
Human Language Technologies: The 2009 Annual Conference of the North American Chapter of the ACL, pages 647–655,
Boulder, Colorado, June 2009. c©2009 Association for Computational Linguistics

Linear Complexity Context-Free Parsing Pipelines via Chart Constraints

Brian Roark and Kristy Hollingshead
Center for Spoken Language Understanding
Division of Biomedical Computer Science

Oregon Health & Science University
{roark,hollingk}@cslu.ogi.edu

Abstract
In this paper, we extend methods from Roark
and Hollingshead (2008) for reducing the
worst-case complexity of a context-free pars-
ing pipeline via hard constraints derived from
finite-state tagging pre-processing. Methods
from our previous paper achieved quadratic
worst-case complexity. We prove here that al-
ternate methods for choosing constraints can
achieve either linear or O(N log2N) complex-
ity. These worst-case bounds on processing
are demonstrated to be achieved without re-
ducing the parsing accuracy, in fact in some
cases improving the accuracy. The new meth-
ods achieve observed performance compara-
ble to the previously published quadratic com-
plexity method. Finally, we demonstrate im-
proved performance by combining complexity
bounding methods with additional high preci-
sion constraints.

1 Introduction

Finite-state pre-processing for context-free parsing
is very common as a means of reducing the amount
of search required in the later stage. For ex-
ample, the well-known Ratnaparkhi parser (Ratna-
parkhi, 1999) used a finite-state POS-tagger and NP-
chunker to reduce the search space for his Maxi-
mum Entropy parsing model, and achieved linear
observed-time performance. Other recent examples
of the utility of finite-state constraints for parsing
pipelines include Glaysher and Moldovan (2006),
Djordjevic et al. (2007), Hollingshead and Roark
(2007), and Roark and Hollingshead (2008). Note
that by making use of constraints derived from pre-
processing, they are no longer performing full exact
inference—these are approximate inference meth-
ods, as are the methods presented in this paper. Most
of these parsing pipeline papers show empirically

that these techniques can improve pipeline efficiency
for well-known parsing tasks. In contrast, in Roark
and Hollingshead (2008), we derived and applied the
finite-state constraints so as to guarantee a reduc-
tion in the worst-case complexity of the context-free
parsing pipeline from O(N3) in the length of the
string N to O(N2) by closing chart cells to entries.
We demonstrated the application of such constraints
to the well-known Charniak parsing pipeline (Char-
niak, 2000), which resulted in no accuracy loss when
the constraints were applied.

While it is important to demonstrate that these
sorts of complexity-reducing chart constraints do not
interfere with the operation of high-accuracy, state-
of-the-art parsing approaches, existing pruning tech-
niques used within such parsers can obscure the im-
pact of these constraints on search. For example, us-
ing the default search parameterization of the Char-
niak parser, the Roark and Hollingshead (2008) re-
sults demonstrated no parser speedup using the tech-
niques, rather an accuracy improvement, which we
attributed to a better use of the amount of search per-
mitted by that default parameterization. We only
demonstrated efficiency improvements by reducing
the amount of search via the Charniak search param-
eterization. There we showed a nice speedup of the
parser versus the default, while maintaining accu-
racy levels. However, internal heuristics of the Char-
niak search, such as attention shifting (Blaheta and
Charniak, 1999; Hall and Johnson, 2004), can make
this accuracy/efficiency tradeoff somewhat difficult
to interpret.

Furthermore, one might ask whether O(N2) com-
plexity is as good as can be achieved through the
paradigm of using finite-state constraints to close
chart cells. What methods of constraint would be
required to achieve O(N log N) or linear complex-

647

ity? Would such constraints degrade performance,
or can the finite-state models be applied with suffi-
cient precision to allow for such constraints without
significant loss of accuracy?

In this paper, we adopt the same paradigm pur-
sued in Roark and Hollingshead (2008), but apply
it to an exact inference CYK parser (Cocke and
Schwartz, 1970; Younger, 1967; Kasami, 1965). We
demonstrate that imposing constraints sufficient to
achieve quadratic complexity in fact yields observed
linear parsing time, suggesting that tighter complex-
ity bounds are possible. We prove that a differ-
ent method of imposing constraints on words be-
ginning or ending multi-word constituents can give
O(N log2N) or O(N) worst-case complexity, and
we empirically evaluate the impact of such an ap-
proach.

