
Proceedings of NAACL-HLT 2015, pages 31–35,
Denver, Colorado, May 31 – June 5, 2015. c©2015 Association for Computational Linguistics

ICE: Rapid Information Extraction Customization for NLP Novices

Yifan He and Ralph Grishman
Computer Science Department

New York University
New York, NY 10003, USA

{yhe,grishman}@cs.nyu.edu

Abstract

We showcase ICE, an Integrated Customiza-
tion Environment for Information Extraction.
ICE is an easy tool for non-NLP experts to
rapidly build customized IE systems for a new
domain.

1 Introduction

Creating an information extraction (IE) system for a
new domain, with new vocabulary and new classes
of entities and relations, remains a task requiring
substantial time, training, and expense. This has
been an obstacle to the wider use of IE technol-
ogy. The tools which have been developed for this
task typically do not take full advantage of linguis-
tic analysis and available learning methods to pro-
vide guidance to the user in building the IE system.
They also generally require some understanding of
system internals and data representations. We have
created ICE [the Integrated Customization Environ-
ment], which lowers the barriers to IE system devel-
opment by providing guidance while letting the user
retain control, and by allowing the user to interact in
terms of the words and phrases of the domain, with
a minimum of formal notation.

In this paper, we review related systems and ex-
plain the technologies behind ICE. The code, docu-
mentation, and a demo video of ICE can be found at
http://nlp.cs.nyu.edu/ice/

2 Related Work

Several groups have developed integrated systems
for IE development:

The extreme extraction system from BBN
(Freedman et al., 2011) is similar in several regards:
it is based on an extraction system initially devel-
oped for ACE1, allows for the customization of enti-
ties and relations, and uses bootstrapping and active
learning. However, in contrast to our system, it is
aimed at skilled computational linguists.

The Language Computer Corporation has de-
scribed several tools developed to rapidly extend
an IE system to a new task (Lehmann et al., 2010;
Surdeanu and Harabagiu, 2002). Here too the em-
phasis is on tools for use by experienced IE system
developers. Events and relations are recognized us-
ing finite-state rules, with meta-rules to efficiently
capture syntactic variants and a provision for super-
vised learning of rules from annotated corpora.

A few groups have focused on use by NLP
novices:

The WIZIE system from IBM Research
(Li et al., 2012) is based on a finite-state rule
language. Users prepare some sample annotated
texts and are then guided in preparing an extraction
plan (sequences of rule applications) and in writing
the individual rules. IE development is seen as a
rule programming task. This offers less in the way
of linguistic support (corpus analysis, syntactic
analysis) but can provide greater flexibility for
extraction tasks where linguistic models are a poor
fit.

The SPIED system (Gupta and Manning, 2014)
focuses on extracting lexical patterns for entity
recognition in an interactive fashion. Our system, on

1https://www.ldc.upenn.edu/
collaborations/past-projects/ace

31

the other hand, aims at extracting both entities and
relations. Furthermore, SPIED produces token se-
quence rules, while our system helps the user to con-
struct lexico-syntactic extraction rules that are based
on dependency paths.

The PROPMINER system from T. U. Berlin
(Akbik et al., 2013) takes an approach more similar
to our own. In particular, it is based on a depen-
dency analysis of the text corpus and emphasizes ex-
ploratory development of the IE system, supported
by search operations over the dependency structures.
However, the responsibility for generalizing initial
patterns lies primarily with the user, whereas we
support the generalization process through distribu-
tional analysis.

1. Preprocessing

2. Key phrase

extraction

3. Entity set

construction

4. Dependency

paths extraction

5. Relation pattern

bootstrapping

Text extraction

Tokenization

POS Tagging

DEP Parsing

NE Tagging

Coref Resolution

Key

phrase

Index

Entity

Sets

Path

Index

Relation

Extractor

Corpus

in new

domain

Processed

corpus in

general

domain

Processed

corpus in

new

domain

Figure 1: System architecture of ICE

3 System Description

3.1 Overall architecture

The information to be extracted by the IE system
consists of user-specified types of entities and user-
specified types of relations connecting these entities.
Standard types of entities (people, organizations, lo-
cations, etc.) are built in; new entity types are de-
fined extensionally as lists of terms. Relation types
are captured in the form of sets of lexicalized depen-
dency paths, discussed in more detail below.

For NLP novices, it is much easier to provide ex-
amples for what they want and make binary choices,

than to come up with linguistic rules or compre-
hensive lists. ICE therefore guides users through a
series of linguistic processing steps, presents them
with entities and dependency relations that are po-
tential seeds, and helps them to expand the seeds by
answering yes/no questions.

