Matsumoto, 2001) 93.9
CRF (McDonald et al., 2005) 94.3
CRF (Sun et al., 2008) 94.3
CRF (Sha and Pereira, 2005) 94.4
NN (Collobert et al., 2011) 94.5
BLSTM (Wang et al., 2015) 94.6
RCRF-min 94.7
RCRF-average 94.9
RCRF-max 94.9
RSVM-min 94.7
RSVM-average 95.0
RSVM-max 95.1

Table 3: F1 score (in %) for chunking on CoNLL 2000 shared task
using different models. All these models use word features as well as
POS features. ”-min”, ”-max”, and ”-average” each denotes minimum,
maximum and average F1 scores for a corresponding method.

3.5 Results on Internal Live dataset
In this section, we compare different slot models on dif-
ferent domains based on Cortana live log data.

Table. 4 compares the F1 score on CRF, RNN, RCRF,
joint-RNN and the proposed RSVM on alarm, calendar,
communication, and note. Table. 5 presents the F1 score
of different models on the rest domains. “RNN” denotes
the Elman type of RNN for slot tagging which uses current
word information, previous slot output information and
context window information (surrounding four words)
(Yao et al., 2013). “RCRF” represents the RCRF slot tag-
ging models that use the same feature as “RNN” (Yao et
al., 2014b). “joint-RNN” (Shi et al., 2015) also uses the
same features as “RNN” and “RCRF”. However, “joint-
RNN” implicitly makes use of query domain, intent and
slot information by training the domain classifier, intent
classifier and slot labeling jointly via multi-task learning.

Overall, the proposed RSVM obtains significant im-
provement over CRF, RNN,RCRF and joint-RNN on alarm,
communication, note and reminder (z-test p− value <
5E − 5). On the calendar, places and weather, RSVM
achieves similar performance as joint-RNN. Even joint-
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RNN is built on the basis of conventional RNN using local
normalization, it actually takes the sequence representa-
tion information implicitly from domain and intent clas-
sification. However, in ondevice domain, RCRF performs
the best and the proposed RSVM model performs even
worse than CRF. We notice that, in ondevice model, user
queries tend to be short, with on average 2.4 words in a
query, shown in Table. 1. Also the loss function in the
proposed model only uses the top and the second most
hypothesis, which may be less informative, especially
with short sentences, as compared to using all hypothe-
sis in RCRF.

model alarm calen commu note
CRF 93.2 93.7 91.6 76.5
RNN 93.8 95.2 92.5 77.0
RCRF 93.9 95.9 93.2 76.9
joint-RNN 94.9 96.4 92.9 74.9
RSVM-min 95.8 95.8 93.3 86.9
RSVM-aver 95.9 96.3 93.9 88.3
RSVM-max 96.2 96.6 94.9 89.7

Table 4: F1 score comparison on different slot tagging models on
alarm, calendar, communication and note.

model ondev place remin weath
CRF 98.2 87.5 93.3 95.7
RNN 98.4 88.4 90.5 95.0
RCRF 98.8 88.3 91.9 94.6
joint-RNN 98.6 90.6 92.4 96.7
RSVM-min 97.4 88.2 94.3 96.2
RSVM-aver 97.7 89.7 94.5 96.6
RSVM-max 97.9 90.8 95.1 96.8

Table 5: F1 score comparison on different slot tagging models on on-
device, places, reminder and weather.

Table. 6 gives the overall performance comparison of
different models in internal live log dataset using the
weighted average F1 score over all domains. In this ta-
ble, we can find that the proposed RSVM on average can
achieve 0.6% and 0.7% F1 score improvement over joint-
RNN and RCRF, respectively.

3.6 Training Speed Up In RSVM

Using max-margin criteria, backward weight updating
only happens to support vector samples. While using
cross-entropy or maximum likelihood based training cri-
teria, backward weight updating has to sweep over the
whole training data. Fig. 2 shows that RSVM can substan-
tially speed up the model training by skipping the back-
ward weight updating for non-support vector samples. As
depicted in Fig. 2, RSVM only executes backward weight
updating for 337 training samples (7% of whole training
data) at epoch 20.

model F1(%)
CRF 92.6
RNN 92.8
RCRF 93.9
joint-RNN 94.0
RSVM-min 94.0
RSVM-average 94.6
RSVM-max 95.2

Table 6: The weighted average F1 score of different slot tagging models
over all the domains.
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Figure 2: Training sample usage comparison for RSVM and RCRF on
ATIS data in backward weight updating in each training epoch.

4 Conclusions

We have proposed a recurrent support vector machine
(RSVM) which applies the structured SVM on top of the
conventional RNN for slot tagging. Different from pre-
vious RNN sequence training approaches that use max-
imum conditional likelihood as objective function, the
proposed method uses sequence level max-margin crite-
rion with hard loss function. The model is trained to dis-
criminate the score of ground-truth slot sequences with
respect to other competing slot sequences by a margin.
Viterbi algorithm is used in decoding to select a slot se-
quence that gives the largest score. To verify the perfor-
mance of the proposed method, three datasets, namely
ATIS dataset, CoNLL 2000 Chunking dataset and Cor-
tana live log dataset, were used. The proposed RSVM
achieved a new state-of-the-art performances on these
datasets. In addition, RSVM showed substantial training
speed up by skipping the weight updating for non-support
vector training samples. On ATIS data, after 20 epoches,
backward weight updating only happened for almost 7%
of whole training samples.

The proposed RSVM is built on top of conventional
RNN structure. Though RSVM doesn’t have advanced
topology used in LSTM and RNN-em, it achieves com-
parable or better performances. Therefore, the improve-
ment comes from its sequence level max-margin crite-
rion. For future works, we plan to apply the structured
SVM on top of other advanced models.
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