The rest of the paper is structured as follows. We
begin with a summary of the chart cell constraint
techniques from Roark and Hollingshead (2008),
and some initial empirical trials applying these tech-
niques to an exact inference CYK parser. Complex-
ity bounding approaches are contrasted (and com-
bined) with high precision constraint selection meth-
ods from that paper. We then present a new approach
to making use of the same sort of finite-state tag-
ger output to achieve linear or N log2N complexity.
This is followed with an empirical validation of the
new approach.

2 Background: Chart Cell Constraints

The basic algorithm from Roark and Hollingshead
(2008) is as follows. Let B be the set of words in a
string w1 . . . wk that begin a multi-word constituent,
and let E be the set of words in the string that end a
multi-word constituent. For chart parsing with, say,
the CYK algorithm, cells in the chart represent sub-
strings wi . . . wj of the string, and can be indexed
with (i, j), the beginning and ending words of the
substring. If wi 6∈ B, then we can close any cell
(i, j) where i < j, i.e., no complete constituents
need be stored in that cell. Similarly, if wj 6∈ E,
then we can close any cell (i, j) where i < j. A dis-
criminatively trained finite-state tagger can be used
to classify words as being in or out of these sets
with relatively high tagging accuracy, around 97%
for both sets (B and E). The output of the tagger is
then used to close cells, thus reducing the work for

the chart parser.
An important caveat must be made about these

closed cells, related to incomplete constituents. For
simplicity of exposition, we will describe incom-
plete constituents in terms of factored categories in
a Chomsky Normal Form grammar, e.g., the new
non-terminal Z:X+W that results when the ternary
rule production Z → Y X W is factored into
the two binary productions Z → Y Z:X+W and
Z:X+W → X W . A factored category such
as Z:X+W should be permitted in cell (i, j) if
wj ∈ E, even if wi 6∈ B, because the category could
subsequently combine with an Y category to create
a Z constituent that begins at some word wp ∈ B.
Hence there are three possible conditions for cell
(i, j) in the chart:

1. wj 6∈ E: closing the cell affects all con-
stituents, both complete and incomplete

2. wi 6∈ B and wj ∈ E: closing the cell affects
only complete constituents

3. wi ∈ B and wj ∈ E: cell is not closed, i.e., it
is “open”

In Roark and Hollingshead (2008), we proved
that, for the CYK algorithm, there is no work neces-
sary for case 1 cells, a constant amount of work for
case 2 cells, and a linear amount of work for case
3 cells. Therefore, if the number of cells allowed
to fall in case 3 is linear, the overall complexity of
search is O(N2).

The amount of work for each case is related
to how the CYK algorithm performs its search.
Each cell in the chart (i, j) represents a substring
wi . . . wj , and building non-terminal categories in
that cell involves combining non-terminal categories
(via rules in the context-free grammar) found in cells
of adjacent substrings wi . . . wm and wm+1 . . . wj .
The length of substrings can be up to order N
(length of the whole string), hence there are O(N)
midpoint words wm in the standard algorithm, and
in the case 3 cells above. This accounts for the lin-
ear amount of work for those cells. Case 2 cells
have constant work because there is only one pos-
sible midpoint, and that is wi, i.e., the first child of
any incomplete constituent placed in a case 2 cell
must be span 1, since wi 6∈ B. This is a very con-
cise recap of the proof, and we refer the reader to
our previous paper for more details.

648

3 Constraining Exact-Inference CYK
Despite referring to the CYK algorithm in the proof,
in Roark and Hollingshead (2008) we demonstrated
our approach by constraining the Charniak parser
(Charniak, 2000), and achieved an improvement in
the accuracy/efficiency tradeoff curve. However, as
mentioned earlier, the existing complicated system
of search heuristics in the Charniak parser makes in-
terpretation of the results more difficult. What can
be said from the previous results is that constraining
parsers in this way can improve performance of even
the highest accuracy parsers. Yet those results do not
provide much of an indication of how performance
is impacted for general context-free inference.