Figure 1 illustrates the five steps of ICE process-
ing: given a new corpus, preprocessing builds a
cache of analyzed documents to speed up further
processing; key phrase extraction and entity set con-
struction build new entity types; dependency path
extraction and relation pattern bootstrapping build
new semantic relations.

3.2 Preprocessing
We rely on distributional analysis to collect entity
sets and relation patterns on a new domain. Ef-
fective distributional analysis requires features from
deep linguistic analysis that are too time-consuming
to perform more than once. ICE therefore al-
ways preprocesses a new corpus with the Jet NLP
pipeline2 when it is first added, and saves POS tags,
noun chunks, dependency relations between tokens,
types and extents of named-entities, and coreference
chains to a cache. After preprocessing, each of the
following steps can be completed within minutes on
a corpus of thousands of documents, saving the time
of the domain expert user.

3.3 Key phrase extraction
In ICE, key phrases of a corpus are either nouns
or multi-word terms. We extract multi-word terms
from noun chunks: if a noun chunk has N adjec-
tives and nouns preceding the head noun, we obtain
N + 1 multi-word term candidates consisting of the
head noun and its preceding i (0 ≤ i ≤ N) nouns
and adjectives.

We count the absolute frequency of the nouns and
multi-word terms and rank them with a ratio score,
which is the relative frequency compared to a gen-
eral corpus. We use the ratio score St to measure the
representativeness of term t with regard to the given
domain, as defined in Eq (1).

St =
#pos(t) · logα(#pos(t))

#neg(t)
(1)

where #pos(t) is the number of occurrences of term
t in the in-domain corpus, #neg(t) is the number of

2http://cs.nyu.edu/grishman/jet/jet.html

32

occurrences of term t in the general corpus, and α is
a user-defined parameter to favor either common or
rare words, default to 0.

We present the user with a ranked list, where
words or multi-word terms that appear more often in
the in-domain corpus than in general language will
rank higher.

3.4 Entity set construction

ICE constructs entity sets from seeds. Seeds are en-
tities that are representative of a type: if we want to
construct a DRUGS type, “methamphetamine” and
“oxycodone” can be possible seeds. Seeds are pro-
vided by the user (normally from the top scoring
terms), but if the user is uncertain, ICE can recom-
mend seeds automatically, using a clustering-based
heuristic.

3.4.1 Entity set expansion
Given a seed set, we compute the distributional

similarity of all terms in the corpus with the cen-
troid of the seeds, using the dependency analysis as
the basis for computing term contexts. We repre-
sent each term with a vector that encodes its syn-
tactic context, which is the label of the dependency
relation attached to the term in conjunction with the
term’s governor or dependent in that relation.

Consider the entity set of DRUGS. Drugs often
appear in the dependency relations dobj(sell, drug)
and dobj(transport, drug) (where dobj is the direct
object relation), thus members in the DRUGS set will
share the features dobj sell and dobj transport. We
use pointwise mutual information (PMI) to weight
the feature vectors and use a cosine metric to mea-
sure the similarity between two term vectors.

The terms are displayed as a ranked list, and the
user can accept or reject individual members of the
entity set. At any point the user can recompute the
similarities and rerank the list (where the ranking
is based the centroids of the accepted and rejected
terms, following (Min and Grishman, 2011)). When
the user is satisfied, the set of accepted terms will be-
come a new semantic type for tagging further text.

3.5 Dependency path extraction and
linearization

ICE captures the semantic relation (if any) be-
tween two entity mentions by the lexicalized

Parker

oversaw

business

distribution

crack cocaine

PERSON

DRUGS

a sophisticated

nsubj dobj

nn

nn

Figure 2: A parse tree; dotted relations ignored by LDP

dependency path (LDP) and the semantic types
of the two entities. LDP includes both the la-
bels of the dependency arcs and the lemmatized
form of the lexical items along the path. For
example, for the sentence “[Parker] oversaw a
sophisticated [crack cocaine] distribution busi-
ness.”, consider the parse tree in Figure 2. The
path from “Parker” to “crack cocaine” would be
nsubj−1:oversee:dobj:business:nn:distribution:nn,
where the −1 indicates that the nsubj arc is being
traversed from dependent to governor. The deter-
miner “a” and the adjective modifier “sophisticated”
are dropped in the process, making the LDP more
generalized than token sequence patterns.

We linearize LDPs before presenting them to the
user to keep the learning curve gentle for NLP
novices: given an LDP and the sentence from which
it is extracted, we only keep the word in the sentence
if it is the head word of the entity or it is on the LDP.
The linearized LDP for the path in Figure 2 , “PER-
SON oversee DRUGS distribution business”, is more
readable than the LDP itself.