For this paper, we use an exact inference (exhaus-
tive search) CYK parser, using a simple probabilis-
tic context-free grammar (PCFG) induced from the
Penn WSJ Treebank (Marcus et al., 1993). The
PCFG is transformed to Chomsky Normal Form
through right-factorization, and is smoothed with a
Markov (order-2) transform. Thus a production such
as Z → Y X W V becomes three rules: (1)
Z → Y Z:X+W ; (2) Z:X+W → X Z:W+V ;
and (3) Z:W+V → W V . Note that only two child
categories are encoded within the new factored cate-
gories, instead of all of the remaining children as in
our previous factorization example. This so-called
‘Markov’ grammar provides some smoothing of the
PCFG; the resulting grammar is also smoothed us-
ing lower order Markov grammars.

We trained on sections 2-21 of the treebank, and
all results except for the final table are on the devel-
opment section (24). The final table is on the test
section (23). All results report F-measure labeled
bracketing accuracy for all sentences in the section.

To close cells, we use a discriminatively trained
finite-state tagger to tag words as being either in B
or not, and also (in a separate pass) either in E or
not. Note that the reference tags for each word can
be derived directly from the treebank, based on the
spans of constituents beginning (or ending) at each
word. Note also that these reference tags are based
on a non-factored grammar.

For example, consider the chart in Figure 1 for the
five symbol string “abcde”. Each cell in the chart is
labeled with the substring that the cell spans, along
with the begin and end indices of the substring, e.g.,
(3, 5) spans the third symbol to the fifth symbol:

abcde
(1, 5)

abcd
(1, 4)

bcde
(2, 5)

abc
(1, 3)

bcd
(2, 4)

cde
(3, 5)

ab
(1, 2)

bc
(2, 3)

cd
(3, 4)

de
(4, 5)

a
(1, 1)

b
(2, 2)

c
(3, 3)

d
(4, 4)

e
(5, 5)

Figure 1: Fragment of a chart structure. Each cell is labeled
with the substring spanned by that cell, along with the start and
end word indices. Cell shading reflects b 6∈ E and d 6∈ E
constraints: black denotes “closed” cells; white and gray are
“open”; gray cells have “closed” children cells, reducing the
number of midpoints requiring processing.

cde. If our tagger output is such that b 6∈ E and
d 6∈ E, then four cells will be closed: (1, 2), (1, 4),
(2, 4) and (3, 4). The gray shaded cells in the figure
have some midpoints that require no work, because
they involve closed children cells.

4 Constraint Selection
4.1 High Precision vs Complexity Bounding
The chart constraints that are extracted from the
finite-state tagger come in the form of set exclu-
sions, e.g., d 6∈ E. Rather than selecting constraints
from the single, best-scoring tag sequence output by
the tagger, we instead rely on the whole distribu-
tion over possible tag strings to select constraints.
We have two separate tagging tasks, each with two
possible tags of each word wi in each string: (1) B
or ¬B; and (2) E or ¬E, where ¬X signifies that
wi 6∈ X for X ∈ {B,E}. The tagger (Holling-
shead et al., 2005) uses log linear models trained
with the perceptron algorithm, and derives, via the
forward-backward algorithm, the posterior probabil-
ity of each of the two tags at each word, so that
Pr(B) + Pr(¬B) = 1. Then, for every word wi

in the string, the tags B and E are associated with a
posterior probability that gives us a score for wi ∈ B
and wi ∈ E. All possible set memberships wi ∈ X
in the string can be ranked by this score. From this
ranking, a decision boundary can be set, such that
all word/set pairs wi ∈ B or wj ∈ E with above-
threshold probability are accepted, and all pairs be-
low threshold are excluded from the set.

The default decision boundary for this tagging

649

task is 0.5 posterior probability (more likely than
not), and tagging performance at that threshold is
good (around 97% accuracy, as mentioned previ-
ously). However, since this is a pre-processing step,
we may want to reduce possible cascading errors by
allowing more words into the sets B and E. In
other words, we may want more precision in our
set exclusion constraints. One method for this is to
count the number c of word/set pairs below poste-
rior probability of 0.5, then set the threshold so that
only kc word/set pairs fall below threshold, where
0 < k ≤ 1. Note that the closer the parameter k
is to 0, the fewer constraints will be applied to the
chart. We refer to the resulting constraints as “high
precision”, since the selected constraints (set exclu-
sions) have high precision. This technique was also
used in the previous paper.

We also make use of the ranked list of word/set
pairs to impose quadratic bounds on context-free
parsing. Starting from the top of the list (high-
est posterior probability for set inclusion), word/set
pairs are selected and the number of open cells (case
3 in Section 2) calculated. When the accumulated
number of open cells reaches kN for sentence length
N , the decision threshold is set. In such a way, there
are only a linear number of open, case 3 cells, hence
the parsing has quadratic worst-case complexity.

For both of these methods, the parameter k can
vary, allowing for more or less set inclusion. Fig-
ure 2 shows parse time versus F-measure parse ac-
curacy on the development set for the baseline (un-
constrained) exact-inference CYK parser, and for
various parameterizations of both the high preci-
sion constraints and the quadratic bound constraints.
Note that accuracy actually improves with the im-
position of these constraints. This is not surpris-
ing, since the finite-state tagger deriving the con-
straints made use of lexical information that the sim-
ple PCFG did not, hence there is complementary in-
formation improving the model. The best operating
points—fast parsing and relatively high accuracy—
are achieved with 90% of the high precision con-
straints, and 5N cells left open. These achieve a
roughly 20 times speedup over the baseline uncon-
strained parser and achieve between 1.5 and 3 per-
cent accuracy gains over the baseline.

We can get a better picture of what is going on by
considering the scatter plots in Figure 3, which plot

0 500 1000 1500 2000 2500 3000 3500
65

70

75

80

Seconds to parse section

F
−

m
e
a
s
u
re

 a
c
c
u
ra

c
y

Baseline exact inference

High precision constraints

O(N
2
) complexity bounds

Figure 2: Time to parse (seconds) versus accuracy (F-measure)
for the baseline of exact inference (no constraints) versus
two methods of imposing constraints with varying parameters:
(1) High precision constraints; (2) Sufficient constraints to im-
pose O(N2) complexity (the number of open cells ≤ kN).

each sentence according to its length versus the pars-
ing time for that sentence at three operating points:
baseline (unconstrained); high precision at 90%; and
quadratic with 5N open cells. The top plot shows up
to 120 words in the sentence, and up to 5 seconds of
parsing time. The middle graph zooms in to under
1 second and up to 60 words; and the lowest graph
zooms in further to under 0.1 seconds and up to 20
words. It can be seen in each graph that the uncon-
strained CYK parsing quickly leaves the graph via a
steep cubic curve.

Three points can be taken away from these plots.
First, the high precision constraints are better for
the shorter strings than the quadratic bound con-
straints (see bottom plot); yet with the longer strings,
the quadratic constraints better control parsing time
than the high precision constraints (see top plot).
Second, the quadratic bound constraints appear to
actually result in roughly linear parsing time, not
quadratic. Finally, at the “crossover” point, where
quadratic constraints start out-performing the high
precision constraints (roughly 40-60 words, see mid-
dle plot), there is quite high variance in high preci-
sion constraints versus the quadratic bounds: some
sentences process more quickly than the quadratic
bounds, some quite a bit worse. This illustrates
the difference between the two methods of select-
ing constraints: the high precision constraints can
provide very strong gains, but there is no guarantee
for the worst case. In such a way, the high preci-
sion constraints are similar to other tagging-derived

650

0 20 40 60 80 100 120
0

1

2

3

4

5

Sentence length in words

P
a
rs

in
g
 t
im

e
 i
n
 s

e
c
o
n
d
s

No constraints

High precision constraints (90%)

O(N
2
) parsing (open cells ≤ 5N)

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

Sentence length in words

P
a

rs
in

g
 t

im
e

 i
n

 s
e

c
o

n
d

s

No constraints

High precision constraints (90%)

O(N
2
) parsing (open cells ≤ 5N)

0 5 10 15 20
0

0.02

0.04

0.06

0.08

0.1

Sentence length in words

P
a
rs

in
g
 t
im

e
 i
n
 s

e
c
o
n
d
s

No constraints

High precision constraints (90%)

O(N
2
) parsing (open cells ≤ 5N)

Figure 3: Scatter plots of sentence length versus parsing time
for (1) baseline exact inference (no constraints); (2) high pre-
cision begin- and end-constituent constraints (90% level); and
(3) O(N2) constraints (5N open cells).

constraints like POS-tags or chunks.