3.6 Bootstrapping relation extractors

3.6.1 Relation extractor
ICE builds two types of dependency-path based

relation extractors. Given two entities and an LDP
between them, the exact extractor extracts a relation
between two entities if the types of the two enti-
ties match the types required by the relation, and the
words on the candidate LDP match the words on an
extraction rule. When the two nodes are linked by
an arc in the dependency graph (i.e. no word but a
type label on the LDP), we require the dependency
label to match.

ICE also builds a fuzzy extractor that calculates
edit distance (normalized by the length of the rule)
between the candidate LDP and the rules in the rule
set. It extracts a relation if the minimum edit dis-

33

tance between the candidate LDP and the rule set
falls below a certain threshold (0.5 in ICE). We tune
the edit costs on a development set, and use insertion
cost 0.3, deletion cost 1.2, and substitution cost 0.8.

Fuzzy extractors with large rule sets tend to pro-
duce false positive relations. ICE therefore boot-
straps both positive and negative rules, and requires
that the candidate LDP should be closer to (the clos-
est element in) the positive rule set than to the neg-
ative rule set, in order to be extracted by the fuzzy
LDP matcher.

3.6.2 Bootstrapper
The learner follows the style of Snowball

(Agichtein and Gravano, 2000), with two key dif-
ferences: it bootstraps both positive and negative
rules, and performs additional filtering of the top k
(k = 20 in ICE) candidates to ensure diversity.

Starting with a seed LDP, the learner gathers all
the pairs of arguments (endpoints) which appear
with this LDP in the corpus. It then collects all other
LDPs which connect any of these pairs in the corpus,
and presents these LDPs to the user for assessment.
If the set of argument pairs connected by any of the
seeds is S and the set of argument pairs of a candi-
date LDP x is X , the candidate LDPs are ranked by
| S ∩ X | / | X |, so that LDPs most distribution-
ally similar to the seed set are ranked highest. The
linearized LDPs which are accepted by the user as
alternative expressions of the semantic relation are
added to the seed set. At any point the user can ter-
minate the bootstrapping and accept the set of LDPs
as a model of the relation.

Bidirectional bootstrapping. If the user explic-
itly rejects a path, but it is similar to a path in the
seed set, we still bootstrap from the arg pairs of this
path. We save all the paths rejected by the user as
the negative rule set.

Diversity-based filtering. When presenting the
bootstrapped LDPs, we require paths presented in
the first ICE screen (top 20 candidates) to be distant
enough from each other.

4 Experiments

We perform end-to-end relation extraction experi-
ments to evaluate the utility of ICE: we start from

SELL RESIDENT-OF

P R F P R F

Fuzzy 0.60 0.22 0.32 0.68 0.51 0.58
-neg 0.59 0.22 0.32 0.55 0.51 0.53

Exact 0.92 0.10 0.18 0.72 0.47 0.57

Table 1: End-to-end relation extraction using small rule
sets. Fuzzy: fuzzy match relation extractor with negative
rule set; -neg: fuzzy match extractor without negative rule
set; Exact: exact match extractor; P / R / F: Precision /
Recall / F-score

SELL RESIDENT-OF

P R F P R F

Fuzzy 0.46 0.36 0.40 0.56 0.53 0.55
-neg 0.31 0.38 0.34 0.30 0.56 0.39

Exact 0.76 0.20 0.32 0.75 0.53 0.62

Table 2: End-to-end relation extraction using large rule
sets. Same configurations as Table 1

plain text, extract named entities, and finally ex-
tract drug names and relations with models built
by ICE. We collect approximately 5,000 web news
posts from the U.S. Drug Enforcement Administra-
tion 3 (DEA) for our experiments.

Entity Set Construction. In our first experiment,
we extracted 3,703 terms from this corpus and man-
ually identified 119 DRUGS names and 97 law en-
forcement agent (AGENTS) mentions, which we use
as the “gold standard” sets. We then ran our cus-
tomizer in the following manner: 1) we provided
the entity set expansion program with two seeds
(“methamphetamine” and “oxycodone” for DRUGS;
“special agents” and “law enforcement officers” for
AGENTS); 2) the program produced a ranked list of
terms; 3) in each iteration, we examined the top 20
terms that had not been examined in previous iter-
ations; 4) if a term is in the gold standard set, we
added it to the expander as a positive seed, other-
wise, we added it as a negative seed; 5) we continued
the expansion with the updated seed set, repeating
the process for 10 iterations. This process produced
high-recall dictionary-based entity taggers (74% for

3http://www.justice.gov/dea/index.shtml

34

drugs, 82% for agents) in just a few minutes.