4.2 Combining Constraints
Depending on the length of the string, the quadratic
constraints may close more or fewer chart cells
than the high precision constraints—more for long
strings, fewer for short strings. We can achieve

F-measure time
Constraints accuracy (seconds)
None (baseline CYK) 74.1 3646
High Precision (90%) 77.0 181
Quadratic (5N) 75.7 317
Quad (5N) + HiPrec (90%) 76.9 166

Table 1: Speed and accuracy of exact-inference CYK parser
on WSJ section 24 under various constraint conditions, includ-
ing combining quadratic bound constraints and high precision
constraints.

worst-case bounds, along with superior typical case
speedups, by combining both methods as follows:
first apply the quadratic bounds; then, if there are
any high precision constraints that remain unap-
plied, add them. Table 1 shows F-measure accuracy
and parsing time (in seconds) for four trials on the
development set: the baseline CYK with no con-
straints; high precision constraints at the 90% level;
quadratic bound constraints at the 5N level; and a
combination of the quadratic bound and high preci-
sion constraints. We can see that, indeed, the com-
bination of the two yield speedups over both inde-
pendently, with no significant drop in accuracy from
the high precision constraints alone. Further results
with worst-case complexity bounds will be com-
bined with high precision constraints in this way.

The observed linear parsing time in Figure 3 with
the quadratic constraints raises the following ques-
tion: can we apply these constraints in a way that
guarantees linear complexity? The answer is yes,
and this is the subject of the next section.

5 Linear and N log2N Complexity Bounds

Given the two sets B and E, recall the three cases of
chart cells (i, j) presented in Section 2: 1) wj 6∈ E
(cell completely closed); 2) wj ∈ E and wi 6∈ B
(cell open only for incomplete constituents); and 3)
wi ∈ B and wj ∈ E (cell open for all constituents).
Quadratic worst-case complexity is achieved with
these sets by limiting case 3 to hold for only O(N)
cells—each with linear work—and the remaining
O(N2) cells (cases 1 and 2) have none or constant
work, hence overall quadratic (Roark and Holling-
shead, 2008).

One might ask: why would imposing constraints
to achieve a quadratic bound give us linear observed
parsing time? One possibility is that the linear num-
ber of case 3 cells don’t have a linear amount of
work, but rather a constant bounded amount of work.

651

If there were a constant bounded number of mid-
points, then the amount of work associated with case
3 would be linear. Note that a linear complexity
bound would have to guarantee a linear number of
case 2 cells as well since there is a constant amount
of work associated with case 2 cells.

To provide some intuition as to why the quadratic
bound method resulted in linear observed parsing
time, consider again the chart structure in Figure 1.
The black cells in the chart represent the cells that
have been closed when wj 6∈ E (case 1 cells). In
our example, w2 6∈ E caused the cell spanning ab
to be closed, and w4 6∈ E caused the cells span-
ning abcd, bcd and cd to be closed. Since there is
no work required for these cells, the amount of work
required to parse the sentence is reduced. However,
the quadratic bound does not include any potential
reduced work in the remaining open cells. The gray
cells in the chart are cells with a reduced number of
possible midpoints, as effected by the closed cells
in the chart. For example, categories populating the
cell spanning abc in position (1, 3) can be built in
two ways: either by combining entries in cell (1, 1)
with entries in (2, 3) at midpoint m = 1; or by com-
bining entries in (1, 2) and (3, 3) at midpoint m = 2.
However, cell (1, 2) is closed, hence there is only
one midpoint at which (1, 3) can be built (m = 1).
Thus the amount of work to parse the sentence will
be less than the worst-case quadratic bound based on
this processing savings in open cells.

While imposition of the quadratic bound may
have resulted (fortuitously) in constant bounded
work for case 3 cells and a linear number of case
2 cells, there is no guarantee that this will be the
case. One method to guarantee that both conditions
are met is the following: if |E| ≤ k for some con-
stant k, then both conditions will be met and parsing
complexity will be linear. We prove here that con-
straining E to contain a constant number of words
results in linear complexity.

Lemma 1: If |E| ≤ k for some k, then the
amount of work for any cell is bounded by ck
for some constant c (grammar constant).

Proof: Recall from Section 2 that for each cell
(i, j), there are j−i midpoints m that require com-
bining entries in cells (i,m) and (m+1, j) to create
entries in cell (i, j). If m > i, then cell (i,m) is
empty unless wm ∈ E. If cell (i,m) is empty, there

is no work to be done at that midpoint. If |E| ≤ k,
then there are a maximum of k midpoints for any
cell, hence the amount of work is bounded by ck for
some constant c.2

Lemma 2: If |E| ≤ k for some k, then the num-
ber of cells (i, j) such that wj ∈ E is no more
than kN where N is the length of the string.

Proof: For a string of length N , each word wj in
the string has at most N cells such that wj is the
last word in the substring spanned by that cell, since
each such cell must begin with a distinct word wi in
the string where i ≤ j, of which there are at most N .
Therefore, if |E| ≤ k for some k, then the number
of cells (i, j) such that wj ∈ E would be no more
than kN .2

Theorem: If |E| ≤ k, then the parsing complex-
ity is O(k2N).

Proof: As stated earlier, each cell (i, j) falls in one
of three cases: 1) wj 6∈ E; 2) wj ∈ E and wi 6∈ B;
and 3) wi ∈ B and wj ∈ E. Case 1 cells are com-
pletely closed, there is no work to be done in those
cells. By Lemma 2, there are at maximum kN cells
that fall in either case 2 or case 3. By Lemma 1, the
amount of work for each of these cells is bounded
by ck for some constant c. Therefore, the theorem is
proved.2

If |E| ≤ k for a constant k, the theorem proves
the complexity will be O(N). If |E| ≤ k log N ,
then parsing complexity will be O(N log2N). Fig-
ure 4 shows sentence length versus parsing time
under three different conditions1: baseline (uncon-
strained); O(N log2N) at |E| ≤ 3 log N ; and linear
at |E| ≤ 16. The bottom graph zooms in to demon-
strate that the O(N log2N) constraints can outper-
form the linear constraints for shorter strings (see
around 20 words). As the length of the string in-
creases, though, the performance lines cross, and the
linear constraints demonstrate higher efficiency for
the longer strings, as expected.

Unlike the method for imposing quadratic
bounds, this method only makes use of set E, not
B. To select the constraints, we rank the word/E
posterior probabilities, and choose the top k (either
constant or scaled with a log N factor); the rest of
the words fall outside of the set. In this approach,

1Selection of these particular operating points for the
N log2N and linear methods is discussed in Section 6.

652

0 20 40 60 80 100 1200

2

4

6

8

10

Sentence length in words

Pa
rs

in
g

tim
e

in
 s

ec
on

ds

No constraints
O(Nlog2N) parsing (k=3)
O(N) parsing (k=16)

0 10 20 30 400

0.2

0.4

0.6

0.8

1

Sentence length in words

Pa
rs

in
g

tim
e

in
 s

ec
on

ds

No constraints
O(Nlog2N) parsing (k=3)
O(N) parsing (k=16)

Figure 4: Scatter plots of sentence length versus pars-
ing time for (1) baseline exact inference (no constraints);
(2) O(N log2N) constraints; and (3) O(N) constraints.

every word falls in the B set, hence no constraints
on words beginning multi-word constituents are im-
posed.

6 Results

Figure 5 plots F-measure accuracy versus time to
parse the development set for four methods of
imposing constraints: the previously plotted high
precision and quadratic bound constraints, along
with O(N log2N) and linear bound constraints us-
ing methods described in this paper. All meth-
ods are employed at various parameterizations, from
very lightly constrained to very heavily constrained.
The complexity-bound constraints are not combined
with the high-precision constraints for this plot.