Relation Extraction. With the ICE-built DRUGS

dictionary, we performed end-to-end extraction of
two relations: SELL, in which a PERSON sells
DRUGS, using “PERSON sell DRUGS” as seed, and
RESIDENT-OF, which indicates that a PERSON re-
sides in a GPE4, using “PERSON of GPE” as seed.
We manually annotated 51 documents from the
DEA collection. There are 110 SELL relations and
45 RESIDENT-OF relations in the annotated corpus.

We first extracted small rule sets. For both rela-
tions, we asked a user to review the presented LDPs
on the first screen (20 LDPs in total) and then ran
bootstrapping using the expanded seeds. We did
this for 3 iterations, so the user evaluated 60 LDPs,
which took less than half an hour. We report the
results in Table 1. Note that these are end-to-end
scores, reflecting in part errors of entity extraction.
After entity tagging and coreference resolution, the
recall of entity mentions is 0.76 in our experiments.

We observe that fuzzy LDP match with negative
rule sets obtains best results for both relations. If
we remove the negative rule set, the precision of
RESIDENT-OF is hurt more severely than the SELL
relations. On the other hand, if we require exact
match, the recall of SELL will decrease very signif-
icantly. This discrepancy in performance is due to
the nature of the two relations. RESIDENT-OF is a
relatively closed binary relation, with fewer lexical
variations: the small RESIDENT-OF model covers
around 50% of the relation mentions with 7 positive
LDPs, so it is easier to rule out false positives than
to further boost recall. SELL, in contrast, can be
expressed in many different ways, and fuzzy LDP
match is essential for reasonable recall.

We report experimental results on larger rule sets
in Table 2. The large rule sets were bootstrapped in
3 iterations as well, but the user reviewed 250 LDPs
in each iteration. The best score in this setting im-
proves to 0.4 F-score for SELL and 0.62 F-score for
RESIDENT-OF, as we have more LDP rules. The
exact match extractor performs better than the fuzzy
match extractor for RESIDENT-OF, as the latter is
hurt by false positives.

4Geo-political entity, or GPE, is an entity type defined in
Ace, meaning location with a government

5 Conclusion and Future Work
We described ICE, an integrated customization en-
vironment for information extraction customization
and evaluated its end-to-end performance. We plan
to explore more expressive models than LDP that
can handle arbitrary number of arguments, which
will enable ICE to build event extractors.

Acknowledgements
We thank Lisheng Fu, Angus Grieve-Smith, and Thien
Huu Nguyen for discussions.

References
Eugene Agichtein and Luis Gravano. 2000. Snowball:

Extracting relations from large plain-text collections.
In Proceedings of the Fifth ACM Conference on Digi-
tal Libraries, pages 85–94.

Alan Akbik, Oresti Konomi, Michail Melnikov, et al.
2013. Propminer: A workflow for interactive infor-
mation extraction and exploration using dependency
trees. In Proceedings of the 51st Annual Meeting of
the Association for Computational Linguistics: Sys-
tems Demonstrations, pages 157–162.

Marjorie Freedman, Lance Ramshaw, Elizabeth Boschee,
Ryan Gabbard, Gary Kratkiewicz, Nicolas Ward, and
Ralph Weischedel. 2011. Extreme extraction: ma-
chine reading in a week. In Proceedings of the Confer-
ence on Empirical Methods in Natural Language Pro-
cessing, pages 1437–1446.

Sonal Gupta and Christopher Manning. 2014. SPIED:
Stanford pattern based information extraction and di-
agnostics. In Proceedings of the Workshop on Interac-
tive Language Learning, Visualization, and Interfaces,
pages 38–44.

John Lehmann, Sean Monahan, Luke Nezda, Arnold
Jung, and Ying Shi. 2010. LCC approaches to knowl-
edge base population at tac 2010. In Proc. TAC 2010
Workshop.

Yunyao Li, Laura Chiticariu, Huahai Yang, Frederick R
Reiss, and Arnaldo Carreno-Fuentes. 2012. WizIE: a
best practices guided development environment for in-
formation extraction. In Proceedings of the ACL 2012
System Demonstrations, pages 109–114.

Bonan Min and Ralph Grishman. 2011. Fine-grained
entity refinement with user feedback. In Proceedings
of RANLP 2011 Workshop on Information Extraction
and Knowledge Acquisition.

Mihai Surdeanu and Sanda M. Harabagiu. 2002. Infras-
tructure for open-domain information extraction. In
Proceedings of the second international conference on
Human Language Technology Research, pages 325–
330.

35