As can be seen from the plot, the linear and
O(N log2N) methods do not, as applied, achieve as
favorable of an accuracy/efficiency tradeoff curve as
the quadratic bound method. This is not surprising,

0 200 400 600 80055

60

65

70

75

80

Seconds to parse section

F−
m

ea
su

re
 a

cc
ur

ac
y

High precision constraints
O(N2) complexity bounds
O(Nlog2N) complexity bounds
O(N) complexity bounds

Figure 5: Time to parse (seconds) versus accuracy (F-
measure) for high precision constraints of various thresholds
versus three methods of imposing constraints with complexity
bounds: (1) O(N2) complexity (number of open cells ≤ kN);
(2) O(N log2N) complexity (|E| ≤ k log N); and (3) linear
complexity (|E| ≤ k).

given that no words are excluded from the set B
for these methods, hence far fewer constraints over-
all are applied with the new method than with the
quadratic bound method.

Of course, the high precision constraints can be
applied together with the complexity bound con-
straints, as described in Section 4.2. For combining
complexity-bound constraints with high-precision
constraints, we first chose operating points for both
the linear and O(N log2N) complexity bound meth-
ods at the points before accuracy begins to de-
grade with over-constraint. For the linear complex-
ity method, the operating point is to constrain the
set size of E to a maximum of 16 members, i.e.,
|E| ≤ 16. For the N log2N complexity method,
|E| ≤ 3 log N .

Table 2 presents results for these operating points
used in conjunction with the 90% high precision
constraints. For these methods, this combination
is particularly important, since it includes all of the
high precision constraints from the set B, which are
completely ignored by both of the new methods. We
can see from the results in the table that the com-
bination brings the new constraint methods to very
similar accuracy levels as the quadratic constraints,
yet with the guarantee of scaling linearly to longer
and longer sentences.

The efficiency benefits of combining constraints,
shown in Table 2, are relatively small here because
the dataset contains mostly shorter sentences. Space

653

F-measure time
Constraints accuracy (seconds)
None (baseline CYK) 74.1 3646
High Precision (90%) 77.0 181
Quad (5N) + HiPrec (90%) 76.9 166
N log2N (3logN) + HP (90) 76.9 170
Linear (16) + HiPrec (90%) 76.8 167

Table 2: Speed and accuracy of exact-inference CYK parser
on WSJ section 24 under various constraint conditions, includ-
ing combining various complexity bound constraints and high
precision constraints.

limitations prevent us from including scatter plots
similar to those in Figure 3 for the constraint combi-
nation trials, which show that the observed parsing
time of shorter sentences is typically identical under
each constraint set, while the parsing time of longer
sentences tends to differ more under each condition
and exhibit characteristics of the complexity bounds.
Thus by combining high-precision and complexity
constraints, we combine typical-case efficiency ben-
efits with worst-case complexity bounds.

Note that these speedups are achieved with no
additional techniques for speeding up search, i.e.,
modulo the cell closing mechanism, the CYK pars-
ing is exhaustive—it explores all possible category
combinations from the open cells. Techniques such
as coarse-to-fine or A∗ parsing, the use of an agenda,
or setting of probability thresholds on entries in
cells—these are all orthogonal to the current ap-
proach, and could be applied together with them
to achieve additional speedups. However, none
of these other techniques provide what the current
methods do: a complexity bound that will hold even
in the worst case.

To validate the selected operating points on a dif-
ferent section, Table 3 presents speed and accuracy
results on the test set (WSJ section 23) for the exact-
inference CYK parser.

We also conducted similar preliminary trials for
parsing the Penn Chinese Treebank (Xue et al.,
2004), which contains longer sentences and differ-
ent branching characteristics in the induced gram-
mar. Results are similar to those shown here, with
chart constraints providing both efficiency and ac-
curacy gains.

7 Conclusion
We have presented a method for constraining a
context-free parsing pipeline that provably achieves

F-measure time
Constraints accuracy (seconds)
None (baseline CYK) 73.8 5122
High Precision (90%) 76.8 272
Quad (5N) + HiPrec (90%) 76.8 263
N log2N (3logN) + HP (90) 76.8 266
Linear (16) + HiPrec (90%) 76.8 264

Table 3: Speed and accuracy of exact-inference CYK parser
on WSJ section 23 under various constraint conditions, includ-
ing combining various complexity bound constraints and high
precision constraints.

linear worst case complexity. Our method achieves
comparable observed performance to the quadratic
complexity method previously published in Roark
and Hollingshead (2008). We were motivated to
pursue this method by the observed linear parsing
time achieved with the quadratic bound constraints,
which suggested that a tighter complexity bound
could be achieved without hurting performance.

We have also shown that combining methods for
achieving complexity bounds—which are of pri-
mary utility for longer strings—with methods for
achieving strong observed typical case speedups can
be profitable, even for shorter strings. The result-
ing combination achieves both typical speedups and
worst-case bounds on processing.

The presented methods may not be the only way
to achieve these bounds using tagger pre-processing
of this sort, though they do have the virtue of
very simple constraint selection. More complicated
methods that track, in fine detail, how many cells
are open versus closed, run the risk of a constraint
selection process that is itself quadratic in the length
of the string, given that there are a quadratic number
of chart cells. Even so, the presented methods criti-
cally control midpoints for all cells only via the set
E (words that can end a multi-word constituent) and
ignore B. More complicated methods for using both
sets that also achieve linear complexity (perhaps
with a smaller constant), or that achieve O(N logN)
complexity rather than O(N log2N), may exist.

Acknowledgments

This research was supported in part by NSF Grant
#IIS-0447214 and DARPA grant #HR0011-08-1-
0016. Any opinions, findings, conclusions or recom-
mendations expressed in this publication are those of
the authors and do not necessarily reflect the views
of the NSF or DARPA.

654

References
D. Blaheta and E. Charniak. 1999. Automatic compen-

sation for parser figure-of-merit flaws. In Proceedings
of the 37th annual meeting of the Association for Com-
putational Linguistics (ACL), pages 513–518.

E. Charniak. 2000. A maximum-entropy-inspired parser.
In Proceedings of the 1st Conference of the North
American Chapter of the Association for Computa-
tional Linguistics, pages 132–139.

J. Cocke and J.T. Schwartz. 1970. Programming lan-
guages and their compilers: Preliminary notes. Tech-
nical report, Courant Institute of Mathematical Sci-
ences, NYU.

B. Djordjevic, J.R. Curran, and S. Clark. 2007. Im-
proving the efficiency of a wide-coverage CCG parser.
In Proceedings of the 10th International Workshop on
Parsing Technologies (IWPT), pages 39–47.

E. Glaysher and D. Moldovan. 2006. Speeding up full
syntactic parsing by leveraging partial parsing deci-
sions. In Proceedings of the COLING/ACL 2006 Main
Conference Poster Sessions, pages 295–300.

K. Hall and M. Johnson. 2004. Attention shifting for
parsing speech. In Proceedings of the 40th Annual
Meeting of the Association for Computational Linguis-
tics (ACL), pages 40–46.

K. Hollingshead and B. Roark. 2007. Pipeline iteration.
In Proceedings of the 45th Annual Meeting of the As-
sociation for Computational Linguistics (ACL), pages
952–959.

K. Hollingshead, S. Fisher, and B. Roark. 2005.
Comparing and combining finite-state and context-
free parsers. In Proceedings of the Human Lan-
guage Technology Conference and the Conference on
Empirical Methods in Natural Language Processing
(HLT/EMNLP), pages 787–794.

T. Kasami. 1965. An efficient recognition and syntax
analysis algorithm for context-free languages. Techni-
cal report, AFCRL-65-758, Air Force Cambridge Re-
search Lab., Bedford, MA.

M.P. Marcus, B. Santorini, and M.A. Marcinkiewicz.
1993. Building a large annotated corpus of En-
glish: The Penn Treebank. Computational Linguistics,
19(2):313–330.

A. Ratnaparkhi. 1999. Learning to parse natural
language with maximum entropy models. Machine
Learning, 34(1-3):151–175.

B. Roark and K. Hollingshead. 2008. Classifying chart
cells for quadratic complexity context-free inference.
In Proceedings of the 22nd International Conference
on Computational Linguistics (COLING), pages 745–
752.

N. Xue, F. Xia, F. Chiou, and M. Palmer. 2004. The
Penn Chinese treebank: Phrase structure annotation

of a large corpus. Natural Language Engineering,
10(4):1–30.

D.H. Younger. 1967. Recognition and parsing of
context-free languages in time n3. Information and
Control, 10(2):189–208.

655

